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Abstract: In parabolic trough technology, the development of thermally and structurally stable solar
coatings plays a key role in determining the efficiency, durability, and economic feasibility of tube
receivers. A cermet-based solar coating is typically constituted by a thin film stratification, where
a multilayer graded cermet is placed between an infrared metallic reflector and an antireflection
filter. This work reports the realization of materials based on Al2O3 and W characterized by high
structural and chemical stability in vacuum at high temperature, obtained through the optimization
of high-deposition-rate processes. Al2O3 material, employed as the antireflection layer, was deposited
through a reactive magnetron sputtering process at a high deposition rate. Cermet materials based
on W-Al2O3 were deposited and employed as absorber layers by implementing reactive magnetron
co-sputtering processes. An investigation into the stability of the realized samples was carried out by
means of several material characterization methods before and after the annealing process in vacuum
(1 × 10−3 Pa) at high temperature (620 ◦C). The structural properties of the samples were evaluated
using Raman spectroscopy and XRD measurements, revealing a negligible presence of oxides that
can compromise the structural stability. Spectrophotometric analysis showed little variations between
the deposited and annealed samples, clearly indicating the high structural stability.

Keywords: solar absorber; cermet; reactive sputtering; deposition rate; structural stability

1. Introduction

Receiver tubes used in Concentrating Solar Technology (CST) are components with
high technological content. In particular, spectrally selective coatings deposited on re-
ceiver tubes by vacuum techniques are a strategic element because they affect the receiver
photo-thermal efficiency in terms of solar radiation absorbance (αs) and thermal emit-
tance (εth) [1–3]. Typically, solar coatings characterized by a particular multilayer structure,
which consists of one or more cermet layers (optical absorber materials) placed between
a metallic layer (infrared reflector) and a ceramic layer (antireflection layer), are used in
this specific application. In this structure, every single layer performs a specific function:
the metallic layer, with its high optical reflectivity in the infrared region, ensures a low
emittance value; the cermet layers, constituted by ceramic/metallic composite materials,
absorb incoming solar radiation; lastly, the antireflection layer minimizes reflection losses.

In a vacuum receiver tube for high temperature applications (e.g., with molten salts as
heat transfer fluid), the solar coating has to work at a pressure ≤1 × 10−2 Pa and up to 550
◦C. Under these operating conditions, the constituent materials of the coating should have
high structural, physical, and chemical stability to maintain the good performance of the
spectrally selective coating [3,4]. In fact, a good selective absorber should not only possess
a high solar absorbance and a low thermal emittance but should also be able to retain its
properties under long-term operations. Therefore, the development of cermet materials that
can prevent any diffusive phenomena and are stable at the operating conditions of receiver
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tubes is a relevant objective. Al2O3-based cermet coatings, which have excellent optical
properties and thermal stability, have been extensively investigated as spectrally selective
absorbers [5–10]. Furthermore, some studies report that cermet materials based on tungsten
and alumina (W-Al2O3) are suitable for use as absorber layers within spectrally selective
coatings, owing to their high chemical and structural stability at high temperatures [11–13].
Particularly, alumina oxide (Al2O3) is a hard compound adopted for wear and corrosion
protection due to its excellent properties such as chemical inertness, high hot hardness, and
stability at elevate temperature [14,15]. The optical properties of alumina oxide, such as its
transparency, coupled with good barrier properties, make it particularly suitable for these
applications. Tungsten (W) is a metal with relatively good oxidation resistance and a high
melting temperature.

Since 2001, the Italian National Agency for New Technologies, Energy and Sustainable
Development (ENEA) has been involved in research devoted to the fabrication of solar
coatings for high-temperature parabolic trough receivers using molten salts as heat transfer
fluid (550 ◦C), with the aim of increasing the operative temperature of the solar field and,
consequently, the overall plant efficiency [11]. In particular, the research has focused on
the realization of stable and efficient materials produced through high-rate deposition
processes, easily transferable to the industry, and has led to a patent [16] whose license has
been acquired by a national industry in the sector [17].

Initially, the experimental activities were aimed at the production of alumina by a
radio frequency (RF) sputtering technique, which is the most reliable process for producing
alumina with good repeatability [11]. However, this technique is characterized by a low
deposition rate that limits its industrial application.

