

 software-02-00011

software-02-00011

Software 2023, 2(2), 234-257; doi:10.3390/software2020011

Article

An Agile Model-Based Software Engineering Approach Illustrated through the Development of a Health Technology System

Moe Huss *[image: Orcid], Daniel R. Herber[image: Orcid] and John M. Borky[image: Orcid]

Department of Systems Engineering, Walter Scott, Jr. College of Engineering, Colorado State University, Fort Collins, CO 80523, USA

*

Correspondence: moe.huss@colostate.edu

Academic Editors: Sanjay Misra, Robertas Damaševičius and Bharti Suri

Received: 2 March 2023 / Revised: 28 March 2023 / Accepted: 12 April 2023 / Published: 17 April 2023

Abstract

:

Model-Based Software Engineering (MBSE) is an architecture-based software development approach. Agile, on the other hand, is a light system development approach that originated in software development. To bring together the benefits of both approaches, this article proposes an integrated Agile MBSE approach that adopts a specific instance of the Agile approach (i.e., Scrum) in combination with a specific instance of an MBSE approach (i.e., Model-Based System Architecture Process—“MBSAP”) to create an Agile MBSE approach called the integrated Scrum Model-Based System Architecture Process (sMBSAP). The proposed approach was validated through a pilot study that developed a health technology system over one year, successfully producing the desired software product. This work focuses on determining whether the proposed sMBSAP approach can deliver the desired Product Increments with the support of an MBSE process. The interaction of the Product Development Team with the MBSE tool, the generation of the system model, and the delivery of the Product Increments were observed. The preliminary results showed that the proposed approach contributed to achieving the desired system development outcomes and, at the same time, generated complete system architecture artifacts that would not have been developed if Agile had been used alone. Therefore, the main contribution of this research lies in introducing a practical and operational method for merging Agile and MBSE. In parallel, the results suggest that sMBSAP is a middle ground that is more aligned with federal and state regulations, as it addresses the technical debt concerns. Future work will analyze the results of a quasi-experiment on this approach focused on measuring system development performance through common metrics.

Keywords:

software development; Model-Based Software Engineering (MBSE); Agile; Scrum; system architecture; modeling; systems engineering (SE)

1. Introduction

Model-Based Software Engineering (MBSE) is well known for managing complexity during system development processes [1]. MBSE for information-intensive systems could be considered an attempt to have a knowledge hub for the software development lifecycle. Additionally, the definition of a system model requires the use of a formal, standardized language, such as Unified Modeling Language (UML) [2]. Leveraging individual intellectual capabilities in software engineering is one of the many opportunities that MBSE may provide. However, it also introduces additional technical and organizational challenges, which have impacted its wide adoption [3,4].

Agile is a software development approach emphasizing continuous product delivery by using short development cycles known as “sprints” [5]. Although there has been significant adoption in recent years, discussion about software development projects not meeting expectations has been increasing [6,7,8]. Given that there are still challenges that hinder MBSE and Agile from unlocking their full potential, Agile MBSE presented itself as a possible resolution [9,10,11,12]. Therefore, this study adopts a specific instance of the Agile approach (i.e., Scrum) in combination with a specific instance of an MBSE approach (i.e., MBSAP [13]) to create an Agile MBSE approach called the integrated Scrum Model-Based System Architecture Process (sMBSAP).

Several researchers have advocated for the benefits of integrating Agile and MBSE [9,10,14]. Researchers have also seen the need for techniques and methods that support documentation in Agile environments [15]. A technique that makes documentation more easily writable, manageable, and updatable is needed [16,17]. This research contributes to the literature by explaining a practical approach to implementing Agile MBSE. The research also applies the proposed approach to a health technology system. The proposed sMBSAP attempts to narrow the gap between Agile practitioners and document-based/waterfall practitioners by simplifying and streamlining system documentation and making it easier to develop, manage, access, and share.

2. Background

2.1. Software Development Lifecycle (SDLC)

The Software Development Lifecycle (SDLC) is a process for building and maintaining software systems. Several researchers have explained that system development lifecycle models have been strongly influenced by software, and so the two terms “system” and “software” might be used interchangeably in terms of SDLC [18], especially since system development encompasses software system development [18,19,20]. Others have clarified that systems engineering, software systems engineering, and software engineering have different areas of focus [21].

Currently, two major SDLC categories are used when managing software systems projects: (1) traditional and (2) Agile. Several commonly used traditional systems development methods are shown in Figure 1. Traditional systems development methods have been historically associated with Document-Based Systems Engineering (DBSE) practices [22]. On the other hand, Agile systems development methods are the other category of SDLC that came to life to address some of the challenges associated with traditional systems development methods. The first generation of Agile approaches, sometimes called lightweight development methods [23], are also shown in Figure 1.

Although Agile methodologies have merits over traditional development methods, several limitations have been faced when expanding their adoption [24]. One of these limitations is that Agile methods considerably decrease the amount of required documentation [25], which is a source of subsequent issues. The lack of documentation does not align well with federal and state acquisition regulations. A report by the U.S. Government Accountability Office (GAO) identified 14 challenges related to implementing the Agile approach in federal agencies. These challenges include that government contracts may be designed with heavily structured tasks and performance checks that are not necessarily aligned with Agile methods or cadences [26]. A report [26] also highlighted the need to track several different Agile metrics, such as Requirements and architectures. Without tracking such metrics, the government may not have the right information for effective contract oversight [26]. The abilities of MBSE methodologies to centrally manage documentation and track Requirements and architectures make them a reasonable solution for aiding in complying with such regulations.

2.2. Scrum Method

The Scrum software development process is an Agile method for managing and directing the development of complex software and products by using incremental and iterative techniques [27]. The State of Agile Report revealed higher adoption of Scrum-based development in the present-day software industry compared to other methodologies. It was found that 87% of the 2022 survey participants leveraged Scrum [28].

The Scrum method includes three main components: roles, ceremonies, and artifacts [29]. The Scrum processes are grouped into five phases: initiate, plan and estimate, implement, review and retrospect, and release [30]. In addition, there are three distinct roles in the Scrum process: the Product Owner, the Scrum Team, and the Scrum Master [31]. The Scrum method includes periodic meetings known as ceremonies, which include Sprint Planning, Daily Scrum (Standup), Sprint Review, and Sprint Retrospective [12,32,33,34]. In addition to the Scrum roles and ceremonies, the Scrum process delivers three main artifacts, namely, the Product Backlog, the Sprint Backlog, and the Product Increment [12,32,33,34]. A high-level overview of the Scrum ceremonies, artifacts, and phases is shown in Figure 2.

Scrum artifacts are the key information that a Scrum team uses and generates during the sprints to show their progress to stakeholders. Some researchers even claimed that the code itself should act as a document [25]. Agile practitioners devalue comprehensive documentation and traceability; therefore, architecture artifacts, such as use case diagrams, data models, and Requirement Traceability, are not typical in Scrum methodology [14,31]. User Stories are used to capture scenarios or system Behavior by describing how a user interacts with the system [14]. With the Scrum approach, information elements are captured in an Agile tool (such as Jira [35] and ClickUp [36]) and amongst separate, independent documents by using Microsoft Office tools (rather than a primary, integrated system model as a single source of truth, as is the case in MBSE approaches).

2.3. Model-Based Software Engineering (MBSE)

Model-Based Software Engineering (MBSE) is a software development approach in which models play an important central role [37]. MBSE was developed to overcome the drawbacks of the conventional Document-Based Systems Engineering (DBSE) method, which became apparent as information-intensive systems became more complex [38]. The discussion around MBSE is closely tied to the concept of architecture, which represents the Structure, Behavior, and Rules for a complex entity (or system), including its evolution over time [13]. Some commonly encountered architecture frameworks are shown in Figure 1.

There has been a tendency to use MBSE approaches due to the reported benefits. The International Council on Systems Engineering (INCOSE) describes the benefits of an MBSE approach as improved communications, increased ability to manage system complexity, improved product quality, and enhanced knowledge capture [39]. However, it is important to note that none of the MBSE methodologies [13,40] shown in Figure 1 have gained the ever-increasing popularity of Scrum [28].

The concept behind model-based software engineering is to leverage software modeling to carry out development and maintenance and to achieve code reuse [3]. The notion of employing models to reduce software complexity has been around for many years. When appropriately used, MBSE can provide a significant opportunity to capitalize on individual intellectual assets in software engineering in general and to realize the promise of business/technology alignment made by Domain-Driven Design in particular [3]. However, MBSE can also pose a threat because of the additional challenges that it may introduce at the technical and organizational levels.

While adopting MBSE, several challenges have been identified and discussed by researchers and practitioners [38,41,42,43]. Some of these challenges include the disconnect between how system architects conceptualize their systems (within the limitations of a typical DBSE approach) and describe them in a different way. Another challenge is related to the perception that MBSE is performed by a tool, although several researchers explained that MBSE is more than just a tool [38,43,44]. Usability is another issue that has been described, as too many aspects and attributes have to be specified to describe a simple system characteristic—in other words, too many clicks [45]. Finally, the selection of MBSE tools without a deep understanding of user needs is another issue [45]. Accordingly, it is not a surprise that implementing an MBSE approach typically takes a long time and does not frequently provide incremental value to the customer. Therefore, searching for alternative approaches seems necessary.

