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Abstract: In this work, we investigate isothermal MHD motions of a large class of rate type fluids
through a porous medium between two infinite horizontal parallel plates when a differential expres-
sion of the non-trivial shear stress is prescribed on the boundary. Exact expressions are provided for
the dimensionless steady state velocities, shear stresses and Darcy’s resistances. Obtained solutions
can be used to find the necessary time to touch the steady state or to bring to light certain charac-
teristics of the fluid motion. Graphical representations showed the fluid moves slower in presence
of a magnetic field or porous medium. In addition, contrary to our expectations, the volume flux
across a plane orthogonal to the velocity vector per unit width of this plane is zero. Finally, based on
a simple remark regarding the governing equations of velocity and shear stress for MHD motions of
incompressible generalized Burgers’ fluids between infinite parallel plates, provided were the first
exact solutions for MHD motions of these fluids when the two plates apply oscillatory or constant
shear stresses to the fluid. This important remark offers the possibility to solve any isothermal MHD
motion of these fluids between infinite parallel plates or over an infinite plate when the non-trivial
shear stress is prescribed on the boundary. As an application, steady state solutions for MHD motions
of same fluids have been developed when a differential expression of the fluid velocity is prescribed
on the boundary.

Keywords: generalized Burgers’ fluids; magnetic field; porous medium; parallel plates; steady state
solutions; strange result

MSC: 76A05

1. Introduction

Long time ago, Burgers proposed the one-dimensional linear model [1]:

η + a1
.
η + a2

..
η = b1

.
ε + b2

..
ε, (1)

where η is the stress, ε is the one-dimensional strain and a1, a2, b1, b2 are material con-
stants. This rate type fluid model was often used to describe the mechanical behavior
of asphalt and the asphalt mixes or different food products like cheese [2–5]. It was also
used to determine the transient creep properties of the earth’s mantle and to model high
temperature viscoelasticity of the fine-grained polycrystalline olivine [6–8]. Its extension to
a frame-indifferent three dimensional form has been realized by Krishnan and Rajagopal [9]
and the first exact solutions for the flow of such a fluid seem to be those of Ravindran
et al. [10] in an orthogonal rheometer. At the same time, many exact solutions have been
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developed for steady or unsteady motions of these fluids that are called incompressible
Burgers’ fluids.

In this work, we want to bring to light a surprising result concerning some motions
of incompressible rate type fluids. To do that, we choose the most general class of rate
type fluids, namely incompressible generalized Burgers’ fluids (IGBFs). The constitutive
equations of these fluids are given by the relations [11]:

T = −pI + Te,
(

1 + a
δ

δt
+ b

δ2

δt2

)
Te = 2µ

(
1 + c

δ

δt
+ d

δ2

δt2

)
D , (2)

where T is the stress tensor, Te is the extra-stress tensor, D is the rate of deformation tensor,
I is the unit tensor, p is the hydrostatic pressure, µ is the fluid viscosity, a, b, c, d are material
constants and δ/δt represents the time upper-convected derivative. When d = 0, d = b = 0
or d = b = c = 0, the governing Equation (2) define incompressible Burgers’, Oldroyd-B
or Maxwell fluids, respectively. If all constants a, b, c and d are zero, the corresponding
governing Equation (2) define incompressible Newtonian fluids.

In the existing literature there are many studies regarding motions of IGBFs in which,
velocity, non-trivial shear stress or a differential expression of this shear stress is prescribed
on the boundary. Among them we mention those of Zheng et al. [12], Jamil [13], Sultan
et al. [14], Khan et al. [15], Khan et al. [16], Sultan and Nazar [17], Abro et al. [18], Alqahtani
and Khan [19], Hussain et al. [20] and Fetecau et al. [21] which study motions over an
infinite flat plate or between two infinite horizontal parallel plates. Early enough, Re-
nardy [22,23] remarked that differential expressions of shear stresses have to be prescribed
on the boundary in order to formulate well-posed boundary value problems for motions
of rate type fluids like Maxwell and Jeffrey fluids. Actually, in some practical situations,
what is known as the force is applied to the boundary in order to move it. Some results
regarding such motions of IGBFs have been recently provided by Fetecau et al. [24].

In the following, in order to bring to light a strange result regarding some motions of
rate type fluids, we consider isothermal motions of IGBFs between two infinite horizontal
parallel plates when a differential expression of shear stress is prescribed on plates. For a
larger generality, the magnetic and porous effects are taken into consideration and analytical
expressions are provided for the steady components of dimensionless velocity, shear stress
and Darcy’s resistance. They can be used to determine the necessary time to touch the
steady or permanent state. This is the time after which the diagrams of starting solutions
(numerical solutions) overlap with those of their steady state components. Some important
characteristics of the fluid behavior are also graphically underlined and discussed. It was
also found that, contrary to our expectations, the volume flux across a plane normal to the
flow direction per unit width of this plane is zero for such motions of IGBFs.