Among the different techniques to produce ceramic materials with high deposition
rates, reactive magnetron sputtering is the most interesting process [18–23]. In particular,
the process can be performed by adopting two different regimes, known as transition and
poisoned mode [20,24]. The latter is characterized by a low deposition rate and was largely
used in the past. Although the deposition processes in poisoned mode are repeatable and
robust in terms of plasma instability, they do not permit high deposition rates of ceramic
materials, thus limiting the deposition efficiency and economic feasibility of coatings. To
overcome these limits, reactive magnetron sputtering in transition mode can be employed.
This process allows for higher deposition rates of ceramic materials by more than one
order of magnitude [19], which is highly advantageous from an industrial perspective if
combined with the possibility of preserving the stability and repeatability of the production
process. Indeed, in this process the target conditions are very sensitive to the quantity of
reactive gas injected into the process chamber, thus requiring an accurate control of the
sputtering process to maintain stable deposition conditions during the ceramic growth [20].
Regarding the realization of cermet materials through reactive magnetron co-sputtering
technique in transition mode, the corresponding literature is very poor. In fact, most studies
deal with the fabrication of these materials by adopting easier experimental conditions,
such as reactive co-sputtering in poisoned mode or RF sputtering techniques [12,25], than
reactive magnetron co-sputtering technique in transition mode; besides, there are few
existing studies related to the processes performed in transition mode. Moreover, despite
the high deposition rate, most of these studies concern the realization of cermet materials
based on nitrides [26–29] rather than oxides.

The present work deals with the realization of ceramic materials characterized by high
structural and chemical stability at high temperature, obtained through the optimization of
a high-deposition-rate process. The employed technique is the “dual magnetron” reactive
sputtering in transition mode with medium frequency (MF) supply. Plasma conditions were
monitored by a Plasma Emission Monitoring (PEM) system. The optimized materials were
employed both as an antireflective layer and ceramic component inside the optical absorber
layer. This study also reports the realization of cermet materials based on tungsten and
alumina, obtained through the optimization of reactive magnetron co-sputtering technique
in transition mode, which is the process for depositing ceramic and metallic components
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concurrently. In particular, “dual magnetron” reactive sputtering in transition mode with
MF supply was employed to deposit the ceramic component (Al2O3), while “standard
magnetron” reactive sputtering with impulsive direct current (DC) supply was employed
to deposit the metallic component (W).

The realized materials were subjected to optical and structural characterizations and
thermal annealing tests in vacuum (1 × 10−3 Pa) at high temperature (620 ◦C) to verify their
stability and define the most suitable process conditions for the fabrication of materials with
the required characteristics. The possible material degradation was investigated by several
characterization techniques: UV-Vis-NIR spectrophotometric analysis, X-ray Diffraction
analysis (XRD), and Raman spectroscopy.

2. Experimental Section
2.1. Magnetron Sputtering System

Ceramic and cermet films of the spectrally selective solar coatings were deposited by
magnetron sputtering technique using a prototypical sputtering system composed of a load-
lock chamber and a process chamber. This plant has a vertical general layout and allows
samples to oscillate by moving back and forth from the sputtering source. Figure 1 shows
the general view of the cited sputtering plant. Typically, plasma etching and heating pre-
treatments are performed on substrates in the load-lock chamber. In the process chamber,
six cathodes, namely three standard magnetron cathodes, used to deposit metallic materials,
and three dual magnetron cathodes, used to deposit ceramic oxides, were mounted and
arranged in pairs on two opposite sides. The simultaneous deposition of metallic and
ceramic materials by co-sputtering technique allows one to obtain cermet materials.
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Figure 1. A general view of ENEA-2 sputtering plant.

In this work, a tungsten target mounted on a standard magnetron cathode provided
the metallic component while two aluminum targets mounted on a dual magnetron cathode
provided the ceramic component. The deposition plant was also equipped with a PEM
system (PLASUS, GmbH Company equipment, Mering, Germany) characterized by six
independent spectrometric channels. The complete spectrum of the plasma light emission
was acquired continuously by optical fibers in the wavelength range 200–1100 nm. Each
dual magnetron cathode was monitored by two optical fibers, one fiber for each plasma
region facing the two targets of the dual magnetron cathode. The control system with PEM
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used very fast feedback to ensure a stable sputtering at a selected value of reference signal
(corresponding to the desired set-point). This control function was performed through a
proportional-integral-derivative (PID) controller, which allows one to maintain the target
conditions during the reactive sputtering process.

2.2. Materials Preparation

Ceramic and cermet films were deposited on glass, stainless steel (SS) (nominal di-
mensions of both substrates were 26 mm × 75 mm × 1.1 mm), and on monocrystalline
Silicon (c-Si) planar substrates fixed inside housing on the external surface of an SS tube
(L = 600 mm, D = 70 mm). This tube holder moves back and forth with respect to the targets
with adjustable sweep velocity and rotates with an adjustable spin velocity. Sweep and
spin velocities were properly chosen to have a good plasma stability during processes and
were fixed at 250 mm/min and 60 rpm, respectively.

Ceramic and cermet materials were deposited by reactive sputtering under an oxygen
and argon atmosphere. The ultimate pressure before starting deposition processes was
7 × 10−5 Pa, obtained by using a cryogenic pump system.