Model-Based System Architecture Process (MBSAP)

The MBSAP outlines object-oriented design methods to create an architecture for a system through structured decomposition into modular and manageable levels of complexity by using object-oriented principles, such as abstraction, encapsulation, modularity, generalization, aggregation, interface definition, and polymorphism [13]. The process begins with identifying the customer’s needs. Then, one iteratively develops progressive architecture models starting with an Operational Viewpoint, then a Logical/Functional Viewpoint (LV), and, finally, a Physical Viewpoint. Similarly, prototypes of the system (or system increments) are incrementally built, integrated, and tested with other increments. Finally, the cycle leads to either the delivery of a final product or a new starting point for a follow-on increment of development [13]. An overview of the MBSAP is shown in Figure 3.

Many practitioners of object-oriented methods make the assumption that the essence of an object-oriented method is the incremental approach [13]. This incremental (spiral approach) originally evolved to respond to frequently changing Requirements, especially for complex systems. It is obvious that the MBSAP is intrinsically incremental and iterative (as shown by the closed loop in Figure 3), making its integration with other Agile methods occur naturally in an attempt to get the best of both approaches.

2.4. Agile MBSE

Agile MBSE presented itself as a possible solution for two issues that faced system development, namely, rigidity and waterfall orientation [9].

Agile MBSE also presented itself as a potential solution for the competing views and challenges related to documentation and traceability. The architecture specification document is usually very long, complex, and not self-explanatory [46]. Therefore, the Agile manifesto values “working software over comprehensive documentation” [47]. However, not all Agile practitioners seem to agree with this Agile principle [48]. Moreover, a survey conducted at the University of Melbourne revealed that despite the lower priority of documentation in Agile practices, 98% of the respondents considered documented information moderately to extremely important when estimating effort [49]. However, developers find documentation important, but at the same time, too little of it is available in their projects [48]. While some Agilistas devalue documentation and traceability [50], Agile methods and documentation are not actually contradictory [46,51]. A certain amount of documentation is essential [46,52]. Some researchers have also made a case that traceability is both necessary and required [14]. The view that supports documentation is adopted in government procurement/reporting practices [26]. Researchers see the need for techniques and methods that support documentation in Agile environments [15], such as a technique that makes documentation more easily writable, manageable, and updatable [16,17].

Douglass [14] clarified that in Agile MBSE, the outcome of Agile software development is implementation, while the outcome of systems engineering is specification. Douglass [14] also discussed the notion of model-based handoff to “downstream engineering”, enabling precise and unambiguous communication between architecture and Requirements analysts and the discipline-specific teams.

Salehi and Wang [10] compared four V-models and found that they did not consider the Agile concept. This finding led to the proposal of the adoption of Agile in MBSE to create a new approach, which was termed the Munich Agile MBSE Concept (MAGIC) [10]. Integrating MBSE and product development offers the capability of building a virtual prototype and a product’s digital twin [11]. Bott and Mesmer [12] reviewed the theories supporting the Agile and MBSE methodologies and found them a key enabler of Agile methods for systems engineering. Figure 1 illustrates the relationship between SDLC models and MBSE.

3. Integrated Scrum Model-Based System Architecture Process (sMBSAP)

3.1. Research Methods

Context: The product development took place for one year (between May 2020 and May 2021) within an early-stage health technology startup company that aimed to develop a health tech system that provides dietary recommendations to users based on their health profiles. The development period coincided with the COVID-19 pandemic, when stay-at-home orders were in effect, so the Product Development Team primarily used virtual conferencing tools and Slack [53] for communication and collaboration.

Participants: The three co-founders, in addition to the lead author, served as the Product Development Team. The role of the lead author was then limited to developing the architectural artifacts based on requests from the team. Table 1 summarizes the product development team personas.

Materials: Sparx Enterprise Architect (“Sparx EA”) [54] was chosen as the architecting software tool, and Unified Modeling Language (UML) was chosen as the architecting language (which is allowed in MBSAP [13].) The sMBSAP artifacts generated included the Product Backlog, Sprint Backlog, Glossary, Product Breakdown, Class Diagrams, Object Diagrams, Data Model, Activity Diagrams, Use Case Diagrams, and Capabilities (Requirements and User Stories).

Procedures: Before each sMBSAP sprint, information elements were generated for each perspective, integrated into a system model by using Sparx EA, and referenced in the appropriate model viewpoint. The model elements, diagrams, and views were generated according to standard and non-standard UML diagram formats [13], and they were implemented according to the standard Sparx EA modeling procedures [54]. The sMBSAP procedures (outlined in the following sections) were implemented to conduct the sprints and create Product Increments.

The proposed sMBSAP approach followed a combination of Scrum and MBSAP, as shown in Figure 4. The processes near the bottom of the figure describe the steps followed by the Product Development Team, who used the sMBSAP to develop a software system; these processes will be described in detail in this section.

3.2. Overview of the sMBSAP

Before describing the sMBSAP method in detail, it is important to highlight that the illustrative development activity shown here is for an implemented health technology system. The sMBSAP approach includes five phases: (1) Initiate, (2) Plan and Architect, (3) Implement, (4) Review and Retrospect, and (5) Release. The outputs of each phase serve as inputs to the following phase, as shown in Figure 4. Figure 4 also shows that two of the four main Scrum meetings are used during the sMBSAP approach, namely, Daily Standups and Sprint Retro. The other two Scrum meetings were modified for the sMBSAP. The sprint planning meeting was modified to be the Sprint/Architecture Planning meeting. The same applied to the Sprint Review meeting, which was modified to be the Sprint/Architecture Review meeting.

The typical MBSAP viewpoints generate the architecture artifacts for driving the development process. The MBSAP artifacts and Sprint Backlog that include User Stories are the key information that the Product Development Team uses to execute the product development and show the progress to stakeholders. The Sprint Backlog captures the list of items that need to be developed during each sMBSAP-driven sprint. The sMBSAP approach also includes the many typical MBSAP artifacts, including but not limited to a glossary, Product Breakdown, class diagrams, object diagrams, data models, use case diagrams, and capabilities.

According to Borky and Bradley [13], the term “capabilities” is a preferred term over the term “Requirements”. User Stories are similar to Requirements, except they are written from the user’s perspective—in other words, what a user shall do when using the system rather than describing what the system shall do for the user. The perspective of capabilities captures the system capabilities, which include User Stories, Requirements, and other behind-the-scenes tasks required to enable system capabilities. Now, the following description of the phases and processes of the sMBSAP is organized to mirror that of the Scrum method for more straightforward mapping.

3.3. Initiate

This phase includes the processes related to initiating the project. These processes are summarized below:

	
Create Project and Product Scope: In this process, the project business case is reviewed to create a Project Scope Statement and subsequent Product Scope. The Product Owner is typically identified at this stage of the project.

	
Identify Project Stakeholders and Project Team: In this process, the four project roles are identified, which include the Product Owner, Scrum Master, System Architect, and Product Development Team. Other project stakeholders are also identified during this process.

	
Create Architecture Overview and Summary: In this process, an Architecture Overview that provides the following architecture-related information is created: the architecture’s scope, purpose, and perspective, contextual information, the role of the System Architect, and the timeline of the architecture’s development. The Architecture Overview acts as a contract between stakeholders and the System Architect based on establishing bilateral commitments and understanding of the role of the architecture effort within the overall project effort [13]. The main customer for the architecture artifacts is the Product Development Team; accordingly, the System Architect must explain the value and contribution of the architecture process. The System Architect should also expect organizational resistance and lack of support among software developers, especially those who are used to writing code with very little or no documentation as input. In this process, the System Architect decides which MBSE tool they will use throughout the project.

	
Create Product Breakdown: In this process, the Project Scope Statement and Product Scope are used as the basis for breaking the product down into Epics, Use Cases, User Stories, and Requirements, as shown in Figure 5. The Product Breakdown is an iterative process that occurs first during the Initiate phase and is further refined through meetings between the project team and key stakeholders in subsequent phases as needed. In the sMBSAP approach, Epics are modeled as stereotyped Use Cases [14] and are decomposed to (lower-level) Use Cases, which are, in turn, decomposed into User Stories, which are broken down into Requirements. This taxonomy is shown in Figure 5.

	
Create Product Backlog: In this process, User Stories, Requirements, and other tasks are added to the Product Backlog. These items are referred to as Product Backlog Items (PBIs). It is important to note that a project team may choose to use only User Stories (commonly used in Scrum) or both User Stories and Requirements (Requirements are commonly used in MBSE and systems engineering). The PBIs will be progressively refined, elaborated, and later prioritized. The acceptance criteria are also established at this point and will be further elaborated. The Product Backlog is developed and maintained by using a Requirement management tool or Agile development tool, such as Clickup [36]. Alternatively (or in addition), User Stories and Requirements may be visually captured in the model, as shown in Figure 6, which illustrates User Stories and Requirements that are modeled as stereotyped Use Cases, and Requirements are traced to User Stories. This allows a User Story to be described and to its connection to a persona to be shown. In this Use Case diagram, the System Architect wants to capture the interaction of the “User” with the “Health Assessment” module of the system and communicate it with the Product Development Team. The System Architect explains the “User” behavior through a combination of User Stories and Requirements. At the beginning of the “Health Assessment”, the system displays a series of messages to the “User” to allow them to customize their “Health Assessment” experience. The “User” will specifically be asked to select whether they would like to receive one question per page, to select the weight and height unit of measure, to select which health assessment sections to complete, and whether the “User” prefers to focus on a specific category of medical conditions. The “User” will then start navigating the “Health Assessment” sections. The “User” will have the ability to transition from one section to the other. They can also skip questions and come back to them later. The system will display a message at the end of each section to transition the “User” from one section to the other. During the navigation, the “User” can see their progress in terms of the percentage of completion. If the “User” does not complete the “Health Assessment”, the system will send weekly emails reminding the “User” to complete the “Health Assessment”.