2. Governing Equations

Velocity vector for isothermal motions of the incompressible Newtonian or non-
Newtonian fluids between two infinite horizontal parallel plates can be provided by the
relation [13–21]:

w = w(z, t) = w(z, t)ey, (3)

where ey is the unit vector along the y-axis of a convenient Cartesian coordinate system
x, y and z whose z-axis is vertical to plates. Under this form, the velocity vector w(z, t)
fulfills the continuity equation. We also suppose that the extra-stress tensor Te, as well as
the fluid velocity w(z, t), is a function of z and t only. If the fluid has been at rest at the
initial moment t = 0, one can prove that the non-null shear stress η(z, t) = Teyz(z, t) and
the fluid velocity w(z, t) have to satisfy the next partial differential equation [11–16](

1 + a
∂

∂t
+ b

∂2

∂t2

)
η(z, t) = µ

(
1 + c

∂

∂t
+ d

∂2

∂t2

)
∂w(z, t)

∂z
; z ∈ (0, h), t > 0, (4)

where h is the distance between plates.
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The balance of a linear momentum, in the absence of a pressure gradient in the y-
direction but in the presence of a transverse magnetic field of the magnitude B and a porous
medium, reduces to the following relevant partial differential equation [16,20]:

ρ
∂w(z, t)

∂t
=

∂η(z, t)
∂z

− σB2w(z, t) + R(z, t); z ∈ (0, h), t > 0. (5)

In the above relation, ρ is the fluid density, σ is its electrical conductivity and R(z, t)
that has to satisfy the next partial differential equation [16]:(

1 + a
∂

∂t
+ b

∂2

∂t2

)
R(z, t) = −µ

ϕ

k

(
1 + c

∂

∂t
+ d

∂2

∂t2

)
w(z, t); z ∈ (0, h), t > 0, (6)

is the Darcy’s resistance. Here, ϕ is porosity and k is the permeability of porous medium.
The corresponding initial conditions are:

w(z, 0) = ∂w(z,t)
∂t

∣∣∣
t=0

= ∂2w(z,t)
∂t2

∣∣∣
t=0

= 0,

η(z, 0) = ∂η(z,t)
∂t

∣∣∣
t=0

= ∂2η(z,t)
∂t2

∣∣∣
t=0

= 0,

R(z, 0) = ∂R(z,t)
∂t

∣∣∣
t=0

= 0 ; z ∈ (0, h).

(7)

The boundary conditions to be here imposed are:(
1 + a ∂

∂t + b ∂2

∂t2

)
η(0, t) = µ

(
1 + c ∂

∂t + d ∂2

∂t2

)
∂w(z,t)

∂z

∣∣∣
z=0

= S cos(ωt) or equal with S sin(ωt); t > 0,
(8)

(
1 + a ∂

∂t + b ∂2

∂t2

)
η(h, t) = µ

(
1 + c ∂

∂t + d ∂2

∂t2

)
∂w(z,t)

∂z

∣∣∣
z=h

= S cos(ωt)) or equal with S sin(ωt); t > 0,
(9)

where S is a constant shear stress and ω is the oscillations’ frequency.
In the special case when a = b = c = d = 0, corresponding to incompressible

Newtonian fluids, the boundary conditions (8) and (9) take the simple forms:

η(0, t) = µ
∂w(z, t)

∂z

∣∣∣∣
z=0

= S cos(ωt), η(h, t) = µ
∂w(z, t)

∂z

∣∣∣∣
z=h

= S cos(ωt); t > 0, (10)

respectively,

η(0, t) = µ
∂w(z, t)

∂z

∣∣∣∣
z=0

= S sin(ωt), η(h, t) = µ
∂w(z, t)

∂z

∣∣∣∣
z=h

= S sin(ωt); t > 0. (11)

In this case, the shear stress η(z, t) is prescribed on the boundary.
The volume flux V(t) across a plane orthogonal to the flow direction per unit width of

that plane can be determined using the next relation

V(t) =
h∫

0

w(z, t)dz; t > 0. (12)

Introducing the next non-dimensional variables, functions and parameters

z∗ = 1
h z, t∗ = ν

h2 t, w∗ = µ
Sh w, η∗ = 1

S η, R∗ = h
S R, V∗ = µ

Sh2 V,

ω∗ = h2

ν ω, a∗ = ν
h2 a, b∗ =

(
ν
h2

)2
b, c∗ = ν

h2 c, d∗ =
(

ν
h2

)2
d,

(13)
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in Equations (4)–(6) and (12) and renouncing to the star notation, one attains to the next
dimensionless forms(

1 + a
∂

∂t
+ b

∂2

∂t2

)
η(z, t) =

(
1 + c

∂

∂t
+ d

∂2

∂t2

)
∂w(z, t)

∂z
; z ∈ (0, 1), t > 0, (14)

∂w(z, t)
∂t

=
∂η(z, t)

∂z
− Mw(z, t) + R(z, t); z ∈ (0, 1), t > 0, (15)(

1 + a
∂

∂t
+ b

∂2

∂t2

)
R(z, t) = −K

(
1 + c

∂

∂t
+ d

∂2

∂t2

)
w(z, t); z ∈ (0, 1), t > 0, (16)