Al2O3 ceramic deposition was performed by applying a power density to Al targets
equal to 1.84 W/cm2. The process pressure was fixed at about 1 Pa by introducing a total
Ar flow equal to 400 sccm through the gas rings placed around the frontal Al and W targets
(200 sccm for side) to maintain the same gas flow configuration as the W-Al2O3 cermet
deposition (described momentarily). The oxygen flow was introduced into the process
chamber from the gas rings around the Al targets and was controlled by the PEM system.
Before each deposition, two pre-sputtering phases were performed: in the first phase, only
Ar gas was introduced into the process chamber, in order to clean the Al targets; in the
second phase, oxygen reactive gas was also injected so that the selected spectral response of
the plasma was effected. These two steps allowed for the deposition of alumina thin films
through the Al targets with the same starting conditions, which could then be monitored
through voltage and current values.

Regarding the cermet materials, different samples were deposited by applying a
constant power density to the Al targets, equal to 1.84 W/cm2, and variable cathode power
densities to the W target (positioned in opposite side, co-sputtering mode), equal to 9.78,
6.67, 3.56, and 1.33 W/cm2. The process pressure was fixed at about 1 Pa by introducing a
total Ar flow equal to 400 sccm through the gas rings placed around the frontal Al and W
targets (200 sccm per side). An oxygen gas flow was introduced into the process chamber
from the gas rings around the Al targets and was controlled by the PEM system.

2.3. Materials Characterization

Optical reflectance and transmittance measurements of the realized samples were
carried out using a UV-Vis-NIR spectrophotometer mod. Lambda 950 (Perkin–Elmer
Company, Waltham, Massachusetts) equipped with a double beam and a 15 cm diameter
integrating sphere.

The thickness of each ceramic and cermet layer was mechanically measured on films
grown on glass substrate using a Tencor P-7 stylus profiler, (KLA Company, Milpitas,
California). A shadow mask was applied to the substrate before the deposition and
removed after the process. This procedure allowed for the creation of a step used to
evaluate the thickness of the realized samples.

X-ray diffraction analysis was performed using a Smartlab diffractometer (Rigaku
Company, The Woodlands, Texas) working with CuKα radiation (λ = 1.54059 nm). The
glancing incidence configuration was used to obtain high sensitivity to the film structure:
different measurements were collected at decreasing incidence angles, starting from 3.5◦

on the cermet layers deposited on both glass and c-Si substrates. A scan range of 10–90◦

(2θ) was used.
The Raman measurements were acquired at ambient conditions with a Renishaw

Raman microscope, using the 514 nm excitation of a green laser. An acquisition time



Solar 2023, 3 117

of 10 s for each spectrum and a 50× objective lens were used in all experiments. These
characterizations were performed on samples deposited on c-Si substrates.

Thermal annealing cycles were carried out by a Carbolite programmable furnace
operating in vacuum at a pressure of 1.0 × 10−3 Pa and temperature equal to 620 ◦C.
Thermal annealing tests were conducted for a total of 132 days according to the following
six cycles: first cycle of 2 days, second cycle of 7 days, third cycle of 10 days, fourth cycle of
18 days, fifth cycle of 37 days, and sixth cycle of 58 days. At the end of each cycle, optical
and structural characteristics were verified to evaluate the thermal stability of the realized
samples. Figure 2 shows a diagram with detailed descriptions of all the steps involved to
realize and characterize the samples discussed.
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3. Results and Discussion

The experimental work described in this article concerns the optimization of a high-
deposition-rate, high-reproducibility process for the realization of ceramic and cermet
materials characterized by high structural and chemical stability in vacuum at high temper-
ature. The implemented technique was reactive magnetron sputtering in transition mode.

3.1. Alumina

Alumina is the material used both as an antireflection layer and a ceramic component
of cermet. Suitable process parameters were identified and optimized to deposit a ceramic
material with the required optical characteristics, namely a non-absorbent ceramic material
at wavelength values above 500 nm.

Alumina thin film deposition was carried out through the preliminary acquisition
of the hysteresis curve to individuate the transition region. Figure 3 shows the hysteresis
curve of the process performed at a power density of 1.84 W/cm2 applied to the Al targets.

The shape of this curve depends on several factors such as power density, process
pressure, and gas flow introduced into the chamber. One way to eliminate the hysteresis
effect is to “overpump” the deposition chamber by using a pumping system with a pumping
speed that is sufficiently high so that the consumption of the reactive gas by the pumping
system dominates that of the growing film on the target surface [20,24,30]. As a result, a
gradual transition from metallic to poisoned modes takes place. For this reason, alumina
depositions were carried out by high Ar flow (400 sccm) to obtain high pumping speed.

