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Abstract: First, we develop a direct operator method for solving boundary value problems for a
class of nth order linear Volterra–Fredholm integro-differential equations of convolution type. The
proposed technique is based on the assumption that the Volterra integro-differential operator is
bijective and its inverse is known in closed form. Existence and uniqueness criteria are established
and the exact solution is derived. We then apply this method to construct the closed form solution
of the fourth order equilibrium equations for the bending of Euler–Bernoulli beams in the context
of Eringen’s nonlocal theory of elasticity (two phase integral model) under a transverse distributed
load and simply supported boundary conditions. An easy to use algorithm for obtaining the exact
solution in a symbolic algebra system is also given.
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1. Introduction

The classical (local) theory of elasticity can adequately describe the behavior of beams,
plates, shells and other structures under several loading cases and boundary constraints in
almost all engineering applications. However, it has been proved insufficient when used
to model newer materials with inherent microstructure, where internal material charac-
teristic lengths become comparable to external characteristic lengths, as in the cases of
geometric singularities and micro and nano-scale structural elements [1,2]. This is mainly
attributed to the absence of a characteristic scale parameter in the constitutive equations.
In contrast, higher order continuum theories such us the Cosserat theory [3], the couple
stress theory [4], the micropolar theory [5] and the strain gradient theory [6,7] seem to be
appropriate in these cases. These theories incorporate additional material parameters in
the constitutive equations and are mathematically more complex and, therefore, numerical
methods, especially the finite element method, are employed to solve the governing equa-
tions [8–11]. Alternatively, nonlocal theories such as the nonlocal theory for linear elasticity
of Eringen [12] can be used.

In nonlocal elasticity, the stress at a reference point is thought to depend not only
on the strain at that point, as in classical theory (‘local model’), but on the strain at every
point in the body. In Eringen’s nonlocal theory, this constitutive relationship is realized
through an integrated average of the strain field regulated by a kernel called the attenuation
function. This formalism of Eringen’s nonlocal elasticity is known as the ‘nonlocal integral
model’ [12]. By taking a suitable modified attenuation function, the nonlocal integral model
can be converted to a variant that has the sum of both local and nonlocal integral models
whose weights are controlled by two parameters. This type of constitutive equation is
called the ‘two phase nonlocal integral model’ [13–15]. The first nonlocal constitutive
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model leads to integral equations of equilibrium while the second to integro-differential
equations. Recognizing the difficulties associated with solving those integral equations,
Eringen proposed a simplified version of the nonlocal constitutive equations in differential
form, referred to as the ‘nonlocal differential model’, which provides easy-to-use differential
equilibrium equations [12]. Because of its simplicity, the nonlocal differential model has
widely been used to analyze various nanoscale structures including one-dimensional
nanostructures such as rods, tubes and beams, see the two review papers [16,17], in [18]
and others as the literature on the subject is vast.

In particular, for the beam bending analysis, the interested reader can look at, among
others, [19–23]. However, several authors have reported that the differential formulation
of Eringen’s nonlocal beam theory for specific types of loading gives inconsistent results
compared to those obtained from other types of load and boundary conditions [19,24]. This
paradox has recently been explained in [25], where it is shown that, in general, the nonlocal
differential model is not equivalent to its integral counterpart, unless certain conditions are
met as defined in [26]. As a result, there is a great need for further study of the nonlocal
integral models despite the relative difficulties.

Closed form solutions of Eringen’s nonlocal integral model for the bending of Euler–
Bernoulli beams have been obtained in [27], where the Fredholm type integral governing
equations are converted to Volterra integral equations which are then solved by Laplace
transform methods. Analytical solutions for the static bending analysis of Euler–Bernoulli
beams using Eringen’s two phase nonlocal integral model have been obtained in [28]
through a reduction method. Specifically, the governing fourth order integro-differential
equation in terms of the transverse displacement (deflection) after integrating twice and
substituting the second derivative of the displacement by another function is converted
into a linear integral equation of the second kind, which is then reduced to a second order
differential equation with mixed boundary conditions as proposed by [26]. After the exact
solution of the differential equation and following the reverse path, the analytical solution
of the initial governing equation is obtained. A finite element formulation for the two phase
nonlocal integral model is presented in [29].

In general, integro-differential equations are usually difficult to solve directly, and
therefore, several techniques have been suggested for their reduction to integral or differ-
ential equations that are easier to solve [26], while at the same time numerous numerical
methods have been developed [30–36]. Many different numerical methods are used to
solve the Volterra–Fredholm integro-differential equations (VFIDE), see for example the
series solution methods, variational iteration methods and decomposition methods [37],
collocation methods [38,39], Galerkin methods [40], quadrature methods [41], fixed point
methods [42] and others. The author and his co-workers in [43] proposed a direct oper-
ator technique for solving exactly Fredholm integro-differential equations (FIDE) of the
second kind and later advanced it to the solution of nonlinear FIDE [44] and boundary
value problems for FIDE and systems of FIDE with nonlocal boundary conditions [45].
The method assumes that the corresponding differential operator is bijective and its inverse
is explicitly known.

Motivated by these developments, this work primarily aims at extending the solution
procedure in [43–45] to solving in closed form boundary value problems for a class of nth
order linear Volterra–Fredholm integro-differential equations (VFIDE) of convolution type.
Second, to apply this method to construct the closed form solution of the fourth order
equilibrium equation for the bending of Euler–Bernoulli beams in the context of Eringen’s
two phase nonlocal integral theory of elasticity. This is accomplished via the factorization
of the fourth order integro-differential equation into a second order differential equation
(DE) and a second order VFIDE.
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For this, we consider the VFIDE of convolution type of the general form

n

∑
i=0

aiu(n−i)(x) +
n

∑
i=0

∫ x

0
ki(x− t)u(n−i)(t)dt

−
m

∑
j=1

∫ L

0
k̄ j(x, t)

n

∑
i=0

aiu(n−i)(t)dt = f (x), (1)

subject to the boundary conditions

Φi(u) = 0, i = 1, 2, . . . , n, (2)

where ai, i = 0, 1, . . . , n, are real constants with a0 6= 0, u(x) is n times continuously
differentiable function, u(i)(x) = diu

dxi , the kernels ki(x− t), i = 0, 1, . . . , n, and k̄ j(x, t), j =
1, 2, . . . , m are continuous functions, the input function f (x) is taken to be continuous,
L > 0 and Φi, i = 1, 2, . . . , n, are linear continuous functionals. We provide a ready to
use symbolic formula for computing the exact solution of (1), (2) in the case where the
associated Volterra integro-differential operator is bijective and its inverse is known in
closed form and the kernels k̄ j(x, t) are separable, i.e.,

k̄ j(x, t) = gj(x)hj(t), j = 1, 2, . . . , m. (3)

The proposed method is used to derive the closed form solution of the two phase
nonlocal integral model of Euler–Bernoulli elastic beams in the case of simply supported
boundary conditions and under any transverse distributed load that meets the necessary
continuity requirements.

The outline of the paper is as follows. In Section 2, the direct operator method for
solving boundary value problems for VFIDE is presented. In Section 3, the nonlocal
Euler–Bernoulli equations are explained. The decomposition of these equations into a
second order DE and a second order VFIDE and their solutions are developed in Section 4.
In Section 5, two problems are solved and the results are discussed. In the last Section 6,
some conclusions are drawn.

2. Operator Method for Solving VFIDE

Let X = C[0, L], L ∈ R+, and A : X → X be an nth order linear differential operator
of the form

Au =
n

∑
i=0

aiu(n−i)(x), D(A) = {u ∈ Xn : Φ(u) = 0}, (4)

where n ∈ N, ai, i = 0, 1, . . . , n, are real constants with a0 6= 0, u = u(x) ∈ Xn = Cn[0, L],
u(i)(x) = diu

dxi , i = 1, 2, . . . , n, and

Φ(u) =


Φ1(u)
Φ2(u)

...
Φn(u)

 = 0, (5)

where Φi ∈ X∗n−1, i = 1, 2, . . . , n, are linear bounded functionals that describe the specified
boundary conditions, Φ ∈ [X∗n−1]

n, and 0 denotes the zero column vector. Let K : X → X
be the linear Volterra integral operator of convolution type

Ku =
n

∑
i=0

∫ x

0
ki(x− t)u(n−i)(t)dt, (6)
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where the kernels ki(x) ∈ X, i = 0, 1, . . . , n. Let the row and column vectors, respectively,

g =
(

g1 g2 · · · gm
)
,

Ψ(v) =


Ψ1(v)
Ψ2(v)

...
Ψm(v)

, Ψj(v) =
∫ L

0
hj(t)v(t)dt, j = 1, 2, . . . , m, (7)

where the functions gj = gj(x) and hj(t) ∈ X, j = 1, 2, . . . , m, g ∈ Xm, the function v ∈ X,
and Ψj ∈ X∗, j = 1, 2, . . . , m, are linear integral (Fredholm type) functionals with limits
from 0 to L and Ψ ∈ [X∗]m.

Consider the linear Volterra–Fredholm integro-differential operator T : X → X de-
fined by

Tu = Au + Ku− gΨ(Au),

D(T) = D(A) = {u ∈ Xn : Φ(u) = 0}, (8)

and write the boundary value problem (1), (2) and (3) in the symbolic form

Tu = f , f = f (x) ∈ X. (9)

For the solution of problem (9), we prove Theorem 1 below, but first we explain some
relations which will use. By Ψ(g) we symbolize the m×m matrix

Ψ(g) =


Ψ1(g1) Ψ1(g2) · · · Ψ1(gm)
Ψ2(g1) Ψ2(g2) · · · Ψ2(gm)

...
...

. . .
...

Ψm(g1) Ψm(g2) · · · Ψm(gm)

,

where the element Ψi(gj) is the value of the functional Ψi on the element gj. It is easy to
show that for a m× k constant matrix C,

Ψ(gC) = Ψ(g)C. (10)

The notation Im indicates the m×m identity matrix.

Theorem 1. Let the operator T : X → X be defined as in (8). Assume that the Volterra integro-
differential operator D : X → X defined by

Du = (A + K)u, D(D) = D(A), (11)

is bijective on X and its inverse is denoted by D−1 = (A + K)−1. Then the operator T is bijective,
precisely it is injective if and only if

det W = det
[

Im −Ψ
(

AD−1g
)]
6= 0, (12)

and in this case the unique solution to the boundary value problem

Tu = f , for all functions f ∈ X, (13)

is given by the formula

u = T−1 f

= D−1 f + D−1gW−1Ψ
(

AD−1 f
)

. (14)
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Proof. Suppose det W 6= 0 and u ∈ ker T. Then

Tu = Au + Ku− gΨ(Au) = Du− gΨ(Au) = 0,

and since the operator D = A + K is bijective, we have

u = D−1gΨ(Au). (15)

Acting by the operator A on both sides of (15) and then by the vector Ψ, we obtain
successively

Au = AD−1gΨ(Au),

Ψ(Au) = Ψ
(

AD−1gΨ(Au)
)
= Ψ

(
AD−1g

)
Ψ(Au), (16)

by means of (10), from where it is implied that[
Im −Ψ

(
AD−1g

)]
Ψ(Au) = WΨ(Au) = 0.

This, under the hypothesis, means that Ψ(Au) = 0 and as a consequence it follows
from (15) that u = 0, i.e., ker T = {0} and hence the operator T is injective. Conversely, we
assume that T is injective and we will prove that det W 6= 0 or equivalently, we suppose
det W = 0 and we will show that T is not injective. Then, there exists a nonzero vector
of constants c = col(c1, . . . , cm) such that Wc = 0. Consider the element u0 = D−1gc and
notice that u0 6= 0; otherwise

Wc =
[

Im −Ψ
(

AD−1g
)]

c = c−Ψ
(

AD−1g
)

c = c−Ψ
(

AD−1gc
)
= c = 0,

which contradicts the assumption that c is nonzero. Since D = A + K is bijective and
D(D) = D(A) it is implied that u0 = D−1gc ∈ D(A) and hence

Tu0 = Du0 − gΨ(Au0)

= gc− gΨ(AD−1gc)

= gc− gΨ(AD−1g)c

= g
[

Im −Ψ
(

AD−1g
)]

c

= gWc = 0.

This means that u0 ∈ ker T and so T is not injective.
Suppose now the condition (12) holds true and consider the boundary value problem

in (13), namely

Tu = Au + Ku− gΨ(Au) = Du− gΨ(Au) = f , f ∈ X,

D(T) = D(A). (17)

Since by hypothesis the operator D = A + K is bijective, we obtain

u = D−1 f + D−1gΨ(Au). (18)

Acting as before by the operator A and the vector Ψ on (18), we have

Au = AD−1 f + AD−1gΨ(Au),

Ψ(Au) = Ψ
(

AD−1 f
)
+ Ψ

(
AD−1g

)
Ψ(Au),
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from where it follows that

Ψ(Au) =
[

Im −Ψ
(

AD−1g
)]−1

Ψ
(

AD−1 f
)

. (19)

Substitution of (19) into (18) yields

u = D−1 f + D−1g
[

Im −Ψ
(

AD−1g
)]−1

Ψ
(

AD−1 f
)

, (20)

which is the solution of the boundary value problem (17) or (13).
Finally, notice that the solution (20) holds for any f ∈ X. Consequently, R(T) = X

and so the operator T is bijective.

3. The Two Phase Nonlocal Integral Euler–Bernoulli Beam Model

With reference to a Cartesian coordinate system, with origin O and axis lines x, y and
z, consider a uniform beam of length L and cross-sectional area S, whose longitudinal axis
coincides with the x-axis, with the one end at x = 0 and the other end at x = L, and its
thickness (height) is taken along the z-axis. Let w(x) be the displacement in z-direction
when the beam deforms due to an applied transverse distributed load q(x) at the top.
The equations that model the static bending behavior of Euler–Bernoulli beams in the two
phase nonlocal integral formulation of Eringen’s theory of elasticity are as follows.

From [28], we recall that the strain in the x-direction is defined by

εx(x) = −z
d2w(x)

dx2 .

For a linear homogeneous and isotropic material, the associated nonlocal stress σx(x)
is a expressed as

σx(x) = E
(

ξ1εx(x) + ξ2

∫ L

0
k(x, t)εx(t)dt

)
,

and the corresponding bending moment is defined by

M(x) =
∫

S
σx(x)zdS = −EI

(
ξ1

d2w(x)
dx2 + ξ2

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
, (21)

where E is the elasticity modulus (constant) and I =
∫

S z2dS is the second moment of
area. The parameters ξ1 > 0, ξ2 > 0 and ξ1 + ξ2 = 1 regulate the contribution from the
local (classical) and nonlocal model, respectively. The kernel or attenuation function k(x, t)
determines the nonlocal effect of the strain εx(t) at the source point t on the stress σx(x) at
the receiver point x, and it is usually taken to be of the Helmholtz form

k(x, t) =
1

2τ
e−
|x−t|

τ , x, t ∈ [0, L]. (22)

The parameter τ = e0a
` , where e0 is a constant related to each material, a is an inter-

nal characteristic length (e.g., lattice parameter, granular distance) and ` is an external
characteristic length (e.g., the crack length, the wave length). The kernel k(x, t) is a posi-
tive function which diminishes rapidly as |x− t| increases and satisfies the normalizing
condition

∫ L
0 k(x, t)dt = 1.

The principle of virtual displacements requires

−
∫ L

0
M(x)

d2δw(x)
dx2 dx−

∫ L

0
q(x)δw(x)dx = 0,
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from where after integrating twice by parts, we obtain the Euler-Lagrange or equilibrium
equation

d2M(x)
dx2 + q(x) = 0, 0 < x < L,

which by means of the definition (21) may be expressed in terms of the displacement w(x)
as

− EI
d2

dx2

(
ξ1

d2w(x)
dx2 + ξ2

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
+ q(x) = 0, 0 < x < L, (23)

and the boundary conditions
w(x) or M′(x),

and
w′(x) or M(x),

specified at each of the two ends of the beam at x = 0 and x = L.
For a beam simply supported at both ends, the boundary conditions imposed at x = 0

and x = L are
w(0) = w(L) = 0, M(0) = M(L) = 0, (24)

or by means of (21),

w(0) = w(L) = 0,

−EI
[

ξ1

(
d2w(x)

dx2

)
x=0

+ ξ2

∫ L

0
k(0, t)

d2w(t)
dt2 dt

]
= 0,

−EI
[

ξ1

(
d2w(x)

dx2

)
x=L

+ ξ2

∫ L

0
k(L, t)

d2w(t)
dt2 dt

]
= 0. (25)

4. Formulation and Solution of the Problem

To find the solution of the fourth order integro-differential Equation (23) subject to
nonlocal boundary conditions (25), we first formulate the problem in an operator form and
then decompose it into two lower order problems, specifically, a second order differential
boundary value problem and a second order Fredholm integro-differential boundary
value problem.

Let X = C[0, L] and the operator B : X → X be defined by

Bw(x) =
d2

dx2

(
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt

)
,

D(B) =
{

w(x) ∈ C4[0, L] : w(0) = w(L) = 0,(
d2w(x)

dx2

)
x=0

+
ξ2

ξ1

∫ L

0
k(0, t)

d2w(t)
dt2 dt = 0,(

d2w(x)
dx2

)
x=L

+
ξ2

ξ1

∫ L

0
k(L, t)

d2w(t)
dt2 dt = 0

}
. (26)

Then, the boundary value problem (23), (25) is written compactly as

Bw(x) =
1

EIξ1
q(x), 0 < x < L. (27)

The operator B can be decomposed as follows. Let the second order linear Fredholm
integro-differential operator of the second kind B2 : X → X be defined by

B2w(x) =
d2w(x)

dx2 +
ξ2

ξ1

∫ L

0
k(x, t)

d2w(t)
dt2 dt,

D(B2) =
{

w(x) ∈ C2[0, L] : w(0) = w(L) = 0
}

, (28)
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and the second order linear differential operator B1 : X → X by

B1y(x) =
d2y(x)

dx2 ,

D(B1) =
{

y(x) ∈ C2[0, L] : y(0) = y(L) = 0
}

, (29)

where B2w(x) = y(x). Then the operator B by means of (28) and (29) can be written as the
composition

Bw(x) = B1B2w(x),

and thus the boundary value problem (27) degenerates to

B1B2w(x) =
1

EIξ1
q(x), 0 < x < L. (30)

The solution of (30) can be found by solving in succession the following differen-
tial boundary value problem (DBVP) and Fredholm integro-differential boundary value
problem (FIDBVP), respectively:

DBVP: B1y(x) =
1

EIξ1
q(x), 0 < x < L, (31)

FIDBVP: B2w(x) = y(x), 0 < x < L. (32)

4.1. Solution of DBVP

The solution of the linear differential boundary value problem (31) can be constructed
easily. It is known that the differential operator B1 defined in (29) is invertable and that its
inverse for any function r(x) ∈ X is

B−1
1 r(x) =

∫ x

0
(x− t)r(t)dt− x

L

∫ L

0
(L− t)r(t)dt, (33)

see, for example, in [46]. Thus, the solution to boundary value problem (31) in closed form
is given by

y(x) = B−1
1

(
1

EIξ1
q(x)

)
=

1
EIξ1

(∫ x

0
(x− t)q(t)dt− x

L

∫ L

0
(L− t)q(t)dt

)
. (34)

4.2. Solution of FIDBVP

Substituting y(x) from (34) into Equation (32), we obtain

B2w(x) =
1

EIξ1

(∫ x

0
(x− t)q(t)dt− x

L

∫ L

0
(L− t)q(t)dt

)
, (35)

where the operator B2 is defined in (28). The solution of (35) and the method of attack
depend on the type of the kernel k(x, t).

Let us assume that the kernel k(x, t) is of the type given in (22). In this case, the
operator B2 takes the form

B2w(x) =
d2w(x)

dx2 +
ξ2

2τξ1

∫ L

0
e−
|x−t|

τ
d2w(t)

dt2 dt.

By removing the modulus in the integrand as in [26], we obtain

B2w(x) =
d2w(x)

dx2 +
ξ2

2τξ1

[∫ x

0
e−

(x−t)
τ

d2w(t)
dt2 dt +

∫ L

x
e
(x−t)

τ
d2w(t)

dt2 dt
]
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or

B2w(x) =
d2w(x)

dx2 +
ξ2

2τξ1

[∫ x

0
e−

(x−t)
τ

d2w(t)
dt2 dt−

∫ x

0
e
(x−t)

τ
d2w(t)

dt2 dt

+
∫ L

0
e
(x−t)

τ
d2w(t)

dt2 dt
]

,

and finally

B2w(x) =
d2w(x)

dx2 − ξ2

τξ1

∫ x

0
sinh(

x− t
τ

)
d2w(t)

dt2 dt +
ξ2

2τξ1
e

x
τ

∫ L

0
e−

t
τ

d2w(t)
dt2 dt. (36)

Thus, the boundary value problem (35) is carried to a Volterra–Fredholm integro-
differential problem, namely:

B2w(x) =
d2w(x)

dx2 − ξ2

τξ1

∫ x

0
sinh(

x− t
τ

)
d2w(t)

dt2 dt +
ξ2

2τξ1
e

x
τ

∫ L

0
e−

t
τ

d2w(t)
dt2 dt

=
1

EIξ1

(∫ x

0
(x− t)q(t)dt− x

L

∫ L

0
(L− t)q(t)dt

)
,

D(B2) =
{

w(x) ∈ C2[0, L] : w(0) = w(L) = 0
}

. (37)

The operator B2 in (37) is a linear Volterra–Fredholm integro-differential operator of
the type (8) of order n = 2 and m = 1. Therefore, we will apply Theorem 1 to solve the
boundary value problem (37). Comparing (37) with (8) and (9) it is natural to take

Aw(x) =
d2w(x)

dx2 , D(A) = {w(x) ∈ C2[0, L] : Φ(w) = 0},

Φ(w) =

(
Φ1(w)
Φ2(w)

)
=

(
w(0)
w(L)

)
,

Kw(x) = − ξ2

τξ1

∫ x

0
sinh

(
x− t

τ

)
d2w(t)

dt2 dt,

g(x) =

(
− ξ2

2τξ1
e

x
τ

)
,

Ψ(Aw) =

(∫ L

0
e−

t
τ

d2w(t)
dt2 dt

)
,

f (x) =
1

EIξ1

(∫ x

0
(x− t)q(t)dt− x

L

∫ L

0
(L− t)q(t)dt

)
, (38)

and

Dz(x) = (A + K)z(x) =
d2z(x)

dx2 − ξ2

τξ1

∫ x

0
sinh

(
x− t

τ

)
d2z(t)

dt2 dt,

D(D) = D(A) = {z(x) ∈ C2[0, L] : Φ(z) = 0}. (39)

The Volterra integro-differential equation of convolution type Dz(x) = f (x) can be
solved by the Laplace transform method. Specifically, by applying the Laplace transform
operator and using the convolution Theorem, we obtain

L{Dz(x)} =
(

s2Z(s)− sz(0)− z′(0)
)
− ξ2

τξ1

(
1
τ

s2 − 1
τ2

)(
s2Z(s)− sz(0)− z′(0)

)
= F(s), (40)
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where Z(s) = L{z(x)} and F(s) = L{ f (x)}. After collecting like terms, solving with
respect to Z(s) and taking into account the boundary condition z(0) = 0, we obtain

Z(s) = F(s)Q(s) + z′(0)
1
s2 , (41)

where

Q(s) =
ξ1(τ

2s2 − 1)
s2(ξ1τ2s2 − 1)

.

Taking the inverse Laplace transform of (41), we obtain

z(x) = f̂ (x) + z′(0)x, (42)

where f̂ (x) = L−1{F(s)Q(s)}. Utilizing the second boundary condition z(L) = 0, we have

z′(0) = − f̂ (L)
L and when it is put into (42) yields the solution to Dz(x) = f (x), namely

z(x) = D−1 f (x) = f̂ (x)− x
L

f̂ (L). (43)

Since Equation (43) holds for every f (x) ∈ X, it is implied that the operator D
is bijective.

Moreover, we compute

D−1g(x) = D−1
(
− ξ2

2τξ1
e

x
τ

)
= ĝ(x)− x

L
ĝ(L), (44)

where ĝ(x) = L−1{G(s)Q(s)} and G(s) = L{g(x)}, and subsequently

AD−1g(x) =
d2

dx2

(
D−1g(x)

)
,

Ψ
(

AD−1g(x)
)

=
∫ L

0
e−

t
τ AD−1g(t)dt. (45)

If the condition in (12) is fulfilled, i.e.,

det W = det
[

I1 −Ψ
(

AD−1g(x)
)]

= 1−Ψ
(

AD−1g(x)
)
6= 0, (46)

then, by Theorem 1 the operator B2 is bijective and problem (37) admits a unique solution.
In this instance, we also find

AD−1 f (x) =
d2

dx2

(
D−1 f (x)

)
,

Ψ
(

AD−1 f (x)
)

=
∫ L

0
e−

t
τ AD−1 f (t)dt, (47)

and W−1.
By using (43), (44), (47) and W−1 and after substituting into (14), we obtain in closed

form the solution of the boundary value problem (37), namely

w(x) = D−1 f (x) + D−1g(x)W−1Ψ
(

AD−1 f (x)
)

. (48)

The solution of (48) is also the solution of (27) and so the solution to the nonlocal
Euler–Bernoulli Equation (23) subject to the boundary conditions (25).
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4.3. Algorithm

To facilitate the programming of the method proposed for solving the boundary value
problem (27) or (23), (25) into a symbolic math software, we provide a concise algorithm
in Algorithm 1.

Algorithm 1 Algorithm for solving the fourth order boundary value problem (23), (25)
with the Helmholtz type kernel (22).

input L, I, E, τ, ξ1, q(x)
compute

ξ2 = 1− ξ1
g(x) = − ξ2

2τξ1
e

x
τ

Q(s) = ξ1(τ
2s2−1)

s2(ξ1τ2s2−1)
G(s) = L{g(x)}
ĝ(x) = L−1{G(s)Q(s)}
D−1g(x) = ĝ(x)− x

L ĝ(L)
AD−1g(x) = d2

dx2

(
D−1g(x)

)
Ψ
(

AD−1g(x)
)
=
∫ L

0 e−
t
τ AD−1g(t)dt

W = 1−Ψ
(

AD−1g(x)
)

if det W 6= 0 compute
f (x) = 1

EIξ1

(∫ x
0 (x− t)q(t)dt− x

L
∫ L

0 (L− t)q(t)dt
)

F(s) = L{ f (x)}
f̂ (x) = L−1{F(s)Q(s)}
D−1 f (x) = f̂ (x)− x

L f̂ (L)
AD−1 f (x) = d2

dx2

(
D−1 f (x)

)
Ψ
(

AD−1 f (x)
)
=
∫ L

0 e−
t
τ AD−1 f (t)dt

w(x) = D−1 f (x) + D−1g(x)W−1Ψ
(

AD−1 f (x)
)

print w(x)
else

print ‘There is no unique solution’
end

5. Examples and Discussion

Consider a simply supported beam (SS) with length L, height h, width b and Young’s
modulus E as given in Table 1, see [23]. The value ranges for the nonlocal material constant
τ and the control parameter ξ1 (ξ1 + ξ2 = 1), as well as a load intensity parameter q0 are
also displayed in the same table.

It is noted that in [20], it is reported that the nonlocal effect is noticeable when the
length of the structure is less than 20 nm and e0a < 2.1 nm is proposed, while Eringen [12]
recommended the value for the parameter e0 = 0.39.

The bending behavior of the simply supported beam in Eringen’s two phase nonlocal
integral model of Euler–Bernoulli elastic beams under a transverse distributed load q(x) is
described by the fourth order Equation (23) with the four boundary conditions (25) where
the unknown function is the transverse displacement (deflection) w(x). In the case of the
Helmholtz type kernel (22), the closed form solution of the boundary value problem (23), (25)
is delivered by the Algorithm in Algorithm 1. The Algorithm was implemented in the free
general purpose sofware Maxima Computer Algebra System.

Table 1. Geometry, loading and material parameters of the nanobeam.

L (nm) b (nm) h (nm) q0
(nN/nm) E (TPa) τ = e0a

(nm) ξ1

10 1 1 10−4 5.5 [1.0, 2.0] [0.1, 1]
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First, we consider the case of uniformly distributed loading, that is q(x) = q0. Giv-
ing L, I, E, τ, ξ1 and q(x) to the Algorithm and after execution we obtain the transverse
displacement w(x) in an exact analytic form.

In Figure 1, we depict the transverse displacement (deflection) of the simply sup-
ported beam along its length for both the classical (local) elasticity (ξ1 = 1) and the nonlocal
elasticity (ξ1 = 0.1) for several values of the material parameter τ. As expected, the de-
formation in the nonlocal theory is greater than in the classical one. In addition, in the
nonlocal theory the deformation becomes greater as the material parameter τ increases,
which is also consistent with the softening effect reported in the literature [25,28].

Figure 2 shows the effect of the nonlocal model on the beam deformation, which is
controlled by the parameter ξ2 = 1− ξ1, for τ = 2. As expected, as ξ1 approaches the unit,
the solution convergences on the classical (local) solution.

w
 (

nm
)

x (nm) 

Local
τ=1

τ=sqrt(2)
τ=sqrt(3)

τ=2

-0.005

 0
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 0.04

 0  2  4  6  8  10

Figure 1. Deflectionof simply supported beam under uniform load and various values of τ.
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Figure 2. Deflectionof simply supported beam under uniform load and several values of ξ1.

As a second example, we consider the case of a simply supported beam loaded by a
variable distributed load given by

q(x) = −q0 sin(3π
x
L
).
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By entering this load function together with the geometric and material parameters in
Table 1 in the Algorithm, we obtain the transverse displacement (deflection) w(x) in exact
explicit form.

Figure 3 shows how the beam is deformed along its entire length in nonlocal theory
(ξ1 = 0.1) for different values of the nonlocal material parameter τ and compared to the
resulting curve in classical (local) theory (ξ1 = 1). Again, the results are as expected and
reported in the literature and the softening effect is greater with increasing values of the
parameter τ.

w
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Figure 3. Deflectionof simply supported beam subject to variable load and different values of τ.

6. Conclusions

There is the need for the development of analytical methods for solving integro-
differential equations that model numerous situations in science and engineering.

In this paper, a direct operator method for solving in closed form the linear convolution
type Volterra–Fredholm integro-differential equations (VFIDE) of the second kind has been
presented. The novelty and the main advantages of the proposed method are that it
calculates the exact closed form solution of the VFIDE, it is easy to implement to any
symbolic algebra system and it is cheap and easy to use. The disadvantages are that it
requires the direct and the inverse Laplace transform of the functions and the exact analytic
calculation of the integrals involved.

The method has been applied to obtain the exact closed form solution of the fourth
order integro-differential equation that models the bending behavior of the beams in the
two phase nonlocal integral model of Eringen’s nonlocal elasticity. An algorithm has been
developed to construct the solution in the case of a simply supported beam subject to
different types of distributed transverse loads.

The work presented will be of interest to scientists and engineers for the symbolic
computation of the exact solution of VFIDE and the easy construction of closed form
solutions for beam type structures in nonlocal elasticity.

The technique can be extended to solve beam problems with other types of loads and
boundary conditions as well as other problems. In preparation of the final version of this
paper, a sequel to this work was published by the author, which deals with the closed form
solution of three more boundary value problems for the cantilever beam (CF), the clamped
pinned beam (CP) and the clamped beam (CC) [47].
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