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Abstract: The nanosized silicon powder has been produced by reduction of silica with magnesium in
an argon medium using both the mechanically activated self-propagating high-temperature synthesis
and the direct mechanochemical synthesis and has been investigated by X-ray phase analysis, Infrared
spectroscopy, electron scanning microscopy, and energy dispersive X-ray spectroscopy. The optimal
Mg:SiO2 ratio has been found to provide the minimum content of contaminant impurities of mag-
nesium silicide and silicate in mechanically activated self-propagating high-temperature synthesis.
For the first time, direct mechanochemical synthesis of Si via reduction of silica with magnesium
has been implemented. Optimal component ratio and mechanical activation parameters have been
determined, yielding Si/MgO composites without impurity phases (magnesium silicide and silicate).
A purification procedure has been proposed for separating silicon obtained from magnesium oxide
and other impurity phases. The ratio of initial components has been determined, at which purified
silicon has the least amount of impurities. The particle size of silicon powder obtained was 50–80 nm
for the mechanically activated self-propagating high-temperature synthesis, and 30–50 nm for the
direct mechanochemical synthesis.

Keywords: mechanical activation; self-propagating high-temperature synthesis; mechanochemical
synthesis; silica; magnesium; silicon; reduction reactions

1. Introduction

Nanostructured silicon is a promising material for lithium-ion batteries [1,2], pho-
tovoltaics systems [3,4], photocatalysis [5], nanoenergetics materials [6], and thermo-
electrics [7,8]. Metallurgical-grade silicon is industrially produced by carbothermal re-
duction of silica [9]. However, this process cannot fabricate nanostructured material as
the temperature of carbothermic reduction (over 1900 ◦C) is higher than the melting point
of silicon (1414 ◦C). In addition, this process is multistage, energy consuming, and rather
dangerous ecologically. Therefore, the development of alternative time- and energy-saving
technologies that also reduce the cost of the final product is an extremely desirable task.

One of the most common carbon-free methods for obtaining silicon for most highly
exothermic systems is self-propagating high-temperature synthesis (SHS) [10–12]. However,
in systems where the combustion temperatures are significantly higher than the melting
temperatures of the reactants (first of all, magnesium- and aluminothermic processes), the
preparation of powder nanosized products is a serious problem. Usually, a decrease in

Powders 2022, 1, 18–32. https://doi.org/10.3390/powders1010003 https://www.mdpi.com/journal/powders

https://doi.org/10.3390/powders1010003
https://doi.org/10.3390/powders1010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/powders
https://www.mdpi.com
https://orcid.org/0000-0002-0934-3654
https://orcid.org/0000-0002-3156-105X
https://doi.org/10.3390/powders1010003
https://www.mdpi.com/journal/powders
https://www.mdpi.com/article/10.3390/powders1010003?type=check_update&version=2


Powders 2022, 1 19

the combustion temperature in SHS is achieved by diluting the reaction mixture with the
reaction products [13–16].

In recent years, there has been a growing interest in mechanical activation/high-
energy ball-milling as one of the options to reduce combustion temperature and to obtain
nanosized or nanostructured materials [17–20]. However, in this case, the process becomes
two- (MA + SHS = MA SHS) or three-stage (MA + SHS + MA = MA SHS MA) [21–23].
For a number of oxides, the possibility of direct mechanochemical reduction by active
metals was shown [24]. For example, magnesium was used for reduction of copper [25,26],
vanadium [27,28], tungsten [29], and iron [30] oxides.

It was shown that for some high-energy systems, reactions can proceed in SHS or
mechanically activated self-propagating high-temperature synthesis (MA SHS) mode but
cannot be implemented purely mechanochemically (in an activator). For example, the
reduction of SiO2 with aluminum was carried out by the MA SHS process [27,31], but it
was not possible to reduce SiO2 mechanochemically to silicon under any MA regimes [31].

The purpose of this work was to study the possibility of direct mechanochemical
reduction of silica with magnesium to obtain nanosized silicon powder, as well as to
compare the structural and morphological characteristics of products obtained by different
methods using mechanochemistry.