The “response curve” reported in Figure 3 was obtained by increasing and decreasing
the oxygen flow injected into the process chamber. The intensity of the emission spectral
line of aluminum (Counts, Cts) was measured for each value of reactive gas flow. The
reactive gas flow was tuned through the variation of voltage applied to the opening valve
of the mass flow controller. It is worth noting that the intensity of the emission spectral lines
of aluminum or oxygen could be monitored during this deposition, since both elements
were present in the plasma. However, the oxygen had more excited states, with emission
spectral lines that were not very intense. Conversely, the intensity of the emission spectral
line of aluminum was very high and very sensitive to the reactive gas flow variations inside
the chamber.

The working point of the depositions was established through the “response curve”
analysis: the intensity of the emission spectral line of Al, kept constant during the process,
was selected. This value corresponds to the voltage value used by the PEM to inject the
oxygen flow required to obtain the ceramic material with the desired optical characteristics.
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Figure 3. Hysteresis curve of the aluminum targets obtained at 1.84 W/cm2 by monitoring the
intensity of the emission spectral line of Al as a function of the voltage value used by the PEM to
inject the oxygen flow.

Before starting alumina deposition, a process simulation was carried out by moving
the tube holder back and forth with respect to the Al targets to evaluate the influence of
this movement on the stability of the selected intensity. In fact, the tube holder’s movement
can cause a variation of plasma distribution that can be very significant if it is combined
with high sweep velocity. As can be seen from Figure 3, the curve’s slope is very high in the
transition zone, and the hysteresis curve can suddenly move into the metallic or poisoned
region due to small reactive gas flow variations. This represents the main issue with this
kind of process. The working point should not move into the metallic or poisoned region,
because the resulting ceramic material might present altered optical properties. The process
simulation allowed for the identification of both sweep and spin velocities, which led to
a well-controlled intensity of the emission spectral line of aluminum. The corresponding
values are reported in the Section 2. Hence, various alumina samples were deposited
using the process parameters reported in Table 1. It should be noted that three different
intensities of the emission spectral line of aluminum were selected to identify the optimal
reactive gas flow into the PEM system and obtain the required ceramic, not absorbent,
material. The choice of the correct intensity of the emission spectral line of aluminum, and
thus of the optimal oxygen flow controlled by the PEM, is the key parameter to optimize
Al2O3 deposition.

The fabricated samples were named Al2O3_01, Al2O3_02, and Al2O3_03; their thick-
nesses were equal to 238 nm, 213 nm, and 197 nm, respectively. Figure 4 shows the
corresponding transmittance curves compared to that of glass substrate used for the de-
posit. This figure shows that low-oxygen quantities injected into the process chamber
have the simultaneous effect of increasing the deposition rate (the corresponding values
are reported in Table 1) and the metallic aluminum percentage inside the thin film. This
phenomenon is clearly visible for the sample Al2O3_01, which shows a significant absorp-
tion due to the presence of metallic aluminum inside the structure. For this reason, the
maximum points of the interference fringes are very far away from the transmittance curve
of glass substrate, as shown in the inset of Figure 4.
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Table 1. Process parameters used to deposit Al2O3 samples.

Process Parameters Al2O3_01 Al2O3_02 Al2O3_03

Argon flow (sccm) 400 400 400

Oxygen flow (sccm) 5 5.4 5.6

Process pressure (Pa) ~1 ~1 ~1

Al power density (W/cm2) 1.84 1.84 1.84

Intensity of emission spectral
line of Al (Cts) 40,000 38,000 36,000

Deposition rate (Å/s) 0.79 0.71 0.66
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Figure 4. Comparison between the transmittance curves of glass substrate and Al2O3 samples
deposited by varying the intensity of the emission spectral line of aluminum.

Samples deposited using higher oxygen quantities than the Al2O3_01 sample are
characterized by different optical behavior. Al2O3_02 thin film has interference fringes that
are almost tangent to the transmittance curve of glass substrate around 800 nm; conversely,
the Al2O3_03 sample has interference fringes that are tangent to the transmittance curve
of glass substrate around 600 nm. This indicates the non-absorbent properties of these
alumina thin films over 800 nm and 600 nm, respectively, and the possibility to obtain the
ceramic material with the required optical characteristics in both cases.

In order to evaluate the reproducibility of sputtering process in transition mode, a
further alumina sample named Al2O3_04 was deposited by adopting the same experimental
conditions as the Al2O3_02 sample, which is the thin film produced at the highest sputtering
rate and has the required optical characteristics. The deposition rate obtained for Al2O3_04
was equal to 0.73 Å/s; the comparison between the transmittance curves of these two
samples is shown in Figure 5. The good overlap of the transmittance curves, together with
the equal deposition rate values, clearly demonstrates the excellent reproducibility of the
implemented reactive sputtering process in transition mode.
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Figure 5. Comparison between the transmittance curves of glass substrate and Al2O3 samples
deposited in the same experimental conditions.