	
Develop Release Plan: In this process, the product team develops a Release Plan, which is basically a phased deployment timeline that can be shared with the project’s stakeholders. The length of each sprint is usually decided in this process. Some Scrum practitioners develop a Product Roadmap that is more strategic and high-level and a Release Plan that is more tactical and detailed.

3.4. Plan and Architect

This second phase consists of the processes related to planning, architecting, and estimating the PBIs. These processes are summarized below. It is important to note that although these processes are presented sequentially, in practice, they overlap, and the outcome of later processes serves as an input for former processes.

	
Create and Update Backlog Items: In this process, PBIs (User Stories, Requirements, and tasks) and their related acceptance criteria are created or updated and incorporated into the Product Backlog. User Stories are designed to ensure that the project Requirements are clearly defined and can be entirely understood by all stakeholders. When a User story is committed, it can be broken down into specific tasks (or Requirements and tasks). Agile development tools can show the task list beneath the relevant User Story.

	
Develop System Architecture: In this process, the System Architect progressively develops the system architecture. The system architecture is developed in lockstep with the User Stories. Both are used by the Product Development Team to execute the development work. The three main viewpoints progressively developed during this process are:

	-

	
Operational Viewpoint (OV): The first progression is concerned with translating the Project Scope Statement, Product Scope, and PBIs (in any form that they are expressed) into an architectural model known as an Operational Viewpoint (OV). This mapping is achieved with Use Cases and other object-oriented constructs. Several researchers, such as Lattanze [55], stressed the importance of starting with a high-level view of the architecture before progressing to a more detailed design. The high-level view of the architecture is the primary purpose of the OV. The OV also defines the system’s boundary and context. It also creates top-level partitioning (Domains), primary behaviors (Use Cases), and primary data content. With the aid of the model, the System Architect maps User Stories to Domains and Use Cases. The data model developed in this first progression is called “Conceptual Data Model (CDM)”. This is the most abstract type of data model. Platform-specific information, such as data types, sequences, procedures, and triggers, are not included in the CDM. Because of its simplicity, it is useful for communicating ideas among different stakeholders. Data models can be developed with a number of notations, such as Information Engineering, IDEF1X, UML data modeling, and Entity Relationship notation.

The conceptual UML-based data model developed for the health tech system is shown in Figure 7. At this stage, the System Architect wants to capture and communicate the types of data (or “Entities”) that the health tech system needs with the Product Development Team. These entities include the “User”, “Health Assessment”, “Report Subsections Decisions”, “Medical Reference”, and others. In addition to Entities, the CDM also captures the Relationships, i.e., how an Entity connects to other Entities. In the case of the health tech system, the “User” takes the “Health Assessment”. Based on the results of the “Health Assessment”, the “Report Subsections Decisions” will be displayed to the “User” and form the basis of the “Health Report”. The “Report Subsections Decisions” rely on the “Medical Reference” for communicating the recommendations to the “User”. The “Grocery Recommendations” are derived from “Report Subsections Decisions” and depend on both the “Nutrition and Ingredients” and “Medical Reference”. As noted on the CDM, both “Nutrition and Ingredients” and “Medical Reference” are not exposed to the “User”.

	-

	
Functional/Logical Viewpoint (LV): The next progression transforms the OV into the Logical/Functional Viewpoint (LV). This is where the design begins using UML class diagrams to define the details of system elements, functions, and data. The LV is a progressive elaboration on the perspectives of the OV and is molded mainly by decomposing Domains and Use Cases to develop structural and behavioral diagrams. The functional service specifications are developed and allocated to logical components and interfaces. The architectural layering is defined. The LV represents a functional definition of the technology- and product-agnostic system. The data model developed in this architecture iteration is called a “Logical Data Model (LDM)”. The LDM defines the detailed Structure of a system’s data elements and the relationships between them. It elaborates on the CDM introduced during the OV progression, but without going to the level of specifying the Database Management System (DBMS) that will be used. LDM forms the basis of the “Physical Data Model (PDM)”. This model is commonly developed by using the UML Data Modeling notation. The logical UML-based data model developed for the health tech system is shown in Figure 8. As shown in Figure 8, the data elements “Medical References” and “Nutrition and Ingredients” contain UML attributes; the names and generic data types remain platform-independent. Platform-specific data types and other metadata that relate to a specific DBMS implementation are defined by the PDM.

	-

	
Physical Viewpoint (PV): The architecture modeling is completed by progressing from the LV to the Physical Viewpoint (PV). The PV is the basis for the actual implementation of the full system or an increment of the system. To clarify the relationship between the LV and the PV, the former defines what is to be built, and the latter defines how it will be realized [13]. Accordingly, this architecture iteration focuses on products and standards whose selection is paramount to reaching a physical design. The data model developed during the PV is called a “Physical Data Model (PDM)”. A PDM graphically represents the Structure of data as implemented by a relational database schema. The ability to automatically generate the database schema from a PDM is a significant advantage of PDMs, in addition to presenting a visual abstraction of the database structure. This is made feasible by the amount of metadata that a PDM captures and its close alignment with aspects of the database schema, such as database tables, columns, primary keys, and foreign keys. The UML-based PDM developed for the health tech system is shown in Figure 9. Each table is represented by a UML Class; table columns, primary keys, and foreign keys are modeled by using UML attributes and operations. The DBMS type used in the system is PostgreSQL.

It is important to note that each viewpoint is represented with several perspectives (within the viewpoints); the perspectives are largely derived from the fundamental elements of the architecture and the needs of the project. The proposed perspectives for the sMBSAP are the Structure, Behavior, Data, and Requirements, as shown in Figure 10. The importance of an adequate model Structure in achieving the full benefits of MBSE should be emphasized [13]. One way to group the content of each viewpoint into a set of perspectives that create a logical and easily searchable content framework is shown in Figure 11.

	
Commit User Stories: In this process, the project team commits to delivering the approved User Stories for a sprint. The committed User Stories are added to the Sprint Backlog. During the Sprint/Architecture Planning, the Scrum team may add further details to the PBIs.

	
Estimate Backlog Items: In this process, the project team, supported by the System Architect, estimates the PBIs and estimates the effort required to develop the functionality described in each PBI.

3.5. Implement

This third phase is related to the execution of the activities required to develop the capabilities described by the PBIs to create the product. These processes are summarized below.

	
Create Deliverables/Product Increments: In this process, the project team works on the items in the Sprint Backlog to create sprint deliverables. The project team’s progress, measured in completed story points, is captured in an Agile development tool. Planned versus actual story points are captured in the tool, in addition to marking an item as “done” when it is completed. The collected data are plotted on burnup charts and velocity fluctuation charts to allow the Scrum Master to monitor the project’s health and make course corrections when needed.

It is important to note that creating deliverables/Product Increments may include activities such as project management, software engineering, continuous integration and testing, system configuration management, security, and other aspects. The sMBSAP is similar to the MBSAP in that the design modeled in the PV is built up in a prototype and goes through continuous integration and testing to assess its suitability against the required capabilities that are being addressed.

	
Communicate Progress: In this process, the project team members update each other on their individual progress and any barriers that they may be facing. These updates occur through a short daily 15 min meeting, referred to as a Standup Meeting. The System Architect participates in these meetings and addresses any issues that the Product Development Team faces in relation to the system architecture.

	
Groom Product Backlog: In this process, the prioritized PBIs are continuously updated and refined. A backlog grooming meeting is conducted to discuss any changes or updates to the backlog.

	
Update System Architecture: In this process, the system architecture models are continuously updated and refined based on the progress and feedback from the project team. The results of the architecture changes or updates are discussed during the Sprint/Architecture Review.

3.6. Review and Retrospect

This fourth phase is concerned with reviewing the deliverables and work completed and identifying areas for improvement for future consideration. The processes of this phase are summarized below:

	
Demonstrate and Validate Deliverables: In this process, the System Architect presents the updated system architecture to the project stakeholders. The project team then demonstrates the sprint deliverables that match the models to the stakeholders. These presentations and demos occur in a Sprint/Architecture Review meeting. This meeting aims to gain the acceptance of the delivered PBIs from the Product Owner.

Screenshots from the health tech system product demo are shown in Figure 12. The product demo shows the four key steps in the “User” journey at a high level. In step 1, the “User” completes the registration process by entering their first name, last name, and email address, creating a password, and confirming it. After the “User” confirms their email address, they are redirected to the login page. In step 2, the “User” will be introduced to the “Health Assessment” and start completing its various sections. At the end of the “Health Assessment”, the “User” will proceed to the third step, which is reviewing their “Health Report”. Finally, in the fourth step, the “User” will receive the grocery items recommended for their health profile.

	
Retrospect Sprint: In this process, the project team meets in a Sprint Retro meeting to discuss the lessons learned from the previous sprint. This information is recorded and should be used in future sprints. As a result of this meeting, some actions to improve performance or to make course corrections may be decided upon.

3.7. Release

This fifth and final phase is about delivering the finally accepted deliverables to the customer. In addition, the lessons learned from the project are identified and documented. These processes are summarized below.

	
Ship Deliverables and Architecture Models: In this process, approved and accepted deliverables are handed over to the concerned stakeholders. A formal transition document should be drafted and signed by the concerned stakeholders denoting the successful completion of the agreed-upon shippable part of the product. The architecture models are also handed over to the concerned stakeholders. The combined artifacts developed for the health tech system are shown in Figure 13.

	
Retrospect Project: This is the final step in the project, in which the project team and stakeholders meet to identify and document the lessons learned for future implementation. This meeting is called the Project Retrospective meeting (or Retro).