2. Materials and Methods

The following reagents were used in the work: nanoscale pyrogenic SiO2 (aerosil)
with a particle size of <10 nm (99.8% pure) from SILIKA LLC (Dolgoprudny, Moscow
region, Russia); magnesium shavings MGS-99 (99.7% pure) from Ruskhim.ru LLC (Moscow,
Russia); hydrochloric acid, “highly pure grade”, acetic acid, “chemically pure grade”, and
hydrofluoric acid 70%, “highly pure grade” from CHIMEX LTD (Moscow, Russia).

Mixtures of silica and metallic magnesium with different component ratios were
processed in a high-energy planetary ball mill AGO-2 with water cooling (drum volume
250 cm3, steel ball diameter 5 mm, ball loading 200 g, sample weight 10 g, and the rotation
speed of drums around the common axis ~1000 rpm or ~600 rpm, which corresponds to a
centrifugal acceleration 60 g and 20 g respectively).

An upper-drive mixer RZR 1 (HEIDOLPH, Schwabach, Germany) with rotation speed
1000 rpm was used during the acid treatment of MA SHS samples. The separation of silicon
from impurities for the products of both MA SHS and direct mechanochemical reduction
was carried out by three-stage acid treatment [32]. The sample was sequentially treated with
a 2 M solution of HCl; with a mixture of 2 M HCl and 20–25% CH3COOH; with a mixture
of 5% HF and 20–25% CH3COOH. Acid treatment conditions were τ = 1 h, T = 70–80 ◦C.
After each acid treatment stage, the suspension was centrifuged and the precipitate was
washed with distilled water and extracted from the aqueous phase by decantation.

Infrared (IR) spectra were registered on a Tensor-27 spectrometer (Bruker Optik GmbH,
Ettlingen, Germany) in the wavenumber range of 4000–400 cm−1. The samples for the
study were compacted with calcinated potassium bromide [33].

X-ray investigations were carried out on a D8 Advance diffractometer (Bruker AXS
GmbH, Karlsruhe, Germany, CuKα-radiation, λ = 1.5418 Å). Phase composition and crystal
structure of the samples were determined by X-ray diffraction data using the database of
the International Centre for Diffraction Data (ICDD) PDF4 [34].

Morphology of obtained samples was studied using scanning electron microscopes
(SEM): Hitachi TM 1000 (Tokyo, Japan) (at accelerating voltage of 15 kV) equipped with
a TM1000 EDS detector to determine the chemical composition of the sample and high-
resolution SEM by MIRA\TESCAN with an energy-dispersive X-ray (EDX) attachment by
OXFORD INSTRUMENTS (Abingdon, Oxfordshire, UK).

The content of impurity elements in the obtained silicon powders was studied using
an atomic emission spectrometer with inductively coupled plasma AKTIVA M («HORIBA
Jobin Yvon S.A.S», Longjumeau, France) (elements from F to U, detection limit from
0.1 ppb).
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3. Results
3.1. Study of the MA SHS Reduction of Silica by Magnesium

Mechanochemical reactions of silica reduction with magnesium were carried out under
different modes of mechanical activation and with different component ratios.

According to IR spectroscopy data, when processed for 40 s in a high-energy ball mill
with a maximum load of 60 g, the product mainly contains magnesium silicate Mg2SiO4
(Figure 1, curve 2).
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Figure 1. IR spectra of mixtures Mg:SiO2 of stoichiometric composition (2:1) after mechanical
activation: initial mixture (1); centrifugal acceleration 60 g, MA time 1 min (2); centrifugal acceleration
20 g, MA time 40 s (3); centrifugal acceleration 20 g, MA time 4 min (4).

When the rotation speed decreases to 600 rpm and the activation duration is less
than 2 min, Mg2SiO4 is not formed and SiO2 bands are kept in the spectrum. Under such
treatment conditions, formation of silicates begins after 4 min of activation.

The mechanical activation mode (duration 40 s at a load of 20 g) worked-off for the
stoichiometric composition Mg/SiO2 = 2:1 was applied for the preparation of Mg/SiO2
precursors with other component ratios also used for further SHS processes:

1. Molar ratio of Mg:SiO2 = 1.5:1;
2. Molar ratio of Mg:SiO2 = 2:1, stoichiometry;
3. Molar ratio of Mg:SiO2 = 2.5:1;
4. Molar ratio of Mg:SiO2 = 3:1;
5. Molar ratio of Mg:SiO2 = 4:1.

The X-ray diffraction (XRD) patterns of Mg/SiO2 precursors with different component
ratios (Figure 2) are consistent with the IR spectroscopy data.

X-ray phase analysis of the mechanochemically obtained precursors did not show
any traces of phase transformations during mechanical activation at these durations. Only
intensities of magnesium diffraction reflections change with MA (Figure 2), and SiO2 used
in this work is X-ray amorphous.
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Figure 3 shows that an increase in the MA duration leads to a decrease in the ignition 
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Figure 2. X-ray diffraction patterns of MA products of mixtures with different molar ratios of Mg:SiO2,
curves: 1.5:1 (1); 2:1 (2); 2.5:1 (3); 3:1 (4); 4:1 (5); the MA duration is 40 s, a load of 20 g (600 rpm).

The excessive magnesium content was added to speed up the heat removal during the
SHS process, resulting in reduction of combustion temperature.

Investigation of the SHS process in mechanochemically obtained Mg/SiO2 composites
as the precursors showed that even a short–term MA (20–60 g) allows igniting the combus-
tion in powder mixtures without preheating. For all compositions studied, a very rapid
heat evolution takes place in the combustion front (due to the magnesiothermal reaction)
(Figure 3).
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Figure 3. Combustion thermograms of the mechanocomposites Mg/SiO2 = 2:1 vs. intensity and
duration of activation: (a) 600 rpm, 60 s; (b) 1000 rpm, 20 s.

Figure 3 shows that an increase in the MA duration leads to a decrease in the ignition
delay time td. Thus, after MA for 20 s (at 1000 rpm), the td ≈ 80 s, while after 60 s
MA (at 600 rpm), the initiation of the reaction is observed after ≈40 s. The maximum
combustion temperature (TC ~ 1283–1288 ◦C) is achieved for the stoichiometric composition
(sample no. 2) (Figure 3). According to [35], the adiabatic temperature of the reaction
2Mg (s) + SiO2 (s)→ 2MgO (s) + Si for the stoichiometric composition (45% Mg) is 2123 K
(1850 ◦C). At the same time, the calculation of the adiabatic temperature in the ISMAN-
TERMO program, presented in [13], gives a temperature of 1900 ◦C (it decreases when
diluents are used). In our case, for a stoichiometric composition, the maximum combustion
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temperature is TC ~ 1283–1288 ◦C, which is lower than the calculated adiabatic temperature
given above. This is due to the complex and not yet fully disclosed mechanism of the
influence of MA on the combustion parameters [22,36,37].

It is evident from Figure 3 that an increase in the MA duration results in the essential
decrease in the ignition delay time td even for a lower intensive mode of MA. Thus, td is
about 80 s for 20 s of MA at a load of 60 g, while the delay time of about 40 s is observed
after MA for 1 min at a load of 20 g. Herewith, the propagation velocity of the combustion
wave for a longer but less intensive MA mode is significantly lower (0.35 mm/s compared
to 1.03 mm/s for a load of 60 g and 20 s of MA).

In a sample with a lack of magnesium (no. 1) TC is slightly lower (~1100 ◦C). Combus-
tion temperature in samples with excess magnesium content is about 1020–1050 ◦C.

Analysis of the phase composition of combustion products in the systems under
investigation showed that at a molar ratio of Mg:SiO2 from 1.5 to 4, the products of MA
SHS, except Si and MgO, contain a small amount of Mg2Si and Mg2SiO4.

Herewith, the duration of MA has a greater effect on the relative content of magne-
sium silicate than the mill power in the studied range of values (20–60 g), and the phase
composition of the synthesis products is mainly dependent on the component ratio of the
charge mixture (Figure 4).
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Figure 4. X-ray diffraction patterns of MA SHS products in a reaction mixture of various compositions
Mg:SiO2, curves: 1.5:1 (1); 2:1 (2); 2.5:1 (3); 3:1 (4); 4:1 (5). MA mode before SHS: MA time 40 s at a
load of 20 g (600 rpm).

According to the XRD data, the main products of SHS are silicon and magnesium
oxide. The formation of some amounts of silicate and magnesium silicide is also confirmed.
The Mg2Si content significantly increases with the excess of magnesium, and the greatest
intensity of its reflexes is achieved at Mg/SiO2 = 2.5:1 (Figure 4, curve 3). The strongest peak
of Mg2Si in curve 3 can be explained by the high rate of silicon formation at the presence
of the excessive magnesium and rapid interaction of small particles of the reduced silicon
with magnesium in the mechanically activated material (nanocomposite). With an increase
in the magnesium excess, the relative silicon content and the rate of silicon formation,
as well as contact surface between the reactants, decrease. Therefore, the formation of
magnesium silicide is suppressed, which is observed in curves 4 and 5. The concentration
of magnesium silicate is the lowest at the component ratio 2.5:1, i.e., the lowest intensity
of Mg2SiO4 reflexes is identified in X-ray diffraction patterns of MA SHS products as
compared with that of other Mg:SiO2 ratios (Figure 4, curve 3). It should be noted that it is
easier to perform chemical separation of silicon from silicide than from magnesium silicate.
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Figure 5a–c show the microstructure and elemental mapping of the MA SHS product
in a stoichiometric reaction mixture after MA at 60 g for 20 s. Rounded silicon particles
ranging in size from 1 to 15 µm are clearly distinguished in the matrix of magnesium oxide.
Relatively large regions containing all the elements of the composition (obviously Mg2SiO4)
with the diffused boundaries of individual Si and MgO particles are revealed after MA at
20 g for 60 s (Figure 5d–f).
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The IR spectra of the MA SHS products indicate the formation of magnesium silicates
of larger or smaller quantities in all mixtures investigated.

Based on the XRD results, a certain amount of silicates and magnesium silicide was
identified in the products after leaching with hydrochloric acid. For a more complete
removal of magnesium compounds, the second stage of treatment of the sample with a
mixture of acetic and hydrochloric acids was carried out. The addition of acetic acid reduces
the adsorption of metal cations on silicon powder.

The treatment of precipitations with a mixture of hydrofluoric and acetic acids was
used at the final purification stage.

According to the X-ray phase analysis of silicon powders obtained from all the com-
positions, MgO, Mg2Si, and Mg2SiO4 reflexes are not observed in the XRD patterns after
three-stage purification (Figure 6).

EDX analysis of all the investigated silicon powders after purification did not reveal a
noticeable presence of impurities (within the limits of detection errors).

Further studies of the impurity content in the as-obtained silicon powders were
carried out using a certified atomic emission spectrometer with inductively coupled plasma
“ACTIVA M” (France). The error of the method was 3–5% relative.

The data on the content of impurity elements in silicon powders after the three-
stage acid treatment are presented in Table 1. As can be seen from Table 1, the purity of
silicon strongly depends on the ratio of the initial components in the reaction mixture. In
the powder obtained from the reaction mixture of stoichiometric composition, a certain
amount of magnesium (1.1%) is retained after leaching. In the sample obtained at the
ratio Mg/SiO2 = 2.5:1, the magnesium content is at the level of other impurity elements.
Obviously, this is due to the predominant formation of magnesium silicide and insignificant
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content of Mg2SiO4 silicate in the synthesis product. Thus, the purity of the silicon powder
obtained at the stoichiometric ratio of the components of the reaction mixture is 98.45%.
The powder obtained at the ratio Mg/SiO2 = 2.5:1 is much more pure (99.57%) with the
same purification technology.
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Figure 6. X-ray diffraction patterns of samples after three-stage acid treatment of products of MA
SHS mixtures of compositions Mg:SiO2, curves: 1.5:1 (1); 2:1 (2); 2.5:1 (3); 3:1 (4); 4:1 (5). The MA
duration before the SHS is 40 s (20 g).

Table 1. The content of impurity elements in the obtained silicon powders after the three-stage acid
treatment of the samples with different Mg/SiO2 molar ratios.

Impurity Molar Ratio = 2:1 Molar Ratio = 2.5:1

Al 0.02 0.02
Ca 0.08 0.07
Cd 0.03 0.01
Cr 0.02 0.02
Fe 0.05 0.03
K 0.2 0.14

Mg 1.1 0.08
Mn less than 0.01 less than 0.01
Ni 0.03 0.04
Zn less than 0.01 less than 0.01
Si 98.45 99.57

Preliminary studies of morphology of purified silicon samples by the SEM at the lower
magnifications showed that the average size of the particle agglomerates is about 1–10 µm.
SEM micrographs at the higher magnifications show that the agglomerated powders consist
of smaller particles with a small size range (Figure 7).

The agglomerates of samples with molar ratio Mg:SiO2 = 2:1 and 2.5:1 consist of
nanodispersed particles with the particle size about 50–80 nm (Figure 8).
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3.2. Study of the Mechanochemical Reduction of Silica by Magnesium

The effects of mechanical treatment duration (in the range from 1 to 8 min at a load
value of 60 g) and the component ratios in the Mg–SiO2 system on the reduction of silica
with magnesium were studied by XRD analysis. After mechanical activation for 1 min of
the sample of stoichiometry composition (Mg:SiO2 = 2:1) the reflections of the initial mag-
nesium, magnesium oxide, silicon, silicide, and magnesium orthosilicate can be identified
in the XRD patterns (Figure 9a, curve 1). An increase in activation duration to 2–4 min
(Figure 9a, curves 2 and 3) leads to a decrease in the intensity and broadening of the reflexes
of all these phases. When the activation time is increased to 8 min, widened reflexes of
silicon and magnesium oxide as well as reflexes of magnesium silicide of low intensity are
identified (Figure 9a, curve 4).

Investigation of the effect of activation duration (at a load of 60 g and component ratio
of Mg:SiO2 = 2.5:1) showed that magnesium reflexes are mainly identified in the X-ray
diffraction pattern of the sample after the activation for 1 min (Figure 9b, curve 1). After
2 min activation (Figure 9b, curve 2), intensive reflections of silicon and magnesium oxide
together with low intensive peaks of silicide and magnesium orthosilicate appear in the
X-ray diffraction patterns, while the intensity of magnesium reflections sharply decreases.
A further increase in the activation time from 4 to 8 min (Figure 9b, curves 3 and 4) results
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in broadening and a decrease in the intensity of reflections of silicon, magnesium oxide,
and magnesium.
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To separate silicon from MgO and other byproducts presented in the composition of
mechanocomposites, investigations of the treatment of samples with acid solutions were
carried out. As in the case of MA SHS, a three-stage acid treatment of the products of
mechanochemical reduction of silica with magnesium was carried out.

The XRD data show that after three-stage acid treatment, silicon is purified from the
main impurities, such as MgO, Mg2Si, and Mg2SiO4 (Figure 10).
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Figure 10. X-ray diffraction patterns of samples of mechanochemical reduction of silica by magne-
sium: after the first stage of acid treatment (2 M HCl) (1); after the second stage of acid treatment
(20% H3CCOOH, 2 M HCl) (2); after the third stage of acid treatment (20% H3CCOOH, 5% HF) (3);
the ratio of components in the initial mixtures, Mg:SiO2: 2:1 (a) and 2.5:1 (b).
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The results of SEM analysis of the powder morphology (Figure 11) have shown that
after separation from byproducts, silicon powders consist of primary particles with a size
of ~30–50 nm, making the larger secondary particles —aggregates with sizes from 1 to
10 µm.
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Figure 11. SEM micrograph of purified highly dispersed silicon, produced by the direct
mechanochemical reduction of silica by magnesium.

4. Discussion

It is well known that both self-propagating high-temperature synthesis (SHS) re-
actions [10–12] and mechanically stimulated reactions [38,39] can occur in high-energy
systems. The main disadvantage in such systems is extremely high synthesis temperatures,
as a result of which the reaction products are melted and coarse. The preliminary joint
mechanical activation of initial components allows one to reduce the temperature in the
combustion wave and to increase the rate of the overall process [21,36,37,40]. The main
reasons for the decrease in the combustion temperature and the increase in the rates of
chemical reactions in mechanically activated mixtures are structural changes, namely, the
achievement of a high density of interfacial boundaries between initial components, an
extremely high contact surface, and a very high concentration of defects due to a large num-
ber of atoms on juvenile surfaces and in near-surface layers [41–45]. As a result, the changes
in mass transfer and phase formation mechanisms are observed. In the case of composite
formation with several levels of heterogeneity, the rate of chemical reactions in the region of
interfacial boundaries with nanocomposite structure is much higher compared to the rate
of reactions with a micron scale of heterogeneity. These structural changes which occur as a
result of mechanical activation contribute to solid-phase reactions in mechanically activated
mixtures. A change in the chemical routes in these mixtures may include direct synthesis of
the target phase without the formation of intermediates formed in non-activated systems,
as well as a change in the type and sequence of reactions instead of those occurring during
self-propagating high-temperature synthesis without prior mechanical activation. Thus, the
finely dispersed composite particles formed at the stage of mechanical activation contribute
to a heterogeneous crystallization in combustion wave and prevent the growth of product
grains behind its front.

Our previous studies for the 4Al–3SiO2 high-energy system revealed the effect of the
size of SiO2 nanoparticle aggregates on the starting temperature of chemical interaction and
phase formation processes in SHS. It was found that, despite the nanosize of the initial silica
powder, preheating is necessary to initiate the reaction in the non-activated reaction mixture
of 4Al–3SiO2. The formation of Al/SiO2 composite particles during the MA process allows
initiating the combustion at room temperature. In this case, the phase composition of MA
SHS product depends on the degree of dispersion of SiO2 inclusions in the aluminum
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matrix. The presence of relatively large (micrometric and submicron) aggregates of SiO2
nanoscale particles leads to the interaction of aluminum oxide formed at the initial stage
of SHS with silica to form mullite. When SiO2 is finely dispersed in aluminum, forming
aggregates with dimensions of about 55 nm, the almost instantaneous (the life time of the
liquid phase is ≈1 s) one-stage chemical reaction is observed which leads to the formation
of Si and α-Al2O3.

A significant decrease of the starting temperature for the reaction and an increase of
the reaction rate can ensure the realization of mechanostimulated reactions in the activator,
as, for example, in the Fe2O3-Al [46], Fe2O3-Zr [47], and CuO-Zr [48] systems. In this work,
a comparative study of MA SHS and MSR in the SiO2-Mg system was carried out.

The prospects to obtain silicon in the interaction of silica with magnesium depend
primarily on the thermodynamic possibility of the reaction, as shown in [49–51].

The reactions that can occur in the Mg-SiO2 system are presented in Table 2 [52].

Table 2. The thermodynamic parameters for the reactions of silica with magnesium [52].

No. The Reactions

T = 25 ◦C T = 627 ◦C

∆H,
kJ/mol

∆G,
kJ/mol

∆H,
kJ/mol

∆G,
kJ/mol

1 2Mg + SiO2 → Si + 2MgO −292.8 −279 −292.6 −259

2 2Mg + 3SiO2 → 2MgSiO3 + Si −367.3 −370 −372.2 −346

3 4Mg + SiO2 →Mg2Si + 2MgO −372.2 −355 −372.2 −330

4 2Mg + Si→Mg2Si −79.5 −77 −80.2 −71

5 MgO + SiO2 →MgSiO3 −37.3 −45 −39.6 −43

6 2MgO + SiO2 →Mg2SiO4 −63 −72 −63.6 −69

Based on thermodynamic data, it should be expected that reactions 1–3 with the high-
est formation heats are preferable; the products of reactions 1–3, in addition to Si, are MgO,
Mg2Si, and magnesium silicates. Therefore, there is a task of separating silicon from byprod-
ucts. The results of our studies of the combustion process in the Mg-SiO2 system showed
that in a non-activated reaction mixture with a reagent molar ratio Mg:SiO2 = 2:1, the ig-
nition without preheating of samples is almost impossible. The preheating temperature
needed to initiate and realize the SHS process is about 400–550 ◦C.

The study of the SHS process, where mechanochemically obtained Mg/SiO2 compos-
ites were used as precursors, showed that even a short-term MA (20–60 g) allows initiating
the combustion process in powder mixtures without preheating. For all compositions
studied, very rapid heating was observed due to the course of the magnesium-thermic
reaction in the combustion front.

Our studies have shown that the combustion modes during the SHS of mechanically
activated mixtures depend on the conditions of the preliminary MA, primarily energy
intensity and duration of treatment. The MA of the mixture must be carried out at a
rotation speed of 600 rpm for 1–2 min. An increase in the activation time at this rotation
speed leads to a decrease in the ignition delay time.

Taking into account the fact that TC in all cases studied is above the melting point of
magnesium (650 ◦C), but below the melting point of silica (1713 ◦C) and combustion prod-
ucts (melting points of silicon and magnesium oxide are 1410 ◦C and 2825 ◦C, respectively),
it is obvious that in the process of SHS using the preliminary formed mechanocomposites,
the so-called “combustion with an intermediate molten layer” is realized [22].

The main products of MA SHS are silicon and magnesium oxide; the formation of some
amounts of magnesium silicate and silicide is also observed. Since the aim of this work
was to obtain nanoscale silicon powder, it was necessary to separate it from byproducts.
Hydrochloric acid was used to dissolve magnesium oxide. Some magnesium silicates and
silicide were present in the products after leaching with hydrochloric acid. For a more
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complete removal of magnesium compounds, the second stage of sample treatment with
a mixture of acetic and hydrochloric acids was carried out. The addition of acetic acid
made it possible to reduce the adsorption of metal cations on silicon powder. For the
final purification of silicon, treatment with a mixture of hydrofluoric and acetic acids was
introduced. Three-stage acid treatment [32] is technologically simple to implement, allows
one to scale the cleaning process, and provides the production of single-phase nanosize
silicon with a particle size of about 50–80 nm and a high degree of silicon purification from
Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Ni, and Zn.

Previously obtained results on mechanostimulated reactions have shown that direct
mechanochemical reduction of oxides is possible for highly exothermic systems [53–57]. In
this paper, the influence of mechanical activation modes on the direct mechanochemical
reduction of silica by magnesium was studied. It was shown that the reduction process
depends on the energy intensity of the activator, the duration of activation, and the ratio
of the components in the mixture. Complete reduction of silica by magnesium can be
achieved at a drum rotation speed of ≥1000 rpm and activation duration of at least 8 min.
The reaction products, as in the case of MA SHS, are silicon, magnesium oxide, and small
amounts of Mg2Si and magnesium silicates. The three-stage acid treatment was carried
out to purify Si from the main impurities, such as MgO, Mg2Si, and Mg2SiO4. The silicon
powder obtained consists of primary particles with sizes of 30–50 nm, forming secondary
particles—aggregates with sizes from 1 to 10 µm.

5. Conclusions

For the first time, direct mechanochemical synthesis of Si via reduction of silica with
magnesium has been implemented. The optimal component ratio (Mg:SiO2 = 2.5:1) and
the MA parameters (1000 rpm, duration 8 min) have been determined, yielding Si/MgO
mechanocomposites without impurity phases of magnesium silicide and magnesium or-
thosilicate.

SHS has been carried out with preliminary MA of the SiO2 + 2Mg mixture. MA
conditions (600 rpm, duration 40 s) have been determined, providing a decreased com-
bustion temperature (1283–1288 ◦C) for the formation of SiO2/Mg composite structures.
The optimal ratio of components (Mg:SiO2 = 3:1) for the MA SHS with minimum con-
tent of accompanying impurity phases (magnesium silicide and magnesium silicate) has
been found.

Three-stage acid treatment of products of both mechanochemical and MA SHS reduc-
tion of silica with magnesium allows the obtaining of single-phase nanosize silicon.

The size of powdered silicon particles obtained by the MA SHS is 50–80 nm. In the
case of direct mechanochemical synthesis, the size of silicon particles is 30–50 nm.

Thus, the direct mechanochemical reduction of silica with magnesium is preferable
compared to mechanically activated, self-propagating high-temperature synthesis, since
the process is carried out in one stage and in a short time (no more than 8 min), the reduced
products do not contain the Mg2Si and Mg2SiO4 impurity phases, and purified silicon has
smaller particle sizes.
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