V(t) =
1∫

0

w(z, t)dz; t > 0. (17)

of the respective relations. In the above relations, ν = µ/ρ is the kinematic viscosity and
the magnetic and porous parameters M and K, respectively, are defined by the relations:

M =
σB2

ρ

h2

ν
=

h2

µ
σB2, K =

ϕ

k
h2. (18)

The non-dimensional initial conditions have the same forms as in relations (7) while
the boundary conditions take the simplified forms:(

1 + a ∂
∂t + b ∂2

∂t2

)
η(0, t) =

(
1 + c ∂

∂t + d ∂2

∂t2

)
∂w(z,t)

∂z

∣∣∣
z=0

= cos(ωt) or equal with sin(ωt); t > 0,
(19)

(
1 + a ∂

∂t + b ∂2

∂t2

)
η(1, t) =

(
1 + c ∂

∂t + d ∂2

∂t2

)
∂w(z,t)

∂z

∣∣∣
z=1

= cos(ωt) or equal with sin(ωt); t > 0.
(20)

The form of boundary conditions (19) and (20) and the fact that the fluid has been at
rest up to the initial moment t = 0, tells us that the respective motions become steady or
permanent in time. The fluid behavior in such motions can be characterized by the start-up
(starting) solutions wc(z, t), ηc(z, t), Rc(z, t) or ws(z, t), ηs(z, t), Rs(z, t) sometime after
its initiation. After that time, which is the time to touch the steady or permanent state,
the fluid motion is described by the steady state (long time or permanent) solutions. In
practice, this time is very important for the experimental researchers and in order to
determine it for a given motion, it is necessary and sufficient to know the steady state
solutions. This is the reason that, in the next sections, we shall provide the exact expressions
for these solutions only. These solutions, denoted by wcp(z, t), ηcp(z, t), Rcp(z, t) and
wsp(z, t), ηsp(z, t), Rsp(z, t) are independent of the initial conditions, but they have to
satisfy the governing equations and boundary conditions.

3. Analytical Expressions for the Dimensionless Steady State Solutions

As previously mentioned, the steady state solutions wcp(z, t), ηcp(z, t), Rcp(z, t) and
wsp(z, t), ηsp(z, t), Rsp(z, t) have to satisfy the governing Equations (14)–(16) and the bound-
ary conditions (19) and (20), respectively. In addition, they correspond to the steady or
permanent state and are valid for any value of the time t ∈ ℜ.

3.1. Analytical Expressions for the Dimensionless Steady State Velocity Fields

Eliminating the shear stress η(z, t) and the Darcy’s resistance R(z, t) between
Equations (14)–(16) one obtains the following governing equation:(

1 + a ∂
∂t + b ∂2

∂t2

)
∂w(z,t)

∂t =
(

1 + c ∂
∂t + d ∂2

∂t2

)
∂2w(z,t)

∂z2

−M
(

1 + a ∂
∂t + b ∂2

∂t2

)
w(z, t)− K

(
1 + c ∂

∂t + d ∂2

∂t2

)
w(z, t); z ∈ (0, 1), t ∈ ℜ,

(21)
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for the fluid velocity. The steady state velocity fields wcp(z, t) and wsp(z, t) have to satisfy
this equation and the respective boundary conditions. Let us consider the complex velocity:

wp(z, t) = wcp(z, t) + i wsp(z, t); 0 < z < 1, t ∈ ℜ, (22)

where i is the imaginary unit. This velocity has to satisfy the governing Equation (21) and
the next boundary conditions:(

1 + c
∂

∂t
+ d

∂2

∂t2

)
∂wp(z, t)

∂z

∣∣∣∣
z=0

=

(
1 + c

∂

∂t
+ d

∂2

∂t2

)
∂wp(z, t)

∂z

∣∣∣∣
z=1

= eiωt; t ∈ ℜ. (23)

Bearing in mind the form of the boundary conditions (23) and the linearity of the
governing Equation (21), we are looking for a solution of the next form:

wp(z, t) = W(z)eiωt; z ∈ (0, 1), t ∈ ℜ. (24)

Direct computations show that wp(z, t) is given by the next simple relation:

wp(z, t) =
sin h[δ(z − 1/2)]

δ(1 − dω2 + iωc) cos h(δ /2)
eiωt; z ∈ (0, 1), t ∈ ℜ, (25)

in which the complex constant δ is given by the relation:

δ =

√
(M + iω)(1 − bω2 + iωa) + K(1 − dω2 + iωc)

1 − dω2 + iωc
. (26)

According with the definition (22) of wp(z, t) and its expression (25), it results that:

wcp(z, t) = Re
{

sin h[δ(z − 1/2)]
δ(1 − d ω2 + iω c) cos h(δ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (27)

wsp(z, t) = Im
{

sin h[δ(z − 1/2)]
δ(1 − d ω2 + iω c) cos h(δ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (28)

where Re and Im mean the real and the imaginary part of that which follows. Simple
calculus shows that wcp(z, t) and wsp(z, t) given by Equations (27) and (28), respectively,
satisfy the governing Equation (21) and the corresponding boundary conditions.

3.2. Analytical Expressions for Shear Stresses and Darcy’s Resistances

To determine the shear stresses ηcp(z, t), ηsp(z, t) and Darcy’s resistances Rcp(z, t),
Rsp(z, t) corresponding to the two motions of IGBFs we use the governing Equations (14)
and (16) and the expressions of wcp(z, t) and wsp(z, t) from the relations (27) and (28).
Following a similar way as before, it is not difficult to show that:

ηcp(z, t) = Re
{

cos h[δ(z − 1/2)]
(1 − bω2 + iωa) cos h(δ /2)

eiωt
}

; z ∈ (0, 1), t > 0, (29)

ηsp(z, t) = Im
{

cos h[δ(z − 1/2)]
(1 − bω2 + iωa) cos h(δ /2)

eiωt
}

; z ∈ (0, 1), t > 0, (30)

Rcp(z, t) = −KRe
{

sin h[δ(z − 1/2)]
δ(1 − bω2 + iωa) cos h(δ /2)

eiωt
}

; z ∈ (0, 1), t > 0, (31)

Rsp(z, t) = −KIm
{

sin h[δ(z − 1/2)]
δ(1 − bω2 + iωa) cos h(δ /2)

eiωt
}

; z ∈ (0, 1), t > 0. (32)

It is worth to point out the fact that the expressions that have been obtained for wcp(z, t),
ηcp(z, t), Rcp(z, t) and wsp(z, t), ηsp(z, t), Rsp(z, t) satisfy governing Equations (14)–(16) and
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boundary conditions (19) and (20), respectively. In addition, if b = c = d = 0, they take
simpler forms that have been recently obtained by Vieru and Fetecau [25] for incompressible
Maxwell. The velocity fields, for example, have the expressions (see Equations (51) and (52)
from [25]):

wMcp(z, t) = Re
{

sin h[β(z − 1/2)]
βcos h(β /2)

eiωt
}

; z ∈ (0, 1), t ∈ R, (33)

wMsp(z, t) = Im
{

sin h[β(z − 1/2)]
βcos h(β /2)

eiωt
}

; z ∈ (0, 1), t ∈ R, (34)

in which β =
√
(M + iω)(1 + iωa) + K. If in addition a = 0, the last two relations take the

simple forms:

wNcp(z, t) = Re


sin h[(z − 1/2)

√
Ke f f + iω

]
√

Ke f f + iωcos h(
√

Ke f f + iω /2)
eiωt

; z ∈ (0, 1), t ∈ R, (35)

wNsp(z, t) = Im


sin h[(z − 1/2)

√
Ke f f + iω

]
√

Ke f f + iωcos h(
√

Ke f f + iω /2)
eiωt

; z ∈ (0, 1), t ∈ R, (36)

corresponding to MHD motions of the incompressible Newtonian fluids through a porous
medium between two infinite horizontal parallel plates that applies oscillatory shear
stresses S cos(ωt) or S sin(ωt) to the fluid. In the above relations Ke f f = M + K is called
the effective permeability [21].

3.3. Limiting Case ω → 0

Making ω → 0 in Equations (27), (29) and (31), one obtains the dimensionless steady
solutions:

wSp(z) =
sin h[(z − 1/2)

√
Ke f f ]√

Ke f f cos h(
√

Ke f f /2)
; z ∈ (0, 1), (37)

ηSp(z) =
cos h[(z − 1/2)

√
Ke f f ]

cos h(
√

Ke f f /2)
; z ∈ (0, 1), (38)

RSp(z) = −K
sin h[(z − 1/2)

√
Ke f f ]√

Ke f f cos h(
√

Ke f f /2)
; z ∈ (0, 1), (39)

corresponding to the MHD unsteady motion of IGBFs through a porous medium between
two infinite horizontal parallel plates that applies a constant shear stress S to the fluid. These
solutions, which are the steady components of the starting solutions wS(z, t), ηS(z, t), RS(z, t),
are identical to the similar solutions of incompressible Newtonian fluids performing the same
motion. This is possible because the governing equations, as well as the boundary conditions,
are identical in steady motions of incompressible Newtonian and non-Newtonian fluids. Of
course, the steady solutions from Equations (37)–(39) can be directly determined solving the
corresponding boundary value problem. In all cases, the similar solutions corresponding
to same motions of IGBFs in the absence of the magnetic field and porous medium are
immediately obtained making M = K = 0 in the general solutions.

From the equalities (37) and (38) it results that the steady fluid velocity wSp(z) and the
associated shear stress ηSp(z) do not depend of parameters M and K independently, but
by a combination of them which is the effective permeability. Therefore, a two parameter



AppliedMath 2024, 4 295

approach for these entities is superfluous. In the absence of magnetic and porous effects,
the relations (37) and (38) take the simple forms:

wSp(z) = z − 1/2, ηSp = 1; z ∈ (0, 1). (40)

The second relation from Equation (40) tells us that the shear stress is constant on the
entire flow domain although the fluid velocity depends of the spatial variable. This constant
is even the shear stress applied by plates to the fluid.

4. Steady State Solutions for MHD Motions of IGBFs with Shear Stress on Boundary

Let us now consider the isothermal MHD unsteady motion of IGBFs between the two
infinite horizontal parallel plates that, after the initial moment t = 0, applies oscillatory
shear stresses S cos(ωt) or S sin(ωt) to the fluid. Due to the shear the fluid is gradually
moved and its velocity is characterized by the same relation (3). In the same assumptions
as before, the governing equations for these motions are given by the relations (4) and

ρ
∂w(z, t)

∂t
=

∂η(z, t)
∂z

− σB2w(z, t); z ∈ (0, h), t > 0. (41)

The initial conditions are given by the first six relations from Equations (7) while the
adequate boundary conditions are:

η(0, t) = η(1, t) = S cos(ωt); t > 0, (42)

η(0, t) = η(1, t) = S sin(ωt); t > 0. (43)

Introducing the same non-dimensional variable, functions and parameters as before, the
governing Equation (4) takes the non-dimensional form (14) while Equation (41) becomes:

∂w(z, t)
∂t

=
∂η(z, t)

∂z
− M w(z, t); z ∈ (0, 1), t > 0, (44)

Eliminating the fluid velocity w(z, t) between Equations (14) and (44) one finds the
next governing equation:(

1 + a ∂
∂t + b ∂2

∂t2

)
∂η(z,t)

∂t =
(

1 + c ∂
∂t + d ∂2

∂t2

)
∂2η(z,t)

∂z2

−M
(

1 + a ∂
∂t + b ∂2

∂t2

)
η(z, t); z ∈ (0, 1), t ∈ ℜ,

(45)

for the non-null shear stress η(z, t). The dimensionless boundary conditions are:

η(0, t) = η(1, t) = cos(ω t); t > 0, (46)

or
η(0, t) = η(1, t) = sin(ωt); t > 0. (47)

Keeping the same notations as in previous sections and following the same way as
before, one finds for wcp(z, t), ηcp(z, t) and wsp(z, t), ηsp(z, t) the next expressions:

wcp(z, t) = Re
{

sin h[γ(z − 1/2)]
cos h(γ /2)

β

γ
eiωt

}
; z ∈ (0, 1), t ∈ ℜ, (48)

ηcp(z, t) = Re
{

cos h[γ(z − 1/2)]
cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (49)

wsp(z, t) = Im
{

sin h[γ(z − 1/2)]
cos h(γ /2)

β

γ
eiωt

}
; z ∈ (0, 1), t ∈ ℜ. (50)
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ηsp(z, t) = Im
{

cos h[γ(z − 1/2)]
cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (51)

In these equalities the complex constants γ and β are given by the relations:

γ =

√
(M + iω)(1 − bω2 + iωa)

1 − dω2 + iωc
, β =

1 − bω2 + iωa
1 − dω2 + iωc

. (52)

Making ω → 0 in Equations (48) and (49) one finds the steady solutions:

wSp(z) =
sin h[(z − 1/2)

√
M
]

√
Mcos h(

√
M /2)

, ηSp(z) =
cos h[(z − 1/2)

√
M
]

cos h(
√

M /2)
; z ∈ (0, 1), (53)

corresponding to the MHD unsteady motion of IGBFs between the two parallel plates that
applies a constant shear stress S to the fluid. As expected, these solutions are special cases
of those from relations (37) and (38). However, the governing Equation (45) for shear stress
is completely new. It allows us to solve MHD motion problems of rate type fluids when
the shear stress is prescribed on the boundary. This thing is very important because in
many practical situations what is known is the force applied to plates in order to move
them. In addition, the no slip condition on the boundary may be useless for motions of
polymeric fluids that can slide on the boundary. Therefore, as it was previously mentioned
by Renardy [22,23], boundary conditions on stresses are meaningful.

As it was to be expected, taking the limit of the equalities (53) when M → 0 , one
recovers the solutions from Equation (40). The shear stress ηSp is constant on the entire flow
domain although the fluid velocity is a function of the spatial variable z. This constant is
exactly the shear stress applied by plates to the fluid. Finally, it is very important to remark
the fact that introducing the expressions of wcp(z, t), wsp(z, t) or wSp(z) from Equations (27),
(28), (33)–(37), (40), (48), (50) and (53) in (17) one finds that the volume flux across a plane
vertical to the flow per unit width of that plane is zero in all cases. This surprising result
will be later visualized by graphical representations.

Finally, we mention the fact that in the existing literature there are many studies
concerning motions of incompressible Newtonian or non-Newtonian fluids between infinite
parallel plates. In all these motions, in which the fluid velocity is given on the boundary, the
volume flux is different of zero. The simplest examples can be found in the Sections 3 and 4
of the reference [26]. This is the reason that the present result is contrary to our expectations
and was called strange. However, we are sure that a scientific explanation exists and it will
be theoretical or experimental justified in time.

5. Applications

In the previous sections we provided analytical expressions for the steady state so-
lutions corresponding to isothermal MHD motions of IGBFs through a porous medium
between infinite horizontal parallel plates when the shear stress η(z, t) or a differential
expression of this shear stress is prescribed on the boundary. Now, in order to use these
results, we consider isothermal MHD motions of same fluids between the two infinite
horizontal parallel plates when the fluid velocity w(z, t) or a differential expression of
velocity is prescribed on the boundary. In both cases, in the same conditions as before,
the velocity vector and the governing equations are given by Equations (3), (4) and (41).
Introducing the following non-dimensional variables, functions and parameters:

z∗ = 1
h z, t∗ = ν

h2 t, w∗ = 1
U w, η∗ = h

µU η, R∗ = h2

µU R, V∗ = 1
Uh V,

ω∗ = h2

ν ω, a∗ = ν
h2 a, b∗ = ν2

h4 b, c∗ = ν
h2 c, d∗ = ν2

h4 d,
(54)

where U is a constant velocity, one obtains the corresponding dimensionless governing
equations given by the relations (14) and (44).
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Eliminating the shear stress η(z, t) between Equations (14) and (44), one obtains the
next partial differential equation(

1 + a ∂
∂t + b ∂2

∂t2

)
∂w(z,t)

∂t =
(

1 + c ∂
∂t + d ∂2

∂t2

)
∂2w(z,t)

∂z2

−M
(

1 + a ∂
∂t + b ∂2

∂t2

)
w(z, t); z ∈ (0, 1), t ∈ ℜ,

(55)

for the velocity field w(z, t). The form of this governing equation is identical to Equation (45)
for the shear stress η(z, t). This simple observation will allow us to easily determine the
exact steady state solutions for other motions of IGBFs.

5.1. Both Plates Oscillate in Their Planes with Velocity U cos(ωt)or U sin(ω t)

Let us consider the isothermal MHD motions of IGBFs between the two infinite
horizontal parallel plates that oscillate in their planes along the y-axis with the velocity
U cos(ωt) or U sin(ωt) where the constant U is the amplitude of the oscillations. The
initial conditions are again given by the equalities (7) while the dimensionless boundary
conditions corresponding to these motions are given by the relations:

w(0, t) = w(1, t) = cos(ωt); t > 0, (56)

or
w(0, t) = w(1, t) = sin(ωt); t > 0. (57)

Since the boundary conditions (56) and (57) are identical in form with those from
Equations (46) and (47) for shear stress, we can say, without any calculus, that the di-
mensionless steady state velocities corresponding to these motion problems are given by
the relations

wcp(z, t) = Re
{

cos h[γ(z − 1/2)]
cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (58)

wsp(z, t) = Im
{

cos h[γ(z − 1/2)]
cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ. (59)

The expressions of the associate shear stresses, namely:

ηcp(z, t) = Re
{

sin h[γ(z − 1/2)]
cos h(γ /2)

γ

β
eiωt

}
; z ∈ (0, 1), t ∈ ℜ, (60)

ηsp(z, t) = Im
{

sin h[γ(z − 1/2)]
cos h(γ /2)

γ

β
eiωt

}
; z ∈ (0, 1), t ∈ ℜ, (61)

have been obtained using the equality (14). Direct computations show that wcp(z, t),
wsp(z, t) and ηcp(z, t), ηsp(z, t) given by (58), (59) and (60), (61), respectively, satisfy the
governing Equations (14), (44) and (55) and the boundary conditions (56), (57).

Taking ω → 0 in Equations (58) and (60) one obtains the steady solutions:

wUp(z) =
cos h[(z − 1/2)

√
M
]

cos h(
√

M /2)
, ηUp(z) =

√
M

sin[(z − 1/2)
√

M
]

cos h(
√

M /2)
; z ∈ (0, 1), (62)

corresponding to the MHD motion of IGBFs induced by the two plates that moves in
their planes with the constant velocity U. These solutions, as well as those from the equal-
ities (53), are identical to the similar solutions of incompressible Newtonian fluids per-
forming the same motions. In the absence of the magnetic field one recovers the results of
Erdogan [26], i.e.,

wUp = 1, ηUp = 0; z ∈ (0, 1). (63)
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Consequently, the shear stress is zero on the entire flow domain and the whole system
moves as a solid body with the constant dimensional velocity U.

5.2. The Case When a Differential Expression of Velocity Is Prescribed on the Boundary

Let us now assume that, instead of the boundary conditions (8) and (9), by which a
differential expression of shear stress is prescribed on the boundary, the same differential
expression of the fluid velocity w(z, t) is given on boundary. More precisely, the next
boundary conditions:(

1 + a ∂
∂t + b ∂2

∂t2

)
w(0, t) =

(
1 + a ∂

∂t + b ∂2

∂t2

)
w(h, t)

= U cos(ωt) or equal with U sin(ωt); t > 0,
(64)

are now imposed. Their dimensionless expressions are given by the relations:(
1 + a ∂

∂t + b ∂2

∂t2

)
w(0, t) =

(
1 + a ∂

∂t + b ∂2

∂t2

)
w(1, t)

= cos(ωt) or equal with sin(ωt); t > 0,
(65)

which are identical as form to those for the shear stress η(z, t) from Equations (19) and (20).
Consequently, the expressions of steady state velocities wcp(z, t), wsp(z, t) corre-

sponding to these motions are given by the relations (see the relations (29) and (30) for
shear stresses)

wcp(z, t) = Re
{

cos h[γ(z − 1/2)]
(1 − bω2 + iω a) cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t > 0, (66)

wsp(z, t) = Im
{

cos h[γ(z − 1/2)]
(1 − bω2 + iω a) cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t > 0, (67)

The adequate shear stresses ηcp(z, t), ηsp(z, t), namely:

ηcp(z, t) = Re
{

γsin h[γ(z − 1/2)]
β(1 − bω2 + iω a) cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (68)

ηsp(z, t) = Im
{

γsin h[γ(z − 1/2)]
β(1 − bω2 + iω a) cos h(γ /2)

eiωt
}

; z ∈ (0, 1), t ∈ ℜ, (69)

have been obtained introducing the expressions of wcp(z, t) and wsp(z, t) from Equations (66)
and (67) in the relation (14). As it was to be expected, making ω → 0 in Equations (66)
and (68), one recovers the steady solutions from Equation (53).

6. Some Numerical Results and Conclusions

This study provided the simplest analytical expressions for the dimensionless steady
state velocity, non-trivial shear stress and Darcy’s resistance corresponding to some isother-
mal MHD motions of IGBFs through a porous medium between infinite horizontal parallel
plates when a differential expression of the shear stress is prescribed on the boundary.
Simple computations show that the obtained expressions satisfy the governing equations
and the corresponding boundary conditions. The exact solutions, in addition to describing
the fluid behavior in different circumstances, can be used to get the necessary time to touch
the steady state or to verify numerical schemes that are utilized to study more complex
motion problems. A surprising result regarding these motions of rate type fluids refers
to the volume flux across a plane vertical to the flow direction per unit width of that
plane. This volume flux is zero in all cases, although the boundary conditions on plates are
identical. This result is also brought to light by graphical representations.

Another interesting result refers to the governing equations of velocity and shear
stress for MHD motions of rate type fluids. The fact that these equations have identical
forms has allowed us to provide analytical expressions for the dimensionless steady state
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solutions corresponding to MHD motions of IGBFs between infinite horizontal parallel
plates when the non-trivial shear stress is prescribed on the boundary. Moreover, exact
solutions for MHD motions of rate type fluids, with velocity or shear stress on the boundary,
are easier obtained if are known similar solutions of same fluids for which the shear
stress, respectively the fluid velocity is prescribed on the boundary (see, for instance, the
expressions of the velocity fields wcp(z, t) and wsp(z, t) from Equations (66) and (67) which
have been directly obtained using results from Section 3.2. This opportunity has been
used in Section 5 to provide exact solutions for MHD motions of IGBFs in which the fluid
velocity or a differential expression of this velocity is prescribed on the boundary. We
also mention the fact that all solutions that have been here obtained satisfy the governing
equations and boundary conditions.

Now, in order to bring to light some characteristics of the fluid behavior in MHD
motions of IGBFs through a porous medium when a differential expression of shear stress
is given on the boundary, Figures 1–4 have been prepared for fixed values of the material
constants a, b, c, d, the frequency ω and time t, and increasing values of the magnetic and
porous parameters M and K. In Figures 1 and 2, for comparison, are close presented the
variations of the dimensionless steady state velocities wcp(z, t) and wsp(z, t) against z for
a fixed value of M and increasing values of K, respectively, for a fixed value of K and
increasing values of M.
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AppliedMath 2024, 4 300

AppliedMath 2024, 4, FOR PEER REVIEW 13 
 

 

 

Figure 2. Profiles of velocities 
),( tzwcp  and 

),( tzwsp  given by Equations (27) and (28), respec-

tively, for ,4,5.0,6/,5.0,1,2,3 ======= tMdcba πω  and three values of K. 

In all cases, the fluid velocities have a sign in the upper half of the channel and 
opposite sign in the other half. However, in absolute value, the fluid velocities are equal 
in points located at equal distances from the plates. This important result certificates the 
fact that the volume flux across a plane vertical to the direction motion per unit width of 
that plane is zero. 

The variations in time of the two steady velocities ),( tzwcp  and ),( tzwsp  (given 
by the same Equations (27) and (28)) in the plane 4/1=z  are depicted in Figures 3 and 
4 for increasing values of the magnetic and porous parameters M and K. The oscillatory 
behavior of the two motions, as well as the phase difference between them, is easily 
observable. In addition, as it was to be expected from previous results, the amplitude of 
oscillations declines for increasing values of M or K. Furthermore, the oscillations’ 
amplitudes of the two motions are identical at equal values of the two parameters M and 
K. 

 

Figure 3. Variations in time of the dimensionless velocity 
),( tzwcp  from Equation (27), for 

2.0,4/1,6/,5.0,1,2,3 ======= Kzdcba πω  at three values of M, and 5.0=M  for 
three values of K. 

Figure 3. Variations in time of the dimensionless velocity wcp(z, t) from Equation (27), for a = 3,
b = 2, c = 1, d = 0.5, ω = π/6, z = 1/4, K = 0.2 at three values of M, and M = 0.5 for three values
of K.
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Figure 4. Variations in time of the dimensionless velocity wsp(z, t) from Equation (28), for a = 3,
b = 2, c = 1, d = 0.5, ω = π/6, z = 1/4, K = 0.2 at three values of M, and M = 0.5 for three values
of K.

In all cases, the fluid velocities have a sign in the upper half of the channel and opposite
sign in the other half. However, in absolute value, the fluid velocities are equal in points
located at equal distances from the plates. This important result certificates the fact that
the volume flux across a plane vertical to the direction motion per unit width of that plane
is zero.

The variations in time of the two steady velocities wcp(z, t) and wsp(z, t) (given by
the same Equations (27) and (28)) in the plane z = 1/4 are depicted in Figures 3 and 4 for
increasing values of the magnetic and porous parameters M and K. The oscillatory behavior
of the two motions, as well as the phase difference between them, is easily observable.
In addition, as it was to be expected from previous results, the amplitude of oscillations
declines for increasing values of M or K. Furthermore, the oscillations’ amplitudes of the
two motions are identical at equal values of the two parameters M and K.

Now, for comparison, diagrams of dimensionless steady velocities wSp(z) and wUp(z)
are depicted adjoining in Figure 5 for increasing values of Ke f f and M, respectively. They
correspond to motions of incompressible Newtonian and rate type fluids between two
infinite horizontal parallel plates which apply a constant shear stress to the fluid or move
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in their planes with the constant velocity U. The difference between their graphical rep-
resentations is essential. First of all, the velocity wSp(z) has positive values in the upper
half of the channel and negative values in the lower part but their absolute values are
equal at the same distances from the midplane z = 1/2. The second velocity field wUp(z),
as expected, has positive values on the entire flow domain, is symmetric with respect
to the plane z = 1/2 and satisfies the boundary conditions. However, both wSp(z) and
wUp(z) in absolute value are decreasing functions with respect to the parameters Ke f f or
M, respectively. It means that the fluid flows slower in the presence of a magnetic field or
porous medium.
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Figure 5. Diagrams of steady velocities wSp(z) and wUp(z) given by Equations (37) and (62) at
increasing values of Ke f f , and M, respectively.

Finally, for a new graphical confirmation concerning the zero value of the volume flux
across a plane orthogonal to the flow direction, we include here Figure 6 for the steady
velocity fields wcp(z, t) and wsp(z, t) given by Equations (48) and (50). From these graphs it
follows that the volume flux on a plane perpendicular to the flow direction is zero both for
motions in which a differential expression of shear stress is prescribed on boundary and
motions with shear stresses on the boundary. This result is also brought to light by means of
Figure 7 for the most general velocity fields wcp(z, t) and wsp(z, t) corresponding to motions
of IGBFs with a differential expression of the shear stress prescribed on the boundary.
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Figure 6. Diagrams of the velocities wcp(z, t) and wsp(z, t) given by Equations (48) and (50) for
a = 3, b = 2, c = 1, d = 0.5, ω = π/6, t = 5 and increasing values of M.
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Figure 7. Variations in time of volume flux V(t) for velocities wcp(z, t), wsp(z, t) given by Equations (27)
and (28) for a = 3, b = 2, c = 1, d = 0.5, ω = π/6 and two values of M and K.

The main results that have been obtained in this paper are the following:

- Analytical expressions are provided for the dimensionless steady state solutions of
some MHD motions of IGBFs through a porous medium between infinite horizontal
parallel plates when a differential expression of shear stress is prescribed on boundary.

- Volume flux across a plane orthogonal to the flow direction per unit width of that
plane, contrary to our expectations, is zero for isothermal motions of IGBFs in which
shear stress or a differential expression of shear stress is prescribed on plates having
equal values.

- The governing equations for fluid velocity and shear stress in MHD motions of IGBSs
between parallel plates have identical forms. Consequently, any MHD motion problem
of IGBFs in such a domain or over an infinite plate can be solved when shear stress is
prescribed on the boundary.

- The steady velocity wSp(z) and the shear stress ηSp(z) corresponding to the motion of
IGBFs due to a constant shear stress on the boundary do not depend independently on
the magnetic and porous parameters M and K. Therefore, a two parameter approach
for these entities is superfluous.

- An IGBF flows slower in the presence of a magnetic field or porous medium.
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Nomenclature

ε The one-dimensional strain
a1, a2, b1, b2 Material constants
T Stress tensor
Te Extra-stress tensor
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D Rate of deformation tensor
I Identity tensor
p Hydrostatic pressure
a, b, c, d Material constants
ey Unit vector along the y-axis
x, y, z Cartesian coordinates
w(z, t) Velocity vector
w(z, t) Fluid velocity
M Magnetic parameter
K Porous parameter
a, b, c, d Material constants
R(z, t) Darcy’s resistance
S Constant shear stress
B Magnitude of the applied magnetic field
h Distance between plates
U Constant velocity
V(t) Volume flux
µ Dynamic viscosity
ρ Fluid density
ν Kinematic viscosity
ϕ Porosity
k Permeability of porous medium
η(z, t) Shear stress
ω Frequency of oscillations
σ Electrical conductivity
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