4. Discussion

In addition to the main characteristics of Scrum and the MBSAP, the sMBSAP is also concerned with the engagement of the Product Development Team in customizing the MBSE tool, using UML-based and non-UML-based models to describe the system, and leveraging the built-in models (provided in some tools) to get to an initial version of the model more quickly. Moreover, the Scrum ceremonies are mapped and integrated into the entire sMBSAP lifecycle with some modifications. The sMBSAP has the same cyclic shape as Scrum to demonstrate that the development process is iterative. The iterative nature applies to both the product delivery and the system model construction.

Figure 14 shows a comparison among Scrum, MBSAP, and sMBSAP. The comparison reveals that Scrum and MBSAP have similarities, including a focus on collaboration, iterative and incremental development, and continuous improvement. In addition, both approaches value customer-centricity, prioritizing delivering a working product to the customer, and responding to change. These similarities have been passed down to the sMBSAP. However, there are also differences among Scrum, MBSAP, and sMBSAP. Scrum prioritizes working software as the primary measure of progress over system documentation. Scrum documentation does not follow a formal modeling language. While the MBSAP values a working product, it places a great emphasis on using models to capture and communicate system information. The sMBSAP, on the other hand, is a middle point, as it uses both formal and informal modeling languages to keep system information within the model. The model can be customized to keep the details of system architecture at a high level or comprehensive. Additionally, Scrum is primarily focused on software development. However, the MBSAP is more focused on systems engineering and the creation of high-level system models. The sMBSAP, on the other hand, is application agnostic and can be applied to software, defense, or other industries. As for project size, Scrum is primarily used for small to medium-sized projects. However, the MBSAP is more geared towards medium to large-sized projects. Finally, the sMBSAP can be customized to fit small to large projects.

Unlike traditional document-based methods, an MBSE tool is the key to handling, processing, and executing the data and information generated or collected during the system development process. Therefore, it is important to select the appropriate tool to create a modeling environment that fits the different kinds of data and information being processed. A proper MBSE tool can simplify the working process and accelerate the working efficiency. The MBSE tool used for architecting the health tech system in this pilot study was Sparx EA [54]. Sparx EA was selected due to its compatibility and readiness for software development models.

It is important to note, however, that in an MBSE-driven environment, having the best tools in the wrong environment would not contribute to project success. What contributes to project success is having the right group of individuals in product development. Even more crucial is how these people interact with one another. The other factor contributing to success is building a feedback loop with the customer to ensure that successful Product Increments are delivered. This feedback loop will open the door to embracing change, which always happens. These factors are inherited from both Scrum and MBSAP for sMBSAP, and they align well with the four values of the Agile Manifesto [47].

When a change is requested by the customer in the middle of a sprint, it is suggested to add the created User Story to the Product Backlog and reprioritize the PBIs rather than adding the User Story to the current Sprint Backlog. The benefit of this way of handling change is that it would avoid assuming that the development team would finish their work in progress and would be able to begin and finish the added User Story by the end of the sprint. The more assumptions a project has, the more risk exposure it has. Moreover, adding User Stories to an ongoing sprint would impact the monitoring of Estimation Reliability and Velocity.

During the execution of the phases of the sMBSAP approach, data were generated or collected from the beginning to the end of the health tech system development effort. Keeping the data and artifacts in one model made accessing and retrieving data easier compared to the process when using document-based methods. Tracking back the Requirements (User Stories) or even performing simple simulation tasks for validation and verification was also beneficial. The key characteristics and benefits of implementing the sMBSAP include the following:

	
The System Architect works closely, not in a silo, with the Product Development Team to (1) co-customize the MBSE tool at the beginning of the project to align with the needs of the project and the Product Development Team. The customization exercise is used as an MBSE infusion opportunity. In an MBSE-driven project, the Product Development Team is the first customer of the system architecture, and the Maintenance and Operations team is the end user, as they leverage the system architecture in operating software applications, monitoring system performance, making defect repairs, etc. The System Architect would need to work closely with different business and technical stakeholders from the customer organization to ensure that the model perspective and viewpoints are customized to fit their needs and the organization’s standards.

(2) It is also necessary to engage and educate the Product Development Team about the basic concepts and processes of the architecture and (3) to empower and support the Product Development Team Members (owners of core components of the system) to define discipline-specific MBSE methods. For example, a frontend developer develops a wireframe for the “Health report summary” including the screen elements, such as the following: buttons—“View my groceries”; dashboard indicators and messages—“Health score” and “Summary health report”; navigation sections—“Dietary”, “Lifestyle”, “Disease risk”, “Organ health”, and “Mental health”; finally, a scroll bar. The System Architect works closely with the frontend developer to ensure that every screen element is aligned with and mapped to Requirements or User Stories, as shown in Figure 15. The System Architect adds the relevant Requirements and User Stories to the wireframe. Throughout the process, the wireframe is refined and updated to reflect the intended use of each screen. The outcome of this collaborative effort is a model-based wireframe (an artifact unique to the sMBSAP).

	
Selecting an MBSE tool with (1) built-in methodologies that support the transformation of current systems engineering practices into model-centric engineering practices and (2) built-in models that support specific Use Cases would help create a faster first iteration of the model. This fast turnaround increases the engagement of the Product Development Team and contributes to changing the perception that architecture modeling slows down the development process. For example, some MBSE tools have built-in Gantt charts, which can automatically display the schedule for sprints, and built-in and customizable dashboards that can be used to show the progress of a sprint. Moreover, the Product Owner, Scrum Master, and Team Member roles can all be supported, needless to say, by the role of the System Architect. Selecting and customizing the right MBSE tool will provide a cohesive collaboration and Requirement management platform.

	
The sMBSAP enables the System Architect to use Agile terminologies that the Product Development Team understands. Implementing Agile concepts such as sprints, Product Backlog, Epics, and User Stories conveys a sense of familiarity to the Product Development Team, even if these concepts are implemented within the context of an MBSE and architecture-driven environment.

	
The sMBSAP leverages the MBSE tool to combine the UML-based formal description of the system with non-formal models that fit the needs of the Product Development Team. Combining formal and non-formal modeling aids in addressing the usability challenge, as it gives more freedom to the Product Development Team. The value of this combination is to instill in the Product Development Team the concept of keeping all artifacts in one model. For example, wireframes are valuable visuals that are widely used in Agile software development. Integrating the non-UML-based wireframes in the sMBSAP approach could increase the engagement of the Product Development Team and the adoption of the sMBSAP.

	
The architecture effort progresses one sprint at a time. After the System Architect prepares the high-level end-to-end OV of the system, they focus only on the Requirements and the Structural, Behavioral, and Data perspectives of one sprint at a time. In that sprint, the OV is further elaborated into an LV, which will be progressively elaborated in future sprints. This approach could potentially be a step toward addressing the disconnect between how the system is conceptualized and how it is described, since the description is progressively elaborated over several weeks or months.

	
The Requirements and User Stories will be traced to the various perspectives of the system model throughout the subsequent iterations or viewpoints. In Use Case diagrams, Requirements are traced to User Stories that are modeled using a stereotyped Use Case. Requirements can then be shown on other models to trace the implementation of Requirements and User Stories (a Requirement or User Story is created once and used multiple times across the model). This approach simplifies the traceability process and bypasses the need to develop and maintain a document-based Requirement Traceability Matrix. Model-based Requirement Traceability could be a meeting ground between those who devalue Traceability and those who want to align with procurement/reporting practices.

	
The iterative benefits of Agile combined with an integrated model of artifacts, as proposed in the sMBSAP, could be a practical happy medium between light documentation enthusiasts and those who value heavy documentation. The centralized management of artifacts makes the sMBSAP approach suitable for projects that value a working product and, at the same time, are keen to have more manageable, accessible, and retrievable documentation via a system architecture model.

On the other hand, there are a few challenges related to the adoption of the sMBSAP. Some of these challenges include the perception that MBSE is performed by a tool, although several researchers explained that MBSE is more than just a tool [38,43,44]. Selecting an MBSE tool without a deep understanding of user needs is another challenge that may impede the adoption of the sMBSAP. Transitioning to a model-based software engineering approach requires a high level of executive support, which may not be always present. Finally and most importantly, adopting the sMBSAP requires a considerable investment in training because of its steep learning curve. Organizations may implement organizational change management initiatives to facilitate organizational adoption, but such organization-wide initiatives themselves require investment and management support.

5. Conclusions and Future Work

In this paper, an integration of the Agile and MBSE approaches has been proposed. The new approach, termed the Scrum Model-Based System Architecture Process (sMBSAP), uses the same cyclic approach of Scrum and the MBSAP.

The sMBSAP approach includes five main artifacts: Product/Sprint Backlog, Operational Viewpoint (OV), Logical/Functional Viewpoint (LV), Physical Viewpoint (PV), and Product Increment, as well as four roles: Product Owner, Scrum Master, System Architect, and Product Development Team. The five sMBSAP phases include Initiate, Plan and Architect, Implement, Review and Retrospect, and Release.

Both Scrum and the MBSAP focus on collaboration and continuous improvement. Both approaches also value customer-centricity and prioritize delivering a working product to the customer. These similarities have been passed down to the sMBSAP. The sMBSAP customizes the artifacts to keep system information within the model. The sMBSAP is application agnostic and can be applied to software or other industries. As for project size, the sMBSAP can be customized to fit small to large projects. The sMBSAP approach was validated through a pilot study to develop a health technology system over one year.

The preliminary results have shown that the proposed approach contributed to achieving the desired system development outcomes and, at the same time, generated complete system architecture artifacts that would not have been developed if Agile alone had been used. The highlights of the sMBSAP approach and benefits observed during the implementation can be summarized as follows: (1) The System Architect works closely, not in a silo, with the Product Development Team to customize, empower, and educate the team to get the best out of the architecture model; (2) selecting an MBSE tool with built-in methodologies and models helps create a faster first iteration of the model; (3) the sMBSAP enables the System Architect to use Agile terminologies that the Product Development Team understands; (4) the MBSE tool enables the System Architect to combine formal and informal modeling to gradually shift the mindset of the Agile team towards MBSE; (5) the architecture effort progresses one sprint at a time; (6) the Requirements and User Stories will be traced to the various perspectives of the system model throughout the following iterations or viewpoints; (7) the sMBSAP is a practical middle ground between light documentation enthusiasts and those who value heavy documentation.

The promising results observed while using the model are a step towards closing the gap between Agile and MBSE. The sMBSAP offered a practical and operational method for achieving the desired and potentially better outcomes compared to either approach alone. In parallel, this research shows that the sMBSAP is more aligned with federal and state regulations, which promote Agile in its systems engineering guidelines while requiring a proper set of system documentation.

The continuation of this research project includes quantitatively comparing the impact on the system development objectives when using the sMBSAP compared to Scrum. Specifically, the subsequent step includes conducting a quasi-experimental study to compare Scrum and the sMBSAP in terms of system development performance metrics, as measured by the estimation reliability, productivity, and defect rate.

Author Contributions

Conceptualization, M.H., J.M.B. and D.R.H.; methodology, M.H.; software, M.H.; validation, D.R.H.; formal analysis, M.H.; investigation M.H.; data curation, M.H.; writing—original draft preparation, M.H.; writing—review and editing, D.R.H.; visualization, M.H. and D.R.H.; supervision, D.R.H. and J.M.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Sharing research data may be restricted due to intellectual property on the part of the health tech company whose system development was used to conduct this research.

Acknowledgments

The research described in this publication would not have been possible without leveraging the system development effort at Hekafy. The lead author would like to acknowledge the support of the co-founders of Hekafy: Reem Olaby, Mohamed Farid, and Aneesh Panoli.

Conflicts of Interest

The lead author is one of the co-founders of Hekafy Inc.

Abbreviations

The following abbreviations are used in this manuscript:

	ASD
	Adaptive Software Development

	AUP
	Agile Unified Process

	CDM
	Conceptual Data Model

	DBSE
	Document-Based Systems Engineering

	DoDAF
	Department of Defense Architecture Framework

	DSDM
	Dynamic Systems Development Method

	FDD
	Feature-Driven Development

	FEAF
	Federal Enterprise Architecture Framework

	LDM
	Logical/Functional Data Model

	LV
	Logical Viewpoint

	MAGIC
	Munich Agile MBSE Concept

	MBSAP
	Model-Based System Architecture Process

	MDSD
	Model-Driven Systems Development

	MBSE
	Model-based Software Engineering

	NIST
	National Institute of Standards and Technology

	OPM
	Object-Process Methodology (Dori)

	OOSEM
	Object-Oriented Systems Engineering Method (INCOSE)

	OV
	Operational Viewpoint

	PBI
	Product Backlog Items

	PDM
	Physical Data Model

	PV
	Physical Viewpoint

	RAD
	Rapid Application Development

	RUP
	Rational Unified Process

	RUP SE
	Rational Unified Process for Systems Engineering (IBM)

	SAFe
	Scaled Agile Framework

	SDLC
	Software Development Life Cycle

	SA
	State Analysis (JPL)

	SE
	Systems Engineering

	sMBSAP
	Scrum Model-Based System Architecture Process

	TOGAF
	The Open Group Architecture Framework

	UML
	Unified Modeling Language

	XP
	Extreme Programming

References

	

Hooshmand, Y.; Adamenko, D.; Kunnen, S.; Köhler, P. An approach for holistic model-based engineering of industrial plants. In Proceedings of the International Conference on Engineering Design, Vancouver, BC, Canada, 21–25 August 2017; Volume 3, pp. 101–110. [Google Scholar]

	

Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language, 3rd ed.; Morgan Kaufmann: Burlington, MA, USA, 2015. [Google Scholar] [CrossRef]

	

Basha, N.M.J.; Moiz, S.A.; Rizwanullah, M. Model based software development: Issues & challenges. Int. J. Comput. Sci. Inform. 2013, 3, 84–88. [Google Scholar] [CrossRef]

	

Call, D.R.; Herber, D.R. Applicability of the diffusion of innovation theory to accelerate model-based systems engineering adoption. Syst. Eng. 2022, 25, 574–583. [Google Scholar] [CrossRef]

	

Cao, L.; Ramesh, B. Agile software development: Ad hoc practices or sound principles? IT Prof. 2007, 9, 41–47. [Google Scholar] [CrossRef]

	

Altahtooh, U.A.; Emsley, M.W. Is a challenged project one of the final outcomes for an IT project? In Proceedings of the Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 4296–4304. [Google Scholar] [CrossRef]

	

Muganda Ochara, N.; Kandiri, J.; Johnson, R. Influence processes of implementation effectiveness in challenged information technology projects in Africa. Inf. Technol. People 2014, 27, 318–340. [Google Scholar] [CrossRef]

	

Yeo, K.T. Critical failure factors in information system projects. Int. J. Proj. Manag. 2002, 20, 241–246. [Google Scholar] [CrossRef]

	

Turner, R. Toward Agile systems engineering processes. Crosstalk J. Def. Softw. Eng. 2007, 20, 11–15. [Google Scholar]

	

Salehi, V.; Wang, S. Munich Agile MBSE Concept (MAGIC). In Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019; Volume 1, pp. 3701–3710. [Google Scholar] [CrossRef]

	

Riesener, M.; Doelle, C.; Perau, S.; Lossie, P.; Schuh, G. Methodology for iterative system modeling in Agile product development. Procedia CIRP 2021, 100, 439–444. [Google Scholar] [CrossRef]

	

Bott, M.; Mesmer, B. An analysis of theories supporting Agile scrum and the use of scrum in systems engineering. Eng. Manag. J. 2020, 32, 76–85. [Google Scholar] [CrossRef]

	

Borky, J.M.; Bradley, T.H. Effective Model-Based Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]

	

Douglass, B.P. Agile Model-Based Systems Engineering Cookbook; Packt: Birmingham, UK, 2021. [Google Scholar]

	

Bouillon, E.; Güldali, B.; Herrmann, A.; Keuler, T.; Moldt, D.; Riebisch, M. Leichtgewichtige Traceability im agilen Entwicklungsprozess am Beispiel von Scrum. Softwaretechnik-Trends 2013, 33, 29–30. [Google Scholar] [CrossRef]

	

Lethbridge, T.; Singer, J.; Forward, A. How software engineers use documentation: The state of the practice. IEEE Softw. 2003, 20, 35–39. [Google Scholar] [CrossRef]

	

Voigt, S.; Hüttemann, D.; Gohr, A.; Große, M. Agile Documentation Tool Concept. In Developments and Advances in Intelligent Systems and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 67–79. [Google Scholar]

	

Ruparelia, N.B. Software development lifecycle models. ACM SIGSOFT Softw. Eng. Notes 2010, 35, 8–13. [Google Scholar] [CrossRef]

	

Rather, M.A.; Bhatnagar, M.V. A comparative study of software development life cycle models. Int. J. Appl. Innov. Eng. Manag. 2015, 4, 23–29. [Google Scholar]

	

Tsai, B.Y.; Stobart, S.; Parrington, N.; Thompson, B. Iterative design and testing within the software development life cycle. Softw. Qual. J. 1997, 6, 295–310. [Google Scholar] [CrossRef]

	

Kossiakoff, A.; Biemer, S.M.; Seymour, S.J.; Flanigan, D.A. Systems Engineering Principles and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]

	

Dora, S.K.; Dubey, P. Software development life cycle (SDLC) analytical comparison and survey on traditional and Agile methodology. Natl. Mon. Ref. J. Res. Sci. Technol. 2013, 2, 22–30. [Google Scholar]

	

Schmidt, C. Agile Software Development Teams; Progress in IS; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]

	

Khong, L.; Yu Beng, L.; Yip, T.; Soofun, T. Software development life cycle AGILE vs traditional approaches. In Proceedings of the International Conference on Information and Network Technology, Chennai, India, 28–29 April 2012; Volume 37, pp. 162–167. [Google Scholar]

	

Vijayasarathy, L.R.; Turk, D. Agile software development: A survey of early adopters. J. Inf. Technol. Manag. 2008, XIX, 1–8. [Google Scholar]

	

U.S. Government Accountability Office. Agile Assessment Guide: Best Practices for Agile Adoption and Implementation; Technical Report GAO-20-590G; U.S. Government Accountability Office: Washington, DC, USA, 2015.

	

Anand, R.V.; Dinakaran, M. Issues in scrum Agile development principles and practices in software development. Indian J. Sci. Technol. 2015, 8, 1–5. [Google Scholar] [CrossRef]

	

DIGITAL.AI. 16th State of Agile Report. 2022. Available online: https://info.digital.ai/rs/981-LQX-968/images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf (accessed on 14 April 2022).

	

Schwaber, K. Agile Project Management with Scrum; Microsoft Press: Unterschleissheim, Germany, 2004. [Google Scholar]

	

Satpathy, T. A Guide to the Scrum Body of Knowledge (SBOK™ Guide), 3rd ed.; SCRUMstudy: Avondale, AZ, USA, 2016. [Google Scholar]

	

Akif, R.; Majeed, H. Issues and challenges in scrum implementation. Int. J. Sci. Eng. Res. 2012, 3, 1–4. [Google Scholar]

	

Buffardi, K.; Robb, C.; Rahn, D. Learning agile with tech startup software engineering projects. In Proceedings of the ACM Conference on Innovation and Technology in Computer Science Education, Bologna, Italy, 3–5 July 2017; pp. 28–33. [Google Scholar] [CrossRef]

	

Ghezzi, A.; Cavallo, A. Agile business model innovation in digital entrepreneurship: Lean startup approaches. J. Bus. Res. 2020, 110, 519–537. [Google Scholar] [CrossRef]

	

Kuchta, D. Combination of the earned value method and the Agile approach—A case study of a production system implementation. In Intelligent Systems in Production Engineering and Maintenance; Springer: Berlin/Heidelberg, Germany, 2019; pp. 87–96. [Google Scholar] [CrossRef]

	

Atlassian. Jira|Issue & Project Tracking Software|Atlassian. 2019. Available online: https://www.atlassian.com/software/jira (accessed on 14 April 2022).

	

ClickUp™. Available online: https://www.clickup.com.html (accessed on 28 February 2023).

	

Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]

	

Bonnet, S.; Voirin, J.L.; Normand, V.; Exertier, D. Implementing the MBSE cultural change: Organization, coaching andlessons learned. In Proceedings of the INCOSE International Symposium, Seattle, WA, USA, 13–16 July 2015; Volume 25, pp. 508–523. [Google Scholar] [CrossRef]

	

Walden, D.D.; Roedler, G.J.; Forsberg, K. INCOSE systems engineering handbook version 4: Updating the reference for practitioners. In Proceedings of the INCOSE International Symposium, Seattle, WA, USA, 13–16 July 2015; Volume 25, pp. 678–686. [Google Scholar] [CrossRef]

	

Estefan, J.A. Survey of Model-Based Systems Engineering (MBSE) Methodologies; Technical report; INCOSE MBSE Initiative: San Diego, CA, USA, 2008. [Google Scholar]

	

Zimmerman, P. A review of model-based systems engineering practices and recommendations for future directions in the department of defense. In Proceedings of the Systems Engineering in the Washington Metropolitan Area Conference, Chantilly, VA, USA, 3 April 2014. [Google Scholar]

	

Wang, L.; Izygon, M.; Okon, S.; Wagner, H.; Garner, L. Effort to accelerate MBSE adoption and usage at JSC. In Proceedings of the AIAA SPACE, Long Beach, CA, USA, 13–16 September 2016. [Google Scholar] [CrossRef]

	

Young, K.G. Defense space application of MBSE-closing the culture chasms. In Proceedings of the AIAA SPACE Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015. [Google Scholar] [CrossRef]

	

Noguchi, R.A. A roadmap for advancing the state of the practice of model based systems engineering for government acquisition. In Proceedings of the INCOSE International Symposium, Orlando, FL, USA, 20–25 July 2019; Volume 29, pp. 678–690. [Google Scholar] [CrossRef]

	

Kim, S.Y.; Wagner, D.; Jimenez, A. Challenges in applying model-based systems engineering: Human-centered design perspective. In Proceedings of the INCOSE Human-Systems Integration Conference, Biarritz, France, 11–13 September 2019. [Google Scholar]

	

Hadar, I.; Sherman, S.; Hadar, E.; Harrison, J.J. Less is more: Architecture documentation for agile development. In Proceedings of the International Workshop on Cooperative and Human Aspects of Software Engineering, San Francisco, CA, USA, 25 May 2013; pp. 121–124. [Google Scholar] [CrossRef]

	

Manifesto for Agile Software Development. Available online: http://agilemanifesto.org (accessed on 27 March 2023).

	

Stettina, C.J.; Heijstek, W. Necessary and neglected? An empirical study of internal documentation in agile software development teams. In Proceedings of the ACM International Conference on Design of Communication, Pisa, Italy, 3–5 October 2011; pp. 159–166. [Google Scholar] [CrossRef]

	

Pasuksmit, J.; Thongtanunam, P.; Karunasekera, S. Towards just-enough documentation for agile effort estimation: What information should be documented? In Proceedings of the IEEE International Conference on Software Maintenance and Evolution, Luxembourg, 27 September–1 October 2021; pp. 114–125. [Google Scholar] [CrossRef]

	

Prause, C.R.; Durdik, Z. Architectural design and documentation: Waste in agile development? In Proceedings of the International Conference on Software and System Process, Zurich, Switzerland, 2–3 June 2012; pp. 130–134. [Google Scholar] [CrossRef]

	

Rubin, E.; Rubin, H. Supporting agile software development through active documentation. Requir. Eng. 2011, 16, 117–132. [Google Scholar] [CrossRef]

	

Selic, B. Agile documentation, anyone? IEEE Softw. 2009, 26, 11–12. [Google Scholar] [CrossRef]

	

Slack. Available online: https://slack.com (accessed on 28 February 2023).

	

Sparx Systems. Enterprise Architect 15.2 User Guide. Available online: https://sparxsystems.com/enterprise_architect_user_guide/15.2/ (accessed on 28 February 2023).

	

Lattanze, A.J. Architecting Software Intensive Systems: A Practitioners Guide; Auerbach Publications: Boca Raton, FL, USA, 2008. [Google Scholar]

[image: Software 02 00011 g001 550]

Figure 1. Overview of software development lifecycle models and their relationship with MBSE.

Figure 1. Overview of software development lifecycle models and their relationship with MBSE.

[image: Software 02 00011 g001]

[image: Software 02 00011 g002 550]

Figure 2. Scrum process overview.

Figure 2. Scrum process overview.

[image: Software 02 00011 g002]

[image: Software 02 00011 g003 550]

Figure 3. Overview of the MBSAP [13].

Figure 3. Overview of the MBSAP [13].

[image: Software 02 00011 g003]

[image: Software 02 00011 g004 550]

Figure 4. Overview of the sMBSAP with the goal of developing Product Increments.

Figure 4. Overview of the sMBSAP with the goal of developing Product Increments.

[image: Software 02 00011 g004]

[image: Software 02 00011 g005 550]

Figure 5. Relationship among Epics, Use Cases, User Stories, and Requirements in the sMBSAP method.

Figure 5. Relationship among Epics, Use Cases, User Stories, and Requirements in the sMBSAP method.

[image: Software 02 00011 g005]

[image: Software 02 00011 g006 550]

Figure 6. An example of Use Cases stereotyped as User Stories and Requirements.

Figure 6. An example of Use Cases stereotyped as User Stories and Requirements.

[image: Software 02 00011 g006]

[image: Software 02 00011 g007 550]

Figure 7. Conceptual Data Model for a health technology system.

Figure 7. Conceptual Data Model for a health technology system.

[image: Software 02 00011 g007]

[image: Software 02 00011 g008 550]

Figure 8. Logical Data Model for a health technology system.

Figure 8. Logical Data Model for a health technology system.

[image: Software 02 00011 g008]

[image: Software 02 00011 g009 550]

Figure 9. Physical Data Model for a health technology system.

Figure 9. Physical Data Model for a health technology system.

[image: Software 02 00011 g009]

[image: Software 02 00011 g010 550]

Figure 10. Organizational overview of an information model for the UML-based sMBSAP.

Figure 10. Organizational overview of an information model for the UML-based sMBSAP.

[image: Software 02 00011 g010]

[image: Software 02 00011 g011 550]

Figure 11. An illustration of organizing the sMBSAP artifacts in an MBSE tool.

Figure 11. An illustration of organizing the sMBSAP artifacts in an MBSE tool.

[image: Software 02 00011 g011]

[image: Software 02 00011 g012 550]

Figure 12. Screenshots from the health tech product demo.

Figure 12. Screenshots from the health tech product demo.

[image: Software 02 00011 g012]

[image: Software 02 00011 g013 550]

Figure 13. Combined sMBSAP artifacts for a health tech system.

Figure 13. Combined sMBSAP artifacts for a health tech system.

[image: Software 02 00011 g013]

[image: Software 02 00011 g014 550]

Figure 14. Comparison of Scrum, MBSAP, and sMBSAP.

Figure 14. Comparison of Scrum, MBSAP, and sMBSAP.

[image: Software 02 00011 g014]

[image: Software 02 00011 g015 550]

Figure 15. Requirements and user stories traced to elements of a wireframe diagram embedded in the sMBSAP model.

Figure 15. Requirements and user stories traced to elements of a wireframe diagram embedded in the sMBSAP model.

[image: Software 02 00011 g015]

[image: Table]

Table 1. Product development team personas.

Table 1. Product development team personas.

	Role
	Gender
	Industry Experience
	Highest Education Level
	Familiarity with System Development

	System Architect and Scrum Master
	Male
	20+ years
	MSc
	Yes

	Backend Developer
	Male
	15+ years
	PhD
	Yes

	Frontend Developer
	Male
	15+ years
	PhD
	Yes

	Health and Nutrition Scientist
	Female
	15+ years
	PhD
	No

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
ettt

media/file4.png
Scrum Meetings

;I Sprint Retro I

Scrum Artifacts Other

artifacts

_ _ Product Sprint
R ncrement .
Sprint Review Demo Backlog Planning

Scrum Roles
Sprint Backlog| Product Owner

] Scrum Team
Scrum Master

Daily
Standups
Scrum Processes
N Review and
[Initiate] [Plan] [Implement] [Release
Retrospect

e Create Project Vision e Create User Stories ¢ Create Deliverables e« Convene Scrum of ¢ Ship Deliverables
e Identify Scrum Master e Approve, Estimate, e Conduct Daily Scrums + Retrospect Project

and Stakeholder(s) and Commit User Standup « Demonstrate and
e Form Scrum Team Stories e Groom Prioritized Validate Sprint
e Develop Epic(s) o Create Tasks Product Backlog ¢ Retrospect Sprint

Create Prioritized
Product Backlog
Conduct Release
Planning

Estimate Tasks
Create Sprint Backlog

media/file30.png
«requirement» D:l
Make all sections of the

report visible on every

«user story»

Overall score will be the View overall health score

«user story»

«requirement»
Display a button titled

View explanation of the
health score

7
v

Example message: This score means that there are some
aspects in your lifestyle and dietary habits that you need to

first thing to be shown on

the top followed by the 4

/

view my groceries work on to maintain healthier status. Furthermore, your

|
screen of the health report breakdown as % / I . . score is also impacted by the pre-existing conditions and
7 . I (from User stories (requirements) and - .
e (from User stories | | family history. Below is a breakdown of that score and
\ . | (from User stories «trace» use cases) i i i
\ \ (requirements) and use cases) . | explanation of the 4 health score sections that you saw in the
(from User stories (reqMirements) and \ t | (requirements) and use cases) | . .
v previous window.
use cases)\\ * «tr‘ace» ! | | = | X y A
\ N i ;
\ ' ‘ 1 | «trace» View my groceries | «user story»
«trace» g Account Health | Y 8 Y
h | P 1.2.1.2 Complete dietary
\ | -
\ | Health score | v | _7 habits assessment
\ 5 9 | -7 «requirement» D:l
-
g | .- Scroll to view the rest of
Overall rd
Score I - |~ - . . the content on the screen
| Dietary | I - 1 (from User stories (requirements)
| - - and use cases) —
| -7 - —
= e . S o
- / e
P 7
- This score means that... «use A 7 «trace» (from User stories (requirements) and
| Lifestyle | . Y .
customized message to 3 types of users (1) healthy (2) _ y use cases)
|Z needs improvements in some areas (3) unhealthy // /
P
_ s L «user story»
Disease risk | = . .
| % of results meeting dietary guidelines 7 — 1.3.3 View lifestyle
g recommendation
| Organ health | O % of results need taking some proactive steps || (from User stories
g T —— l —=> i s)and use
T ——— - cases)
. . «user story»
% of results suggesting the user might be at «use» o]
Mental health <k of d | - dical diti 1.3.4 View disease risk
risk or developing a medical condition - — recommendation
——— — L.
——— -~ ——
- _ /7
O ‘\\ % of results due to pre-existing condition «use» L- (from User stories
. T —_— Pid] ts)and use
| \ ———
N Te———d P cases)
| \ - «user story»
N
/I AN guses 1.3.6 View mental
«trace» \ health recommendation
.~ A /
- N
P 7 - A 7’ ’
/7
~ - o))) B L7 (from User stories
These dashboard indicators retrieve their data from the sections of , .
t o . i (requirements) and use
«user story» the health report indicated by the shown user stories. cases)
View 4 sub-scores The first 3 metrics can take any of the 3 colors: red, green, and

(from User stories
(requirements) and use
cases)

yellow.
The last metric is always blue because to indicate that the user
cannot do something about it.

When blood tests become
available, they will also
influence this indicator

media/file18.png
user E

«column»
/accountDate: VARCHAR
FirstName: VARCHAR
Id: VARCHAR
LastName: VARCHAR
UserEmail: VARCHAR
*PK UserlD: VARCHAR

1

+PK_user
«PK»
+ PK_user(VARCHAR): void

/‘\1

«FK»
+FK_HealthConditions_User0..1
1

+PK_user

(UserlD = UserlID)

healthconditions E

«column»
BonesAndJointsConditions: VARCHAR
BrainConditions: VARCHAR
GenitalConditions: VARCHAR
HeartConditions: VARCHAR
KidneyConditions: VARCHAR
LiverConditions: VARCHAR
SkinConditions: VARCHAR
ThyroidConditions: VARCHAR
*PK HealthConditionsID: VARCHAR
FK UserID: VARCHAR

«PK»

+ PK_healthconditions(VARCHAR): void
«FK»

+ FK_HealthConditions_User(VARCHAR): void

+PK_healthconditions 1

(HealthConditionsID = HealthConditionsID)
1

«FK»

+FK_Nutritionltems_HealthConditions0..*
1

+PK_usertFK_Health Report_Relationship Two

(UserID = UserlD)
«FK»

(UserID = UserlD)
N
«FK»

healthreport

«column»
BloodTestReport: VARCHAR
DietaryReport: VARCHAR
DiseaseRiskReport: VARCHAR
ExcerciseReport: VARCHAR
MoodReport: VARCHAR
1 OrgansReport: VARCHAR
ReportMessages: VARCHAR
*PK HealthReportID: VARCHAR
*FK UserID: VARCHAR

«PK»
+ PK_healthreport(VARCHAR): void

«FK»

+ FK_Health Report_Relationship Two(VARCHARY): vaid

BloodVesselConditions: VARC+FK_Health Questionnaire_Relationship One
N

1

healthquestionnaire

«column»

BasicInfoQuestions: VARCHAR
BloodTestQuestions: VARCHAR
DietaryHabbitsQuestions: VARCHAR
ExcerciseQuestions: VARCHAR
FamilyHealthHistory: VARCHAR
LifestyleQuestions: VARCHAR
MedicalConditionsQuestions: VARCHAR
MentalHealthQuestions: VARCHAR

*PK HealthQuestionnairelD: VARCHAR

*FK UserID: VARCHAR

«PK»
+ PK_healthquestionnaire(VARCHAR): void

«FK»

+ FK_Health Questionnaire_Relationship One(VARCHAR): vaid

groceryitems E

«column»
GroceryCategory: VARCHAR
GroceryName: VARCHAR
GroceryStore: VARCHAR
Id: INT
*PK GroceryltemsID: VARCHAR

«PK»
+ PK_groceryitems(VARCHAR): void

nutritionitems

«column»
Id: VARCHAR
NutritionName: VARCHAR
*PK NutritionltemsID: VARCHAR
FK HealthConditionsID: VARCHAR
NutritionCategory: VARCHAR

(NutritionltemsID

+FK_Nutrition ItemsGrocery ltems_Grocery ltems

= NutritionltemsID)
+FK_Nutrition ltemsGrocery ltems_Nutrition ltems

«FK»

(Grocer0.-*nsID = GroceryltemsID)

+PK_groceryitems

0.*

nutrition itemsgrocery items

<

«PK»
+ PK_nutritionitems(VARCHAR): void

«FK»

+ FK_Nutritionltems_HealthConditions(VARCHAR): void

«FK» 0.*

«column»
FK GroceryltemsID: VARCHAR
FK NutritionltemsID: VARCHAR

+PK_nutritionitems

«FK»

+ FK_Nutrition ltemsGrocery ltems_Grocery ltems(VARCHAR): void
+ FK_Nutrition ltemsGrocery Items_Nutritionttems(VARCHAR): void

media/file21.jpg
Browser vax

mEE e e =- »
Proce oot Dagom Reseurces

4B oy
PLEpCeeE———
+ 8 o
65 s e s o
PL I
b B3 Conceptuat Structure
& togeusmetne
36 sepsaonir
5 ot e s n AVS
P e
[RSp e——
V6 ante
4=gruou—
55 Suicotoqsons o
56 iy ris
b B Basic information
EN e T

aom
Conceptual Dt odel 1
LogiclDutablodeL V10
Conceptst Dt odels2
LeglDuaiodes2
“Databases Pyl Ota Mol 2
LogcalDutaodes3
X —
b £ Py Dt M3
45 Comecons
b connecions Dntsase A DFV)
Jr Je————ce
2 s connectonsDtaace A PROD)
b e Coment
b 0 1 System Srans Wreame
45 g Deckionedd
b B Dccson wien 904
b B Bood Onygenstusion
b B Dibees sk s
b (@) . Quintites snd Units of Messue

poopooOD

media/file26.png
Perspective

Requirements /
User Storles

|
=/
>
©
£
(4
m
©
)
L]
D +e
o
@,,
m- v J HM QU
s (S
nm. a
o m -1 TeT
o 3 COCTE |
= : mm a
.-F.“ 2:a _
- EIM..,. | @ O
b—u 22 m.tt .
S Lvmu&
= X & B
s S S [® O
@ [C] S i :
g < © .
2 @2 a8

aAnoadsiad yoes Joj syoeyiue ay) Buidojanap

uaym [eaishyd oy jeuoneledp woiy ssaiboud sjulodmalp ay |

media/file27.jpg
[sewm | [mesap | [smesap |

Colaboraton,Herativ and Incromental Dovelpmen, Contnuous Improvamont, Customer-

Focus
Gontrcty, Prrtzing Dabvring Vo o Gustomr
— Rapatoraion napsorinen | Faporinen
Project's — e |] e T
el Smalland medum Modium ortrge Smal, mocium or lrge
. . ‘Systems Engineering and the -
Softwaro Doveiopment and
Application GrostanofHglovl | oplcton st
Dalvenng WorkingSoware| | Cen o it
Structure, Data, Formaland normal,
Behaviorand | | "loral when Mocessary, | | Formal, Necessary,Mode- | | hen Necessary, Mode-
Requirements. Based
Product Oner, Scrum Team,
Roles | [Product Ownes, Scrum Toam, e Ot S T
an Serum Mastr e e
Daly Stanips, Dol Stanckps,
Coromoniss Speint ot Spit R,
Sprn lanning, SprinyArchteciro Parning, |
Spint Revie | Cooranaton Meotngs | | Springctecurs v
Artifcts ProductSprint Backiog, and | | OV, LV, PV, and Product | | POuet it Backdeg, OV,
(Eerecrei Increment

Product Incroment

media/file3.jpg
Scrum Meetings

v

Sprint Retro

Scrum Artifacts .ﬁ Scrum
il Sprint
Sprint fevlsw - Sy

Scrum Roles
Product Owner
Scrum Team
Sorum Master
Daily
Standups
Scrum Processes
Review and
e [pan [implemen [TEROREN) Rotease
Croso Proc Vion + oo Usr Stores CroaoDelvoabes + Gomrna Scumol « ShpDolvraes
Koty St s+ Agpovo. Eoumate, + Cordet Oy Sorume * Rotospet Proset
rd St anaConmeUsar Sanay + Demoreite sna
« FomSenmoam Sores + Groompronzsa Valoae S
* oo+ G Tass ProawBaios + Reuspet it

* Grouoprionizos + EstmaioTasks
ProductBackiog + Creal Sprin Backiog
+ Conduct Rooaso
Pianning

media/file22.png
Browser v 3 X

Bawn +t 3+ = 4

Project Context Diagram Resources

4 51 Hekafy
4 a. Requirements and Use Cases
[B3 UserRoles
[3 User stories (requirements) and use cases
4 b. Structure
[| Conceptual Structure
] Logical Structure
b £ Application Layer
b £ Physical Structure - Instances on AWS
4 7 ¢ Behavior
Dietary habits questions flow
Lifestyle
Lifestyle info questions flow
Basic info questions flow
Dietary Habits
Basic Information

e W W W AW AT L W e W e

oo 0OOe

Data
Conceptual Data Model_v1.0
Logical Data Model_v1.0
Conceptual Data Model v2
Logical Data Model v2
«Database» Physical Data Model v2
Logical Data Model v3
«Database» PDM_Database_v3
3 Physical Data Model v3
1 Connections
é «database connection» Database A (DEV)
a «database connection» Database A (TEST)
@ «database connection» Database A (PROD)
P e. Context
b f. System Screens Wireframe
4 g. Decision Model
b E1 Decision With BKM
P £1 Blood Oxygen Saturation
b 1 Diabetes Risk Result
b h. Quantities and Units of Measure

[N

LVVVVVVEI
h = EPEPEPEPEPEPEP“

media/file19.jpg
The Viewpointprogross from Operatonalfo Physical
e s e ppaca. "

Structure
outa Benavior Capabiltes
e
Class Disgram o7 d —
‘ConcsptualData Actviy Diagram ko
[roctctevsaen Model Functonal Fow. Ly Lt
s Tasks,Envancaments
s Do L [pecomposiion, Cantol
{|" ecompostion | [[e —
Logica Data 7 £
e, | s i L Gt Backiogs
" Prtzed vser
Objectoagram || [PREZ =] s okl —
Swucura
Oecampornon Physial Data = 3
{ & Product Backiog
Use Case Disgram Degiorized user
Onects ntracton o

media/file7.jpg
SMBSAP.

MBSAP Artacts

B e ey s+ sonmmon

S e fam
e e

pEmEs

L B

media/file28.png
Focus

Approach
Project's
Scale

Application

Structure, Data,
Behavior and
Requirements

Roles

Ceremonies

Artifcts

[Scrum]

| MBSAP |

| sMBSAP |

Collaboration, Iterative and Incremental Development, Continuous Improvement, Customer-
Centricity, Prioritizing Delivering Value to Customer

Rapid iteration

Rapid or linear

Rapid or linear

Small and medium

Medium or large

Small, medium or large

Software Development and
Delivering Working Software

Systems Engineering and the
Creation of High-Level
System Models

Application agnostic

Informal, when Necessary,
Document-Based

Formal, Necessary, Mode-
Based

Formal and Informal,
when Necessary, Mode-
Based

Product Owner, Scrum Team,
and Scrum Master

Program/Project Manager,
System Architect, Project
Team

Product Owner, Scrum Team,
Scrum Master, and System
Architect

Daily Standups,
Sprint Retro,
Sprint Planning,
Sprint Review

Architecture

kickoff Workshop, Formal and
Informal Program Reviews
and Coordination Meetings

Daily Standups,
Sprint Retro,

Sprint/Architecture Planning,

Spring/Architecture Review

Product/Sprint Backlog, and
Product Increment

QV, LV, PV, and Product
Increment

Product/Sprint Backlog, OV,
LV, PV, and Product
Increment

media/file10.png
The diagram explains how epics, use cases, user stories and requirements are used in the sSMBSAP approach

AN
The Epic is a coherent set of
features, use cases, user
stories and requirements at -~
a strategic level. Epics
typically requires 2—6 sprints |

«epic» _ e _
rrrrrrrrrrrrrrr
«use» 2:;'1[’2::2;7 A"“g‘[’;g%" Start Date: 28 September 2020 z':(;:j:::ﬁif;;;;’:; ;g;g Start Date: 18 January 2021
. End Date: 9 October 2020 End Dal
E ic _——————) Sprint 7
Sprint 2 i

sssssss

to complete. «include» e
AN L AN
The use case is composed of 7 | The user story is a single interaction of one
a few scenarios. These Lo | or more actors with the product to archive
. e | . .
scenarios can be expressed | y a goal. It's implemented in few days.
include»
as through activity diagram : >

or multiple user stories
(which is the common
approach in Agile Software
Development). Activity
diagram are not commonly |

«user story» -7 D\
Although "Requirements" are not typical in
Agile Software Development. It was found

that using the traditional "shall

User Story

_ : «trace» | statements"” combined with "user stories"
used in Agile Software \/ is valuable
Development. Requirement | |F---"""""| Douglass (2021) used a combination of

A use case typically requires

, user stories and Requirements for
one sprint to complete.

modeling a system in SysML.

media/file14.png
User

«use»

V

Health Assessment

«derive»

invisible to the user

Medical References

Dependent on

I\

Dependent on

Report Sub-sections Decisions
(Recommendations)

«derive»

«derive»

V

Health Report

Dietary Seciton: int
Disease Rlsk Section: int
Excercise Section: int
Mood Section: int

Organ Health Section: int
Overview Section: int

N\
N\
\ L.
Nutrition and Ingredients
I\
Dependent on
\ f
N |
N I
\ \

Grocery Decisions (Recommendations)

media/file11.jpg

media/file6.png
Operational

Capabilities —> Viewpoint

T X

: Logical/
Integration and ncrement .

Test < D -» Functional
SIS Viewpoint

‘\ 1

Y

Physical P

Viewpoint

media/file15.jpg
p———
T <
Lt [Emre—— pES———
foties i pepny
AT <=0 [T

Moen g .

| Rt s Mo o

T R reee) ot o o o -Gy

o s Sore
et s s e T
st s |

et o s e et

vy st

nav.xhtml

 software-02-00011

 		
 software-02-00011

media/file16.png
Conceptual Data Model v2::User

/account date: char
First name: char
id: int

Last name: char
User email: char

I

I

I

1
«use»

V

Conceptual Data Model v2::Health
Assessment

basic info questions: String

blood test questions: String

dietary habbits questions: String
excercise questions: String

family health history: String
lifestyle questions: String

medical conditions questions: String

mental health questions: String
OO

«derive»

invisible to the user

Conceptual Data Model v2::Medical
References

Dependent on

- Reference Description: String
- Reference ID: int
- Reference Name: String

I\

Dependent on |

Conceptual Data Model v2::Report Sub-
sections Decisions (Recommendations)

«derive»

«derive» |

V

Conceptual Data Model v2::Health Report

- Dietary Seciton: int

- Disease Rlsk Section: int
- Excercise Section: int

- Mood Section: int

- Organ Health Section: int
- QOverview Section: int

Conceptual Data Model v2::Nutrition
and Ingredients

+ id:int
- nutrition category: string
- nutrition name: char
A
N Dependent on
N
N I

AN \

Conceptual Data Model v2::Grocery
Decisions (Recommendations)

media/file2.png
System Development Lifecycle (SDLC))

r

Document-Based System Development

Traditional System Agile System
Development Methods Development Methods
Waterfall Agile Modeling SAFe
V-Model ASD Scrum
Spiral Model AUP XP
RUP Crystal Clear Rapid Prototyping
RAD DSDM iterative Model
Big Bang Model FDD Incremental Model
Lean Software Development
Model-Based System Development T
—Uuse
" Architecture Frameworks use Agile MBSE Approach
NIST Enterprise Architecture May leverage an architecture
TOGAF framework (for modeling), and
FEAF

combined MBSE and an Agile

DoDAF methods (for development process)

Zachman use MBSE Approach

IBM Telelogic Harmony-SE
INCOSE OOSEM use
IBM RUP SE for MDSD
May leverage an architecture | Viteéch MBSE
framework (for modeling) and a |JPL State Analysis (SA)
TSDM (for development) Dori OPM

MBSAP

media/file20.png
The Viewpoint progress from Operational to Physical when

developing the artifacts for each perspective

Perspective

Use Case Diagram
Objects interaction

Structure Data Behavior Capabilities
/ I COM /S I
v L | Hfouz I g = -
/ Class Diagram _Lt/ / User Stories
| | | Conceptual Data Activity Diagram .
';"tﬂdutm B"?Efllkdