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Abstract: We use a payment pattern of the type {1k, 2k, 3k, . . .} to generalize the standard level
payment and increasing annuity to polynomial payment patterns. We derive explicit formulas for the
present value of an n-year polynomial annuity, the present value of an m-monthly n-year polynomial
annuity, and the present value of an n-year continuous polynomial annuity. We also use the idea
to extend the annuities to payment patterns derived from analytic functions, as well as to payment
patterns of the type {1r, 2r, 3r, . . .}, with r being an arbitrary real number. In the process, we develop
possible approximations to k! and for the gamma function evaluated at real numbers.

Keywords: polynomial annuity; continuous annuity; real value annuity; analytic annuity; perpetuity;
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1. Introduction

An annuity is a payment structure where a series of payments is made at various
instants of time, with the objective spreading out a single lump-sum payment over a
period of time. A level annuity is a payment structure where the same amount P is paid
at all future instants of time. Typical annuity payments are finite in number over a finite
period of time. When the annuity payments are made without a time limit (payments
forever), then it is called a perpetuity. An important calculation for a given annuity payment
structure is to compute the present value of the annuity, using the idea of the time value of
money. For finite-time annuities, the future value at the end of the time period is also of
interest. Annuity calculations are part of a subject called the theory of interestin actuarial
mathematics (see, e.g., [1–4]).

The idea of an increasing annuity, with a payment pattern of {1, 2, 3, . . .} is a standard
variation on a level payment annuity, which is a topic discussed in interest theory (see,
e.g., [1–4]). The present value of an increasing immediate annuityis typically denoted by
(Ia)n i. Such an annuity is modeled after a linear increase in payments. Along the same
lines, a geometric annuity is one that has an exponential payment pattern of {1, (1+ g), (1+
g)2, . . .}, which is also a standard topic in interest theory. Formulas for present and future
values of annuities and perpetuities with such a linear or exponential payment pattern can
be easily derived using basic principles.

A payment pattern of the type {1k, 2k, 3k, . . .}, which we define as a polynomial annuity
of order k is an intermediate between the linear and the exponential patterns. If k = 1,
then we recover the increasing annuity. For k = 2, 3, 4. . ., we can name such annuities
as quadratic, cubic, quartic annuities, . . . , respectively. Hence, a polynomial annuity is
a generalization of the standard arithmetic annuity and lies in between arithmetic and
geometric annuities in terms of the level of complexity of the payment patterns. To our
knowledge, a polynomial annuity of this type has not been considered in interest theory,
and the results presented are novel to actuarial science. In this paper, we derive an explicit
formula for the present value of a polynomial immediate annuity of order k using two
different methods. As it turns out, the answer from both methods involves the famous
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Eulerian polynomials that Euler introduced [5–8]. Since actuarial notation for polynomial
annuities does not currently exist, we will use (Pka)n i as the notation for the present value
of a polynomial immediate annuity (with the usual variation of (Pk ä)n i for the annuity
due). We will only consider the case of the immediate annuity and its extension to the
immediate perpetuityin this paper.

The main objectives of this paper are as follows:

1. We derive an explicit formula for the present value of an n-year polynomial immediate
annuity (Pka)n i and its corresponding immediate perpetuity (Pka)∞ i.

2. We derive an explicit formula for the present value of an m-monthly n-year polynomial

immediate annuity (P(m)
k a(m))n i.

3. We derive an explicit formula for the present value of an n-year continuous polynomial
immediate annuity (Pka)n i and its corresponding immediate perpetuity (Pka)∞ i.

4. We extend the concept of polynomial annuities to analytic annuities, where the
payment pattern is { f (1), f (2), . . ., f (n)}, with f (x) an analytic function of x admitting
a power series expansion.

5. We extend the concept of polynomial annuities to annuities with a payment pattern
of {1r, 2r, 3r, . . .}, where r is now any real number.

The paper is organized as follows. In Section 2, we use the idea of generating functions
to derive a formula for (Pka)n i, which to our knowledge does not exist in the literature. In
Section 3, we use an alternate approach to derive a second equivalent formula for (Pka)n i.
This formula can be directly linked to results on sums of powers of integers, which was
originally developed by Euler in [5]. In the interest of completeness, we included the
second formula. In Section 4, we derive a formula for continuous polynomial annuities
given by (P̄ā)n i. In Section 5, we derive a formula for m-monthlypolynomial annuities
(P(m)a(m))n i, where the payment frequency is m times every year. In Section 6, we derive a
formula for the present value of polynomial perpetuities. This also leads to an interesting
approximation to k! in Remark 3. In Section 7, we extend the idea of annuities to payment
patterns that look like { f (1), f (2), f (3), . . .}, where f (x) is an analytic function. Here,
negative payments refer to cash outflow. Finally, in Section 8, we use polynomial annuities
to analyze annuities that have a payment pattern of {1r, 2r, 3r, . . .}, where r is any real
number and not just a whole number. This leads to another interesting approximation for
the gamma function in Remark 6.

2. Method 1: Using Generating Functions

In this section, we use the idea of generating functions to derive an explicit expression
for the present value of a polynomial immediate annuity denoted by (Pka)n i, which has
{1k, 2k, 3k, . . ., nk} as its payment pattern. An explicit expression for (Pka)n i is as follows
(with v = 1

1 + i and i being the annual effective interest rate):

(Pka)n i = 1kv + 2kv2 + 3kv3 + · · ·+ (n− 1)kv(n−1) + nkvn.

For example, if k = 2 above, we have the following:

(P2a)n i = 12v + 22v2 + 32v3 + · · ·+ (n− 1)2v(n−1) + n2vn.

We consider the generating function for the following sequence, where we use “→” to
denote the generating function. We use ′ to denote d

dx here:

{v, v2, . . .} → v
1− vx

,
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which converges for v ∈ (−1, 1). We have the following transformations that follow
automatically due to the properties of generating functions:

{0, v, v2, v3, . . .} → vx
1− vx

.

Thus,

{v, 2v2, 3v2, . . .} →
(

vx
1− vx

)′
=

v
(1− vx)2 := G1(x).

This pattern can be expanded as follows:

{v, 22v2, 32v2, . . .} →
[(

vx
1− vx

)
x
]′

:= G2(x),

{v, 23v2, 33v2, . . .} →
[[(

vx
1− vx

)
x
]′

x

]′
:= G3(x),

{v, 24v2, 34v2, . . .} →
[[[(

vx
1− vx

)
x
]′

x

]′
x

]′
:= G4(x),

In general,

{1kv, 2kv2, 3kv2, . . .} →

[[[( vx
1− vx

)
x
]′

x

]′
x

]′
. . .

′
︸ ︷︷ ︸

k−1 derivatives

= Gk(x).

Since {1, 1, 1, 1, . . .} → 1
1− x

, by the product rule of generating functions, if we want

(Pka)n i =
n

∑
j=1

jkvj, we will need the coefficient of xn in
Gk(x)
(1− x)

. Using the product rule

from differentiation, we obtain the following recursive expression for Gk:

Gk(x) = xG′k−1(x) + Gk−1(x).

Therefore, we have

G1(x) =
v

(1− vx)2 ,

G2(x) =
(

vx
(1− vx)2

)′
=

v(1 + vx)
(1− vx)3 ,

G3(x) =
(

vx(1 + vx)
(1− vx)3

)′
=

v
(1− vx)4

{
1 + 4vx + v2x2

}
,

G4(x) =

({
1 + 4vx + v2x2}vx

(1− vx)4

)′
=

v
(1− vx)5

{
1 + 11vx + 11v2x2 + v3x3

}
,

G5(x) =

({
1 + 11vx + 11v2x2 + v3x3}vx

(1− vx)5

)′
=

v
(1− vx)6

{
1 + 26vx + 66v2x2 + 26v3x3 + v4x4

}
,

G6(x) =

({
1 + 26vx + 66v2x2 + 26v3x3 + v4x4}vx

(1− vx)6

)′
=

v
(1− vx)7

{
1 + 57vx + 302v2x2 + 302v3x3 + 57v4x4 + v5x5

}
.
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The coefficients of each of these polynomials turn out to be the famous Eulerian
coefficients that are the coefficients of an Eulerian polynomial. In fact, here are some known
facts about these coefficients A(n, m) and for Eulerian polynomials, An(t) from [5–8]. These
are well-known identities that we recall for the benefit of the reader.

1.
A(1, 0) = 0, A(1, 0) = 1, and A(m, n) = 0, for all m ≥ n

For all other values of n and m,

A(n, m) =
m+1

∑
k=0

(−1)k
(

n + 1
k

)
(m + 1− k)n.

2.
N

∑
k=1

kn =
n−1

∑
m=0

A(n, m)

(
N + 1 + m

n + 1

)
3. (Worpitzky’s identity) [9]

xn =
n−1

∑
m=0

A(n, m)

(
x + m

n

)
n−1

∑
m=0

A(n, m) = n! for n ≥ 1

4. Similar to binomial coefficients, there is a recursive formula to compute the Eulerian
coefficients for appropriate values of m and n.

A(n, m) = (n−m)A(n− 1, m− 1) + (m + 1)A(n− 1, m)

An(t) =
n−1

∑
k=0

A(n, k)tk

A0(t) = 1

We illustrate Eulerian numbers in a triangle, shown in Figure 1 below.

1

1

1

1

1

1

1

1

1

4

11

26
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1
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1191

4293

1

26

302

2416

15, 619

1
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1
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1

247 1

Figure 1. Illustration of Eulerian numbers.

In the next theorem, we show that the coefficient of xn in Gk(x)
(1−x) is nothing but (Pka)n i.
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Theorem 1. The present value of an n-year polynomial immediate annuity given by (Pka)n i

is the coefficient of xn in Gk(x)
(1−x) where Gk(x) is the generating function for the infinite sequence

{1kv, 2kv2, 3kv3, . . .}.

Proof. It can be shown using induction that Gk(x) = vAk(vx)
(1−vx)(k+1) . Recall that we are looking

for the coefficient (Pka)n i, which is equal to the coefficient of xn in

Gk(x)
(1− x)

=

(
vAk(vx)

(1− vx)(k+1)(1− x)

)
.

Euler proved in [5] that

A(vx)
(1− vx)(k+1)

=
∞

∑
m=0

(vx)m(m + 1)k.

Therefore,

vA(vx)
(1− vx)(k+1)(1− x)

=
v

(1− x)

∞

∑
m=0

(vx)m(m + 1)k

=

(
∞

∑
l=0

1xl

)(
∞

∑
m=0

vm+1(m + 1)kxm

)

=

(
∞

∑
l=0

anxl

)(
∞

∑
m=0

bnxm

)
,

where al = 1 for all l and bm = vm+1(m + 1)k for all k.
The coefficient of xn is therefore

n

∑
j=0

bjan−j =
n

∑
j=0

v(j+1)(j + 1)k

=
n+1

∑
j=1

vj jk

= (Pka)n i.

We state and prove the main theorem in the section next.
We recall a lemma from generating functions, which can be easily proven using

induction. This lemma will be useful in proving Theorem 2 below:

Lemma 1. If a, b ∈ N and b > a ≥ 0, then for any n ≥ a, the coefficient of xn in

cxa

(1− αx)b

is

c
(

n− a + b− 1
b− 1

)
αn−a.

Theorem 2. Let A(k, l) denote the Eulerian coefficient and Ak(v) be the Eulerian polynomial
evaluated at v = 1

1+i , where i is the annual effective interest rate. Then, the present value of an
n-year polynomial immediate annuity with a payment pattern of {1k, 2k, 3k, . . ., nk} is given by the
following:
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(Pka)n i =
k

∑
j=0

Fj

(
n− j + k

k

)
vn−j + B,

where

Fj = −B
j

∑
l−0

(−1)l
(

k + 1
l

)
vl +

j

∑
l=0

A(k, l)v(l+1), j = 1, . . ., k,

B =
vAk(v)

(1− v)(k+1)
.

Remark 1. F′j s and B can also be written as

B =
vAk(v)

(1− v)(k+1)
,

Fj = B
k+1

∑
l=j+1

(
k + 1

l

)
(−1)lvl −

k

∑
l=j+1

A(k, l)v(l+1), j = 1, . . ., k− 1,

Fk = (−1)(k+1)v(k+1)B.

Proof. Using induction, it can be shown that, in general,

Gk(x) =
v

(1− vx)(k+1)
Ak(vx), where Ak(vx) is defined as above.

We use partial fractions to produce a new way to derive a formula for the coefficient.
The main motivation for the partial fractions approach is that we can use Lemma 1 directly
to equate the coefficient of like powers xn on both sides to obtain the result of this theorem.

Using partial fractions, we seek Fj for j = 0, . . ., k and B such that

(
vAk(vx)

(1− vx)(k+1)(1− x)

)
=

∑k
j=0 Fjxi

(1− vx)(k+1)
+

B
(1− x)

.

We find a common denominator on the right-hand side and then set the numerators
equal to each other. Thus, we find constants Fj for j = 0, . . ., k and B such that[

k

∑
j=0

Fjxj

]
(1− x) + B(1− vx)(k+1) = vAk(vx). (1)

For x = 1, we have
B(1− v)(k+1) = vAk(v),

or

B =
vAk(v)

(1− v)(k+1)
=

v ∑k−1
l=0 A(k, l)vl

(1− v)(k+1)
.

Moving on to Fj, for j = 0, . . ., k, distribute (1− x) into the summation, and expanding
(1− vx)(k+1) in (1) above, we obtain

k

∑
j=0

Fjxj −
k

∑
j=0

Fjx(j+1) + B
k+1

∑
j=0

(
k + 1

j

)
(vx)j(−1)j = v

k−1

∑
j=0

A(k, j)(vx)j.
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Now, we separate the j = 0 term out from the sum and collect like terms to obtain

(F0 + B) +
k

∑
j=1

(Fj − Fj−1 + B
(

k + 1
j

)
(−1)jvj)xj + (−Fk + Bv(k+1)(−1)(k+1))x(k+1)

= v
k−1

∑
j=0

A(k, j)(vx)j.

Thus, when x = 0, we have

F0 + B = vA(k, 0),

or
F0 = −B + vA(k, 0).

Equating the powers of x1 on both sides of (2), we have:

F1 − F0 + (−1)1B
(

k + 1
1

)
v1 = v2 A(k, 1)

so,

F1 = −B− B
(

k + 1
1

)
v1(−1)1 + vA(k, 0) + v2 A(k, 1)

= −B
1

∑
l=0

(−1)l
(

k + 1
l

)
vl +

1

∑
l=0

v(j+1)A(k, l).

A pattern begins to emerge. Equating coefficients of x2 in (2), we have

F2 − F1 + B
(

k + 1
1

)
(−1)2v2 = v3 A(k, 2),

so,

F2 = −F1 − B
(

k + 1
2

)
(−1)2v2 + v3 A(k, 2)

= −B
1

∑
l=0

(
k + 1

l

)
(−1)lvl +

1

∑
l=0

vj A(k, l)− B
(

k + 1
l

)
+ (−1)2v2

= −B
2

∑
l=0

(
k + 1

l

)
(−1)lvl +

2

∑
l=0

vA(k, l)(j+1).

In general, by equating the powers of xj on both sides, we obtain

Fj = −B
j

∑
l=0

(
k + 1

l

)
(−1)lvl +

j

∑
l=0

vA(k, l)(j+1), for j = 0, 1, 2, . . ., k.

We could also obtain these coefficients by working backwards from k to obtain the
following:

B =
vAk(v)

(1− v)(k+1)
,

Fj = B
k+1

∑
l=j+1

(
k + 1

l

)
(−1)lvl −

k

∑
l=j+1

A(k, l)v(l+1), j = 1, . . ., k− 1,

Fk = (−1)(k+1)v(k+1)B.
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The proof follows by applying Lemma 1 and computing the coefficient of xn in

(
vAk(vx)

(1− vx)(k+1)(1− x)

)
=

∑k
j=0 Fjxi

(1− vx)(k+1)
+

B
(1− x)

.

This proves the theorem.

3. Method 2: Using Geometric Series

In this section, we show an alternate method to obtain a closed-form expression for
(Pka)n i. The final result, however, was already derived by Euler in [5], albeit using a
combinatorial approach.

Theorem 3. Let A(k, l) denote the Eulerian coefficient and Ak(v) be the Eulerian polynomial
evaluated at v = 1

1+i , where i is the annual effective interest rate. Then, the present value of an
n-year polynomial immediate annuity with a payment pattern of {1k, 2k, 3k, . . ., nk} is given by the
following two equivalent expressions:

(Pka)n i = −v(n+1)
k

∑
l=0

(
k
l

)
Al(v)n(k−l)

(1− v)(l+1)
+

vAk(v)
(1 + v)(k+1)

, (2)

or

(Pka)n i =
k

∑
l=0

(
k
l

)
(−1)(k−l)nlvn+1 Ak−l(v)

(v− 1)(k−l+1)
− (−1)k vAk(v)

(v− 1)(k+1)
.

Remark 2. At the outset, we want to reiterate that the result above was proven by Euler in [5]. We
are merely showing an alternate derivation method to show the same result here.

Proof. Let v = e−δ and consider

F(x) = vex + v2e2x + v3e3x + · · ·+ vnenx =
(vex)(n+1) − vex

(vex − 1)

=
e(x−δ)(n+1) − ex−δ

ex−δ − 1

=
e(x−δ) · {en(x−δ) − 1}

ex−δ − 1
.

Note that

F(0) = v + v2 + · · ·+ vn = an i

F′(0) = v + 2v2 + 3v3 + · · ·+ nvn = (P1a)n i

F′′(0) = v + 22v2 + 32v3 + · · ·+ n2vn = (P2a)n i

F′′′(0) = v + 23v2 + 33v3 + · · ·+ n3vn = (P3a)n i
...

F(k)(0) = (Pka)n i.

Therefore, we can conclude that the Taylor series expansion of the right-hand side of
G(x) above is

(an i) + (P1a)n i
x
1!

+ (P2a)n i
x2

2!
+ · · ·+ (Pka)n i

xk

k!
+ · · · .
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We now concentrate on the right-hand side of F(x), namely

e(x−δ) · {en(x−δ) − 1}
ex−δ − 1

.

Let Ak(ex−δ) be the Euler polynomial evaluated at ex−δ. We can now derive the
following. We define the function H(x) as follows:

H(x) =
e(x−δ)

ex−δ − 1
= 1 +

1
ex−δ − 1

,

Thus,

H′(x) = − ex−δ

(ex−δ − 1)2 ,

H′′(x) =
ex−δ{ex−δ + 1}
(ex−δ − 1)3 ,

H′′′(x) = − ex−δ{e2(x−δ) + 4ex−δ + 1}
(ex−δ − 1)4 = − ex−δ A3(ex−δ)

(ex−δ − 1)4 ,

H(4)(x) =
ex−δ{e3(x−δ) + 11e2(x−δ) + 11ex−δ + 1}

(ex−δ − 1)5 =
ex−δ A4(ex−δ)

(ex−δ − 1)5 ,

...

H(k)(x) =
(−1)kex−δ Ak(ex−δ)

(ex−δ − 1)(k+1)
.

Now, we define U(x) = en(x−δ) so that

F(x) = H(x) ·U(x).

Note that

H(k)(x) =
(−1)kex−δ Ak(ex−δ)

(ex−δ − 1)(k+1)
,

and
U(k)(x) = nken(x−δ) − 1(k = 0),

1(k = l) is the indicator function that returns the value of 1 if k = l and 0 otherwise.
Therefore, by the Leibniz formula for the derivative of products,

F(k)(x) =
k

∑
l=0

(
k
l

)
H(l)(x)U(k−l)(x)

=
k

∑
l=0

(
k
l

)
(−1)ke(x−δ)Al(e(x−δ)

(e(x−δ) − 1)(l+1)

[
n(k−l)e(x−δ) − 1(k = l)

]
.

Thus,

F(k)(0) = −v(n+1)
k

∑
l=0

(
k
l

)
Al(v)n(k−l)

(1− v)(l+1)
+

vAk(v)
(1 + v)(k+1)

. (3)
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If we write it the other way, we have the following:

F(k)(x) =
k

∑
l=0

(
k
l

)
U(l)(x)H(k−l)(x)

=
k

∑
l=0

(
k
l

)[
nlen(x−δ) − 1(k = 0)

]
· (−1)(k−l)e(x−δ)Ak−l(ex−δ)

(e(x−δ) − 1)(k−l+1)
.

Thus,

F(k)(0) =
k

∑
l=0

(
k
l

)
(−1)(k−l)nlvn+1 Ak−l(v)

(v− 1)(k−l+1)
− (−1)k vAk(v)

(v− 1)(k+1)
.

This proves the theorem.

4. Continuous Polynomial Annuities

In this section, we turn our attention to continuous polynomial annuities where the
payment rate is tk USD per unit time, as illustrated in Figure 2 below. Here, we use the
equivalence v = e−δ for continuous annuities.

dt

0

︷ ︸︸ ︷
t t + dt n

Figure 2. Illustration of an infinitesimal payment for the continuous n-year polynomial immediate
annuity.

In this case, the payment for a small interval of time dt is equal to tkdt. Thus, the
present value of tkdt at time t = 0 is (tkdt)vt. There are infinitely many such pieces of
time (dt) We introduce notation that signifies a continuous increase and compounding
over time.

(Pka)n i =
∫ n

0
tke−δtdt

Theorem 4. The present value of a continuous n-year polynomial immediate annuity, denoted by
(Pka)n i, with a payment rate of tk USD per unit time is given by the following:

(Pka)n i =
∫ n

0
tke−δtdt

= − e−δn

δ

(k−1)

∑
l=0

kl

δl n(k−l) +
k!
δk

(
1− e−δn

δ

)
=

1
δ(k+1)

γ((k− 1), nδ),

where γ(s, x) =
∫ x

0 t(s−1)e−tdt, the lower incomplete gamma function.
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Proof. We develop a recursion using the technique of integration by parts. Thus,

(Pka)n i =
∫ n

0
tke−δtdt

=
−tke−δn

δ

∣∣∣t=n

t=0
+

k
δ

∫ n

0
t(k−1e−δtdt

= −nke−δn

δ
+

k
δ
(Pk−1a)n i

= −nke−δn

δ
+

k
δ

[
−n(k−1)e−δn

δ
+

(k− 1)
δ

(Pk−2a)n i

]

= − e−δn

δ

{
nk +

k
δ

n(k−1)
}
+

k(k− 1)
δ2

{
Pk−2a)n i

}
= − e−δn

δ

{
nk +

k
δ

n(k−1)
}
+

k(k− 1)
δ2

{
−n(k−2)e−δn

δ
+

(k− 2)
δ

(Pk−3a)n i

}

= − e−δn

δ

2

∑
l=0

kl

δl n(k−l) +
k(k− 1)(k− 2)

δ3 (Pk−3a)n i

= − e−δn

δ

2

∑
l=0

kl

δl n(k−l) +
k3

δ3 (Pk−3a)n i, where k3 = k(k− 1)(k− 2)

= − e−δn

δ

3

∑
l=0

kl

δl n(k−l) +
k4

δ4 (Pk−4a)n i

= − e−δn

δ

j

∑
l=0

kl

δl n(k−l) +
k(j+1)

δ(j+1)
(Pk−(j+1)a)n i.

Now, when j = k− 1, we have

(Pka)n i = −
e−δn

δ

(k−1)

∑
l=0

kl

δl n(k−l) +
kk

δk (P0a)n i

= − e−δn

δ

(k−1)

∑
l=0

kl

δl n(k−l) +
k!
δk (P0a)n i.

We can summarize this work for continuous annuities as

(P0a)n i = an i =
1− e−δn

δ

(Pka)n i = −
e−δn

δ

(k−1)

∑
l=0

kl

δl n(k−l) +
k!
δk (P0a)n i

= − e−δn

δ

(k−1)

∑
l=0

kl

δl n(k−l) +
k!
δk

(
1− e−δn

δ

)
.

Note that the integral associated with (Pka)n i is related to the lower incomplete
gamma function, which is defined by

γ(s, x) =
∫ x

0
t(s−1)e−tdt.
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Indeed, if we let δt = u and perform a change of variables, we obtain

(Pka)n i =
∫ n

0
tke−δtdt

=
∫ nδ

0

(u
δ

)k
e−u
(

1
δ

du
)

=
1

δ(k+1)

∫ nδ

0
u(k−1+1)e−udu

=
1

δ(k+1)
γ((k− 1), nδ).

This proves the theorem.

5. m-Monthly Payments

In this section, we derive an expression for the present value of an n-year polynomial
immediate annuity that is based on m-monthly payments.

Define (P(m)
k a(m))n i as the monthly payment, where the superscript indicates a pay-

ment frequency of m times per year.
In this situation, as shown in Figure 3 below, the payments need to be divided by

m(k+1), as illustrated in the figure. This is to mimic the Riemann approximation [10] of the
total amount of money paid at a rate of tk USD per unit time from t = 0 to t = n.

0

1k

mk+1

1
m

2k

mk+1

2
m

3k

mk+1

3
m

· · ·

· · ·

(m−1)k

mk

m−1
m

mk

mk+1

1

· · ·

· · ·

→

→

· · ·

· · ·

((n−1)m)k

mk+1)

n− 1

· · ·

· · ·

(nm)k

mk+1

n

Figure 3. Payment pattern for an n-year polynomial immediate annuity that is based on m-monthly
payments.

Note that this is connected to the continuous case, tk USD per unit time, so that the
total amount of money in n years will be∫ n

0
tkdt.

The Riemann sum [10] approximates the total money, which is a definite integral from
t = 0 to t = n, as the sum of the areas of rectangles, each of which represents an equivalent
discrete approximate payment. In the limit that m goes to ∞, the approximation is exact.

∫ n

0
tkdt ≈ 1

m

nm

∑
l=1

(
l
m

)k
=

1k

m(k+1)
+

2k

m(k+1)
+ · · ·+ (nm)k

m(k+1)
.

The individual terms are the USD amounts so that in the limiting case, the total money
is the same.

Note that we use the right-hand endpoint to make this approximation, where the
payment occurs at the end of each interval of time. That is,

lim
m→∞

1
m

nm

∑
l=1

(
l
m

)k
=
∫ n

0
tkdt.

Theorem 5. Let A(k, l) denote the Eulerian coefficient and Ak(v̂) be the Eulerian polynomial eval-
uated at v̂ = 1

1+î
, where î = i(m)

m . Then, the present value of an n-year m-monthly polynomial imme-
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diate annuity, denoted by (P(m)
k a(m))n i with a payment pattern of

{
1k

mk+1 , 2k

mk+1 , 3k

mk+1 , . . ., (nm)k

mk+1

}
,

is given by the following two equivalent expressions:

(P(m)
k a(m))n i =

1
m(k+1)

{
−v̂(nm+1)

k

∑
l=0

(
k
l

)
Al(v̂(nm)(k−l))

(1− v̂)(l+1)
+

v̂Ak(v̂)
(1− v̂)(k+1)

}

=
1

m(k+1)

{
v̂(nm+1)

k

∑
l=0

(−1)(k−l)(nm)l Ak−l(v̂)
(v̂− 1)(k−l+1)

− (−1)k v̂Ak(v̂)
(v̂− 1)(k+1)

}
, and

(P(m)
k a(m))n i =

1
m(k+1)

{
k

∑
j=0

F̂j

(
nm− j + k

k

)
v̂(nm−j) +

v̂Ak(v̂)
(1− v̂)(k+1)

}
,

where

F̂j = −B̂
j

∑
l=0

(−1)l
(

k + 1
l

)
v̂l +

j

∑
l=0

A(k, l)v̂(l+1), j = 1, . . ., k− 1,

F̂k = (−1)(k+1)v̂(k+1)B̂,

B̂ =
v̂Ak(v̂)

(1− v̂)(k+1)
.

Proof. If we first factor out 1
m(k+1) from all payments, then we have

1
m(k+1)

· {1k, 2k, . . ., (nm)k}

as the payment sequence. There are (nm) periods with periodic interest rate im
m . Thus,

(P(m)
k a(m))n i =

1
m(k+1)

· (Pka)
nm i(m)

m
,

and furthermore,
lim

m→∞
(P(m)

k a(m))n i = (Pka)n i.

We now unravel the left- and right-hand sides. We have already shown that

(Pka)n i =
1

δ(k+1)
γ((k + 1), nδ),

where γ(s, x) =
∫ x

0 t(s−1)e−tdt, the lower incomplete gamma function.

Let î = i(m)

m and v̂ = 1
1+î

. Then, the left-hand side above is calculated using Theorem 3
as follows:

(P(m)
k a(m))n i =

1
m(k+1)

(Pka)
nm i(m)

m

=
1

m(k+1)

{
−v̂(nm+1)

k

∑
l=0

(
k
l

)
Al(v̂(nm)(k−l))

(1− v̂)(l+1)
+

v̂Ak(v̂)
(1− v̂)(k+1)

}

=
1

m(k+1)

{
v̂(nm+1)

k

∑
l=0

(−1)(k−l)(nm)l Ak−l(v̂)
(v̂− 1)(k−l+1)

− (−1)k v̂Ak(v̂)
(v̂− 1)(k+1)

}
.

Using Theorem 2, we also have

(P(m)
k a(m))n i =

1
m(k+1)

{
k

∑
j=0

F̂j

(
nm− j + k

k

)
v̂(nm−j) +

v̂Ak(v̂)
(1− v̂)(k+1)

}
,
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where

F̂j = −B̂
j

∑
l−0

(−1)l
(

k + 1
l

)
v̂l +

j

∑
l=0

A(k, l)v̂(l+1), j = 1, . . ., k− 1,

F̂k = (−1)(k+1)v̂(k+1)B̂,

B̂ =
v̂Ak(v̂)

(1− v̂)(k+1)
.

This proves the theorem

Now, using the expressions from Method 1 and Method 2 from earlier in the paper, we
compute the limit as m goes to infinity for both expressions. As m, the number of payments
per year→ ∞, we have that

lim
m→∞

(P(m)
k a(m))n i = (Pka)n i

or in other words, the payments become continuous.

lim
m→∞

(P(m)
k a(m))n i = lim

m→∞

1
m(k+1)

{
−v̂(nm+1)

k

∑
l=0

(
k
l

)
Al(v̂(nm)(k−l))

(1− v̂)(l+1)
+

v̂Ak(v̂)
(1− v̂)(k+1)

}

= lim
m→∞

1
m(k+1)

{
v̂(nm+1)

k

∑
l=0

(−1)(k−l)(nm)l Ak−l(v̂)
(v̂− 1)(k−l+1)

− (−1)k v̂Ak(v̂)
(v̂− 1)(k+1)

}

= lim
m→∞

1
m(k+1)

{
k

∑
j=0

F̂j

(
nm− j + k

k

)
v̂(nm−j) +

v̂Ak(v̂)
(1− v̂)(k+1)

}

= (Pka)n i =
1

δ(k+1)
γ((k + 1), nδ),

where

F̂j = −B̂
j

∑
l−0

(−1)l
(

k + 1
l

)
v̂l +

j

∑
l=0

A(k, l)v̂(l+1), j = 1, . . ., k− 1,

F̂k = (−1)(k+1)v̂(k+1)B̂,

B̂ =
v̂Ak(v̂)

(1− v̂)(k+1)
.

We can input î = i(m)

m = (1 + i)1/m − 1, δ = ln(1 + i), and v̂ = 1
(1+i)1/m in the limits

above if we want explicit dependence on m.
This limit relates the Eulerian polynomials to the lower incomplete gamma function.

We state this relationship in the form of the following theorem.

Theorem 6.

1
δ(k+1)

γ((k + 1), nδ) = lim
m→∞

1
m(k+1)

{
−v̂(nm+1)

k

∑
l=0

(
k
l

)
Al(v̂(nm)(k−l))

(1− v̂)(l+1)
+

v̂Ak(v̂)
(1− v̂)(k+1)

}

= lim
m→∞

1
m(k+1)

{
v̂(nm+1)

k

∑
l=0

(−1)(k−l)(nm)l Ak−l(v̂)
(v̂− 1)(k−l+1)

− (−1)k v̂Ak(v̂)
(v̂− 1)(k+1)

}

= lim
m→∞

1
m(k+1)

{
k

∑
j=0

F̂j

(
nm− j + k

k

)
v̂(nm−j) +

v̂Ak(v̂)
(1− v̂)(k+1)

}
,
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where

F̂j = −B̂
j

∑
l−0

(−1)l
(

k + 1
l

)
v̂l +

j

∑
l=0

A(k, l)v̂(l+1), j = 1, . . ., k− 1,

F̂k = (−1)(k+1)v̂(k+1)B̂,

B̂ =
v̂Ak(v̂)

(1− v̂)(k+1)
.

6. Polynomial Perpetuity

In this section, we consider the present value of an annual and m-monthly polyno-
mial immediate perpetuity, denoted by (Pka)∞ i and (P(m)

k a(m))∞ i with payment patterns

of
{

1k, 2k, 3k, . . .
}

and
{

1k

mk+1 , 2k

mk+1 , 3k

mk+1 , . . ., (nm)k

mk+1

}
, respectively. We state and prove a

theorem to that effect.

Theorem 7. Let A(k, l) denote the Eulerian coefficient, Ak(v̂), and Ak(v̂) be the Eulerian poly-
nomial evaluated at v̂ = 1

1+î
, v = 1

1+i , where î = i(m)

m . Then, the present value of an annual

and m-monthly polynomial immediate perpetuity, denoted by (Pka)∞ i and (P(m)
k a(m))∞ i with

payment patterns of
{

1k, 2k, 3k, . . .
}

and
{

1k

mk+1 , 2k

mk+1 , 3k

mk+1 , . . ., (nm)k

mk+1

}
, respectively, is given by

the following expressions:

(Pka)∞ i =
vAk(v)

(1− v)(k+1)
; and (P(m)

k a(m))∞ i =
v̂Ak(v̂)

(1− v̂)(k+1)
.

Proof. An explicit expression for (Pka)∞ i can be obtained by taking the limit as n→ ∞ in
the expression for (Pka)n i in Theorems 2 and 3 and noting that all terms go to zero, except
for the following term in both theorems.

Polynomial Perpetuity = (Pka)∞ i

= lim
n→∞

(Pka)n i

=
vAk(v)

(1− v)(k+1)

In a similar way, we can derive the m-monthly perpetuity (P(m)
k a(m))∞ i by letting

n → ∞ in the expression for (P(m)
k a(m))n i in Theorem 5 and, once again, noting that all

terms go to zero, except for the following:

m−monthly Perpetuity = (P(m)
k a(m))∞ i

= lim
n→∞

(P(m)
k a(m))n i

=
v̂Ak(v̂)

(1− v̂)(k+1)
,

where v̂ = 1

1+ i(m)

m

. This proves the theorem.

Next, we consider the case of a continuous polynomial perpetuity denoted by (Pka)∞ i.
We state and prove a theorem for the present value of such a perpetuity below.
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Theorem 8. Let A(k, l) denote the Eulerian coefficient and Ak(v) be the Eulerian polynomial
evaluated at v = 1

1+i . The present value of a continuous polynomial immediate perpetuity denoted
by (Pka)∞ i is given by the following:

(Pka)∞ i =
k!

δ(k+1)
.

Proof. There are actually three different ways to arrive at this answer. For the sake of
completeness, we present all three methods. First, we can explicitly compute (Pka)∞ i as
follows:

(Pka)∞ i =
∫ ∞

0
tke−δtdt

=
1

δ(k+1)

∫ ∞

0
uke−udu where u = δt

=
1

δ(k+1)
Γ(k− 1)

=
k!

δ(k+1)
.

The second method is to compute limm→∞(P(m)
k a(m))∞ i using the result from Theorem 7:

(Pka)∞ i = lim
m→∞

(P(m)
k a(m))∞ i = lim

m→∞

v̂Ak(v̂)
(1− v̂)(k+1)

=
k!

δ(k+1)
.

In the last equality above, we used v̂ = 1

1+ i(m)

m

= 1
(1+i)1/m and 1− v̂ = (1+i)1/m−1

(1+i)1/m .

Therefore, we have

lim
m→∞

v̂ = lim
m→∞

(
1

(1 + i)1/m

)
= 1,

lim
m→∞

m(k+1)(1− v̂)(k+1) =

[
lim

m→∞

(m[(1 + i)1/m − 1]
(1 + i)1/m

](k+1)

= 1,

lim
m→∞

Ak(v̂) = Ak(1) =
k!

δ(k+1)
.

The third method is to compute limn→∞(Pka)n i as below using the result from
Theorem 4:

(Pka)∞ i = lim
n→∞

(Pka)n i = lim
n→∞

−e−δn

δ

k

∑
l=0

kln(k−l)

δl +
k!

δ(k+1)
=

k!
δ(k+1)

.

This proves the theorem.

Remark 3. In Theorem 8, we show that

lim
m→∞

v̂Ak(v̂)
(1− v̂)(k+1)

=
k!

δ(k+1)
.

From this limit, we ponder whether the quantity:

v̂Ak(v̂)
m(k+1)[1− v̂](k+1)

· δ(k+1)

could serve as a useful approximation to k! for a large enough value of m.
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7. Analytic Annuities

In this section, we extend the n-year polynomial immediate annuity with a payment
pattern of {1k, 2k, . . ., nk}, denoted by (Pka)n i, to a payment pattern of type f (1), f (2),
f (3), . . . , f (n), where f (x) = ∑∞

j=0 cjxj is an analytic function on [0, n].
For such a general payment pattern as shown in Figure 4 below, for an n-year immedi-

ate annuity, arising out of an analytic function f (x), we use the notation (Fa)n i to denote
the present value at t = 0.

0

f (1)

1

f (2)

2

f (3)

3

· · ·
· · ·

f (n− 1)

n− 1

f (n)

n

Figure 4. Payment pattern for an analytic annuity.

For a pure polynomial annuity, for example, suppose that

f (x) =
N

∑
j=0

cjxj,

then,

(Fa)n i =
N

∑
j=0

cj(Pja)n i.

Now, if we consider the Taylor/Maclaurin series f (x) = ∑∞
j=0 cjxj, the present value

of such a payment pattern would be

(Fa)n i =
∞

∑
j=0

cj(Pja)n i.

If f (x) > 0 for some of the payments, then that signifies money coming in, and vice
versa for f (x) < 0.

Example 1. Suppose f (x) = sin(x). We know that the Taylor series for this function is

f (x) =
∞

∑
j=0

x(2j+1)

(2j + 1)!
.

Hence,

(Fa)n i =
∞

∑
j=0

(P(2j+1)a)n i

(2j + 1)!
.

A similar expression exists for the cosine function with even powers.

Example 2. Suppose that

f (x) = ex =
∞

∑
j=0

xj

j!
.

Then,

(Fa)n i =
∞

∑
j=0

(Pja)n i

j!
.

This way, we have extended the level payment annuities to payment patterns that arise out of
analytic functions. The function f (x) has to be analytic at least on the interval [0, n] in order for
the convergence of the series when evaluated at x = 1, 2, 3, . . ., n.
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8. Real Power Annuities

In this section, we extend polynomial annuities to a payment pattern that looks like
{1r, 2r, 3r, . . .nr} as shown in Figure 5 below, where r is any real number and not just a
whole number, as shown in the following figure.

0

1r

1

2r

2

3r

3

· · ·

· · ·

(n− 1)r

n− 1

nr

n

Figure 5. Payment pattern for a real power annuity.

Thus,
(Pra)n i = 1rv + 2rv2 + · · ·+ (n− 1)rv(n−1) + nrvr.

Theorem 9. The present value of an n-year polynomial immediate annuity with a payment pattern
of {1r, 2r, 3r, . . ., nr}, where r is a real number (not necessarily a whole number), is given by the
following:

(Pra)n i = nr
∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

ns

(
j
s

)
· ((Psa)n i),

where s is a whole number in (Psa)n i above.

Remark 4. (Psa)n i in Theorem 9 above can be computed either using Theorem 2 or Theorem 3.

Proof. We first define a function f and expand it using the binomial series as follows:

f (x) = (n− x)r = nr(1− x
n
)r

= nr
∞

∑
j=0

(−1)j rj

j!

(
xj

nj

)
, for |x| < n.

For this function, our payment schedule is shown in Figure 6 below.

0

f (n− 1)

1

f (n− 2)

2

· · ·

· · ·

f (1)

n− 1

f (0)

n

Figure 6. Payment pattern for the binomial function.

Now,

lr = f (n− l) = nr
∞

∑
j=0

(−1)j rj

j!
(n− l)j

nj

= nr
∞

∑
j=0

(−1)j rj

nj j!

j

∑
s=0

(
j
s

)
(−1)slsn(j−s)

= nr
∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

ns

(
j
s

)
ls.
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Thus,

(Pra)n i =
n

∑
l=1

lrvl =
n

∑
l=1

f (n− l)vl

=
n

∑
l=1

(
nr

∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

ns

(
j
s

)
ls

)
vl

= nr
∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

ns

(
j
s

)( n

∑
l=1

lsvl

)

= nr
∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

ns

(
j
s

)
· ((Psa)n i).

This proves the theorem.

We next consider the m-monthly annual case.

8.1. Real Power: m-Monthly Case

Similar to the m-monthly case as in Section 5, we need to use the Riemann approxima-
tion to the total money as the payment amounts. The total money in the continuous case is
given by the definite integral:

∫ n

0
trdt = lim

m→∞

nm

∑
l=1

(
l
m

)r
· 1

m
.

Hence, the payment amounts should look like Figure 7 shown below:

0

1r

mr+1

1

2r

mr+1

2

3r

mr+1

3

· · ·

· · ·

(n−1)r

mr+1

n− 1

nr

mr+1

n

Figure 7. Payment pattern for the real power m-monthly annuity.

Theorem 10. Let A(k, l) denote the Eulerian coefficient and Ak(v̂) be the Eulerian polynomial
evaluated at v̂ = 1

1+î
, where î = i(m)

m . Then, the present value of an m-monthly n-year polynomial

immediate annuity with a payment pattern of
{

1r

m(r+1) , 2r

m(r+1) , 3r

m(r+1) , . . ., nr

m(r+1)

}
is given by the

following:

(P(m)
r a(m))n i =

1
m(r+1)

(Pra)
nm i(m)

m
=

nr

m

∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

(nm)s

(
j
s

)
· ((Psa)nm i)

=
nr

m

∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

(nm)s

(
j
s

)
·
(
−v̂(nm+1)

s

∑
l=0

(
s
l

)
Al(v̂(nm)(k−l))

(1− v̂)(l+1)
+

v̂As(v̂)
(1− v̂)(s+1)

)

=
nr

m

∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

(nm)s

(
j
s

)
·
(

v̂(nm+1)
s

∑
l=0

(−1)(s−l)(nm)l As−l(v̂)
(v̂− 1)(s−l+1)

− (−1)k v̂As(v̂)
(v̂− 1)(s+1)

)
.

Proof. The proof follows by noticing that 1
mr+1 can be factored out of the payment pattern,

and the left payment forms an annuity just like in Theorem 9, except with nm number of
payments and with a periodic interest rate of i(m)

m .
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Remark 5. We note that (Pra)
nm i(m)

m
in the right-hand side of Theorem 10 above can be calculated

using Theorem 9. We used the results from Theorem 3, but a similar expression can be written using
the result from Theorem 2.

Next, we tackle the case of the n-year continuous immediate annuity and immediate
perpetuity for the real powers case.

8.2. Real Power: Continuous Annuity Case

Theorem 11. The present value of a continuous n-year polynomial immediate annuity denoted by
(Pra)n i and a continuous polynomial immediate perpetuity denoted by (Pra)∞ i with a payment
rate of tr dollars per unit time (where r is a real number, not necessarily a whole number) is given
by the following:

(Pra)n i =
1

δ(r+1)
γ(r− 1, nδ); (Pra)∞ i = Γ(r− 1),

where γ(r, x) and Γ(r) are the incomplete gamma function and the gamma function, respectively.

Proof. We only use the direct method here, although there are three equivalent methods of
derivation once again, just like in the proof of Theorem 5.

(Pra)n i =
∫ n

0
tre−nδdt

=
1

δ(r+1)

∫ nδ

0
ure−udu, where u = δt

=
1

δ(r+1)
γ(r− 1, nδ)

Furthermore,

(Pra)∞ i = lim
n→∞

(Pra)n i = lim
n→∞

1
δ(r+1)

∫ nδ

0
ure−udu = Γ(r− 1).

We end the paper by showing an interesting limit approximation for the Γ function.

Theorem 12.

Γ(r− 1) = lim
n→∞

lim
n→∞

nr

m

∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

(nm)s

(
j
s

)

·
(
−v̂(nm+1)

s

∑
l=0

(
s
l

)
Al(v̂(nm)(k−l))

(1− v̂)(l+1)
+

v̂As(v̂)
(1− v̂)(s+1)

)

= lim
n→∞

lim
n→∞

nr

m

∞

∑
j=0

j

∑
s=0

(−1)(j+s)rj

(nm)s

(
j
s

)

·
(

v̂(nm+1)
s

∑
l=0

(−1)(s−l)(nm)l As−l(v̂)
(v̂− 1)(s−l+1)

− (−1)k v̂As(v̂)
(v̂− 1)(s+1)

)

Proof. The proof follows from the following and Theorem 11:

(Pra)∞ i = lim
n→∞

lim
m→∞

(P(m)
r a(m))n i.
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Remark 6. We surmise that Theorem 12 gives an approximation to the Γ function for large enough
m and n values.

9. Conclusions

In this paper, we explicitly derived the present value formulas for an n-year polyno-
mial immediate annuity (Pka)n i, an n-year m-monthly payment polynomial immediate
annuity (P(m)

k a(m))n i, the corresponding continuous immediate annuity (Pka)n i, and the

corresponding perpetuities (Pka)∞ i and (P(m)
k a(m))∞ i. We also extended polynomial annu-

ities to payment patterns that are derived from analytic functions that can be expressed as
a power series, with the convention that negative payments correspond to cash flows that
are directed out of the account. Finally, we also extended the polynomial annuities to the
case of powers with real exponents, as opposed to just whole numbers. The objectives of
the paper stated in the beginning have been achieved.

The answers to the derivations involved the famous Eulerian polynomials due to [5].
Along the way, we also stumbled upon a couple of limits (Remarks 3 and 6) that related the
incomplete gamma function and the gamma function itself to the Eulerian polynomials.
Approximations to gamma functions and their relatives have been a topic of research
since Ramanujan [11] and Euler [5] (also see [12,13], and the references therein). The limit
formulas derived in Remarks 3 and 6 have a number theoretic flavors and to our knowledge
do not exist in the literature.

The techniques used in Section 7 can be used to construct new limit equalities that
relate other special functions that admit series expansions to the Eulerian polynomials. We
will work on such extensions in the future. We end by stating that this paper has filled
an important gap in polynomial annuities that exists between increasing annuities and
geometric annuities.

We would like to conclude by stating that although the concept of a polynomial annuity
is an abstraction that does not exist in reality, the formulation of analytical annuities in
Section 7 could be used practically to construct annuities that follow an analytical function.
For example, if f (x) is an analytical function that has desired properties such as slower
growth in the beginning and faster or other kinds of specified growth at other times, then
such an f (x) can be used to construct an analytical annuity in reality that will mimic the
same growth properties for the payment pattern.
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