Lastly, deposition rates between two reactive sputtering processes performed in tran-
sition and poisoned regimes were compared by realizing two samples with the same
deposition conditions, except for the reactive gas flow injected into the process chamber.
The deposition rate obtained for the transition mode was about sixteen times higher than
that of the poisoned mode.

3.2. W-Al2O3 Cermet

Cermet materials based on tungsten and alumina were deposited and employed as
absorber layers within solar coatings. Ceramic and metallic components were concurrently
deposited through the reactive co-sputtering technique in the transition regime. In order to
promote W-Al2O3 cermet growth and avoid a possible oxidation of its metallic component,
the reactive gas was only introduced through gas rings placed around the Al targets.

A possible oxidation of the metallic components can reduce the absorption properties
of realized cermet; consequently, thicker layers or cermet with higher metallic content
are necessary to obtain the same absorption characteristics as those of the non-oxidized
one. Moreover, these metallic oxides (e.g., tungsten oxide) can be volatile compounds at
the operative conditions of tube receivers. Several authors have studied the kinetics of
oxidation of pure tungsten [31,32]: they report that the volatile oxide of tungsten is WO3,
which can be directly produced from the solid phase of WO3 or from the transmutation
process of the solid phase WO2 [31]. The presence of this volatile oxide within the absorber
layer can damage the structural stability of cermet. For these reasons, only the deposition
technique and the relative process parameters which minimize the formation of these
volatile compounds need to be considered here. The reactive magnetron sputtering in
transition mode can be effectively applied for the scope, since it requests the least possible
amount of reactive gas to promote ceramic component growth.
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Cermet depositions initially required the preliminary acquisition of hysteresis curves
to individuate the working points of the processes. In this case, the process setup was
particularly complex due to the interference between the plasma regions facing the W and
Al targets. Different hysteresis curves were acquired, depending on the power density
applied to the W target; in fact, to realize cermet materials with different metallic content, a
fixed power density (equal to the power density used to deposit alumina samples) applied
to the Al targets and variable cathode power densities applied to the W target were used.
In this process, the ceramic components of all cermet materials were deposited with the
same voltage at the Al targets; this reference voltage was then used to detect the working
point for the ceramic component deposition of each cermet material. This ensured that the
surface conditions at the aluminum target were always the same, both when the tungsten
target was off and on at the different power supplies. The experimental procedure involved
three phases: (i) acquisition of the hysteresis curves; (ii) choice of the working points; and
(iii) processes simulation, thus adopting the same operating procedure employed for the
ceramic deposition. Table 2 shows the process parameters and the thickness evaluations
of the four cermet samples: W-Al2O3_01, W-Al2O3_02, W-Al2O3_03, and W-Al2O3_04.
Figure 6a,b show their transmittance and reflectance curves, respectively.

Table 2. Process parameters and thickness evaluations for cermet samples obtained by varying the
power density applied to the W target and keeping a fixed power density applied to the Al targets.

Process Parameters W-Al2O3_01 W-Al2O3_02 W-Al2O3_03 W-Al2O3_04

Argon flow (sccm) 400 400 400 400

Oxygen flow (sccm) 5.8 5.6 5.5 5.4

Process pressure (Pa) ~1 ~1 ~1 ~1

Al power density
(W/cm2) 1.84 1.84 1.84 1.84

W power density
(W/cm2) 9.78 6.67 3.56 1.33

Intensity of emission
spectral line of Al (Cts) 30,000 35,000 35,000 35,000

Thickness (Å/s) 508 421 299 395

The refractive index (n) and extinction coefficient (k) were estimated using an inversion
method applied to the experimental reflectance and transmittance data [33]. Their trends as
a function of wavelength are reported in Figure 7a,b, respectively. The curves demonstrate
the effective possibility of realizing cermet samples with a strongly variable extinction
coefficient as a function of power density applied to the metallic target. This property of
cermet, coupled with the achievement of suitable thicknesses of absorber layers, is very
useful for realizing a solar absorber with a graded metallic profile, namely cermet layers
in which the metallic content decreases from infrared back reflector to antireflection filter.
This type of structure ensures good absorption of incoming solar radiation. Clearly, the
process here, when optimized, allows for the realization of cermet materials with globally
high deposition rates, since the metallic component is intrinsically deposited at a high rate,
while the ceramic component is deposited by reactive magnetron sputtering in transition
mode that also ensures a high deposition rate, as previously mentioned. This represents the
main advantage of this kind of process, although its application on an industrial scale [34]
is possible but very difficult since even a slight change in setup can result in a large change
in deposition rates and composition.
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Figure 6. Transmittance (a) and reflectance (b) curves of cermet samples obtained at different power
densities applied to the W target and a fixed power density applied to the Al targets.
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3.3. Structural Characterizations of the Realized Materials: XRD and Raman Measurements to
W-O Bonds Detection

W-Al2O3 samples deposited on glass and c-Si substrates were subjected to different
characterizations to evaluate their structural properties and chemical composition. The
oxygen gas, purposely injected into the process chamber to promote ceramic component
growth, can represent the major source of degradation for the metallic component of cermet,
since it can cause the oxidation of this component. Although the reactive gas was only
introduced through gas rings placed around the Al targets, a certain amount of degradation
of the metallic components during cermet deposition could take place. It is worth noting
that the metallic component oxidation can occur in two different modes, as reported in
the following:

• During the deposition of the metallic component of cermet, the plasma contains
residual reactive gas coming from the region where ceramic component growth is
promoted. In this case, small quantities of tungsten oxide form because of the minimal
presence of oxygen;

• During the exposition of the metallic component to the plasma containing the reactive
gas that promotes the ceramic component growth (this exposure is due to the rotation
of the tube holder), the formation of oxides is probably limited to the W cluster bound-
aries, which could play a passivating function, thus limiting a further oxidation of the
internal regions of clusters. Furthermore, tungsten and aluminum are simultaneously
present and the latter is characterized by a redox potential less positive than that of
tungsten, thus, the formation of aluminum oxide is favored nevertheless [34].

Based on these considerations, the experimental characterization focused on the struc-
tural properties of the deposited cermet samples, with particular attention on the possible
presence of tungsten–oxygen bonds relative to WO3 oxide. In fact, although the oxidation
states for W atoms in W-Al2O3 films can also be lower oxidation states (+1 to +3), the
presence of WO3 oxide represents the main issue for the structural stability of cermet.

X-ray diffraction patterns, shown in Figure 8a and referring to the cermet named
W-Al2O3_04, with lower metallic content than other cermet materials, were collected at an
incidence angle of 3.5◦ to the glass substrate. This sample was obtained at the lowest power
density applied to the W target; thus, it had the most W-O bonds as a percentage of the total
number of bonds formed by W. Therefore, it can be expected that the W-O bonds in this
sample are more easily detected than those present in other cermet samples. Hence, under
the hypothesis that the compounds based on tungsten oxides (WO3) are detected inside
this sample, it is reasonable to assume their presence inside other cermet materials with
higher metallic content. Both “as-grown” and annealed films in vacuum (1 × 10−3 Pa) at
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600 ◦C for 6 h were characterized. The additional thermal treatment can lead to changes in
the structure of films through a crystallization of the tungsten oxides, if present, which are
amorphous at room temperature and when realized using the sputtering methods [35–37].
Figure 8a also shows the curve for the glass substrate used for these deposits. It was found
that all films present a broad peak between 20◦ and 35◦ of 2θ, which can be attributed to
the amorphous glass substrate. No peaks due to tungsten oxides are visible, even when the
glass substrate background is subtracted and the incidence angle to the sample decreased
(the corresponding data are not reported).
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Figure 8. X-ray diffraction patterns of the W-Al2O3_04 sample before and after thermal treatment,
collected at an incidence angle of 3.5◦ to the (a) glass substrate and (b) c-Si substrate.

Since a lot of peaks relative to WO3 oxide can be present in the 2θ range of 20–35◦ [38],
where there is also the broad peaks of the glass substrate background, the structural
characterizations were also carried out on samples deposited on the c-Si substrate, to
enhance the sensitivity to the thin film structure. Figure 8b shows the X-ray diffraction
patterns of the W-Al2O3_04 sample subjected to the additional thermal treatment and the
used substrate. As can be seen in this case, the spectrum of thin film is very similar to
that of the c-Si substrate, since it does not show peaks that can be attributed to particular
compounds present in the sample. It is worth noting that some peaks visible in the spectrum
are due to background noise, which are here enhanced by the logarithmic scale used to
plot the obtained intensity as function of 2θ, with the objective being to distinguish peaks
attributable to the sample with respect to those of the substrate (PDF 01-075-0589).

Clearly, the film is very thin and the exiguous amount of tungsten oxides possibly
present makes it very difficult to detect any peaks by XRD analysis. Moreover, at low
deposition temperatures, alumina is also X-ray amorphous [39] and the stable crystalline
phases are typically obtained at higher temperatures than 600 ◦C [40,41].

Apart from standard structural and microscopic characterizations by X-ray diffrac-
tion, other spectroscopic analytical techniques have proven to be valuable, especially for
obtaining information about local structure and the chemical bonding of films. In the
present work, the W-Al2O3_04 sample was also subject to Raman spectroscopy analysis
by comparing its spectrum with those of two other cermets obtained by introducing an
oxygen excess from both the Al target side (W-Al2O3_05 sample) and the W target side
(W-Al2O3_06 sample). The aim was to deposit samples with a high number of W-O bonds
and to use them as a reference for the evaluation of the presence of W-O bonds within
the W-Al2O3_04 sample under investigation. In addition, tungsten oxide samples with
different chemical compositions were deposited. The reactive gas flow value was selected
by monitoring the variation of cathode voltage as a function of oxygen flow injected into the
process chamber, namely by manually acquiring the hysteresis curve of the W target. The
appropriate oxygen flow was established to have a partially or totally poisoned target, thus
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obtaining tungsten oxide samples with different chemical compositions. These samples
were named WO_01 and WO_02, respectively, and they were used as an absolute reference
to individuate W-O bonds. The evolution of cathode voltage as a function of oxygen flow
is shown in Figure 9. The gradual increase of reactive gas flow leads to a gradual increase
of cathode voltage up to the poisoned condition that occurs when oxygen flow is equal
to 40 sccm. Under this condition, stoichiometric WO3 is the major compound produced.
Hence, by tuning oxygen flow between 0 and 40 sccm, the full range of W-O films with
chemical compositions between pure W (corresponding to 0 sccm of O2) and trioxide
tungsten WO3 can be produced [42].
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Figure 9. Hysteresis curve of W target manually acquired by varying oxygen gas flow.

Table 3 shows the adopted experimental conditions to deposit the above-mentioned
samples, while Figure 10 shows the corresponding Raman characterizations.

Table 3. Process parameters adopted to deposit cermet and WO samples on c-Si substrates.

Process Parameters W-Al2O3_04 W-Al2O3_05 W-Al2O3_06 WO_01 WO_02

Argon flow (sccm) 400 400 400 400 400

Oxygen flow (sccm) 5.4 (PEM) 19 (Al side) 19 (Al side)
+ 35 (W side) 12 (W side) 40 (W side)

Process pressure (Pa) ~1 ~1 ~1 ~1 ~1

Al power density (W/cm2) 1.84 1.84 1.84 / /

W power density (W/cm2) 1.33 1.33 1.33 1.33 1.33

The Raman spectrum of the pure silicon is also shown in this figure, both for an
easier comparison and for assignment of the features at 303 cm−1 and 622 cm−1 to the
presence of Si-O bonds [43]. Samples named WO_02, W-Al2O3_05, and W-Al2O3_06 have
two broad bands around 200–400 cm−1 and 700–850 cm−1; these are the result of weak
peak combination due to vibration modes of the W-O bond and reveal the amorphous
nature of these samples [44]. Furthermore, the spectrum of the W-Al2O3_04 sample is very
similar to the c-Si spectrum, since it does not show the characteristic peaks associated with
the vibration modes of the W-O bond.
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Figure 10. Comparison between Raman spectra of cermet and WO samples deposited on c-Si
substrate by varying reactive gas flow.

The sharpening and increasing of these peaks’ intensities, which become more evident
at high temperature (600 ◦C for 6 h in vacuum), demonstrate a trend toward ordering,
that is, toward the presence of crystalline domains. This behavior is reported in Figure 11.
The Raman spectrum of the WO_01 sample is intense and detailed with Raman lines at
284 cm−1 (s), 333 cm−1 (w), 348 cm−1 (w), 423 cm−1 (w), 482 cm−1 (m), 599 cm−1 (m),
617 cm−1 (m), and 782 cm−1 (vs) which shift to higher energies (w-weak; m-medium;
s-strong; vs-very strong). This spectrum is attributed to the WO2 rutile structure [45,46].

However, thermal annealing treatments only promoted the crystallization of the
WO_01 sample, while the other samples still had an amorphous nature but with more
intensive broad bands. All cermet materials had a shift of broad peak at 700–850 cm−1

towards the new Raman shift value of 810 cm−1, corresponding to the LO vibration
mode of the W-O-W bond of the γ-WO3 monoclinic structure [47]. This phenomenon is
probably due to a rearrangement of atom groups favored by high annealing temperature.
Furthermore, the Raman spectrum of the W-Al2O3_04 sample shows some modifications
with respect to c-Si spectrum, with the characteristic peak around 810 cm−1 of the W-O
bond. Nevertheless, its intensity is very low, as the presence of W-O bonds is almost
negligible, and therefore does not compromise the structural stability of the cermet at the
selected operating conditions. Lastly, it is worth noting that the absence of crystallization
for the WO_02 sample can be attributed to an oxygen deficit within the structure that does
not allow for the formation of the monoclinic structure of γ-WO3. Hence, the sample was
subjected to a thermal annealing process at 600 ◦C in air. Raman analysis performed after
this treatment revealed the formation of the monoclinic structure of γ-WO3, distinguished
by the following characteristic peaks: 268 cm−1, 714 cm−1, and 810 cm−1, as reported in
Figure 12 [38,43–46].
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Figure 11. Comparison between Raman spectra of cermet and WO samples deposited on c-Si
substrate by varying reactive gas flow and subjection to thermal annealing treatment in vacuum at
600 ◦C for 6 h.
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3.4. Evaluation of Optical and Structural Stability of Materials through Annealing Tests

The evaluations of the optical and structural stability of realized materials were carried
out by subjecting the samples to heat treatments in a programmable oven operating under
vacuum (1 × 10−3 Pa) at a temperature of 620 ◦C. The details of these annealing cycles
are reported in the Section 2. In order to simulate the real operating conditions of the
materials comprising the selective coatings of solar receivers, two samples with double
layer structures were realized. These samples first have a cermet layer, which is different
in terms of metallic content, followed by the same alumina layer. Since solar coatings
are characterized by an external antireflection layer that protects the internal layers, the
realized structures are able to reproduce the real operative conditions of cermet because
they simulate the solar coating structure effectively. In detail, the first sample, named
Bilayer_01, is characterized by a cermet layer with the lowest metallic content and was
realized by adopting the same experimental conditions as the W-Al2O3_04 sample. The
second sample, named Bilayer_02, had a cermet layer with the highest metallic content and
was deposited by adopting the same experimental conditions as the W-Al2O3_01 sample.
Therefore, these samples were representative of the extreme conditions of the realization of
graded cermet within solar coatings. The alumina top layer was realized by adopting the
experimental conditions of the Al2O3_02 sample. Both structures were characterized by a
bottom cermet layer of 100 nm and a top ceramic layer of 100 nm.

Spectrophotometric analyses were performed on the samples “as-grown” and on the
samples after each annealing cycle. Figure 13a,b and Figure 14a,b show the transmittance
and reflectance curves of these samples, respectively.
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Figure 13. Comparison between the transmittance curves of as-grown and annealed samples: (a)
Bilayer_01, (b) Bilayer_02.
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Figure 14. Comparison between the reflectance curves of as-grown and annealed samples: (a)
Bilayer_01, (b) Bilayer_02.
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The transmittance and reflectance curves in Figure 13a,b and Figure 14a,b show little
to negligible variations between the as-grown and annealed samples, clearly indicating
the high optical and structural stability of these bi-layer structures. In conclusion, these
materials can be considered stable under vacuum at 620 ◦C.

4. Conclusions

The experimental activity described in this work concerns the realization of ce-
ramic and cermet materials characterized by high structural and chemical stability un-
der vacuum and at high temperature and obtained through the optimization of high-
deposition-rate processes.

Particularly, the “dual magnetron” reactive sputtering in transition mode with MF
power supply was the technique employed to deposit the ceramic materials, namely
alumina. This material was employed both as an antireflection layer and as a ceramic
component of the optical absorber layer. In order to deposit ceramic materials with stable
optical and structural properties independently from the production processes, a PEM
control system was used. The optimized reactive sputtering process in transition mode
showed a deposition rate about sixteen times higher than that of the reactive sputtering in
poisoned mode. In addition, a repeatable and stable process was developed.

Regarding the cermet deposition, the reactive co-sputtering technique in transition
regime was implemented to deposit ceramic (alumina) and metallic (tungsten) components
concurrently. Samples characterized by a strongly variable extinction coefficient and a
suitable thickness were obtained; these characteristics are very useful, since they allow one
to realize a solar absorber with a graded metallic profile, namely cermet layers in which the
metallic content decreases from infrared back reflector to antireflection filter. This type of
structure ensures good absorption of incoming solar radiation.

The investigation into the stability of realized cermet was carried out by means of
several material characterization methods before and after the annealing process in vacuum
at high temperature. In particular, the structural analysis, such as Raman spectroscopy,
allowed for the individuation of peaks corresponding to the WO3 compound. This com-
pound is a volatile oxide at the operative conditions of the receiver tube and therefore
could damage the structural stability of cermet. However, it was found that the intensity
of these peaks was very low, since the presence of W-O bonds was almost negligible, and
therefore did not compromise the structural stability of the cermet at the selected operating
conditions. In addition, the spectrophotometric analysis for optical and chemical structural
stability showed negligible variations between the as-deposited and annealed samples,
clearly indicating the optimal optical and structural stability of samples realized through
reactive magnetron sputtering technique in transition mode.
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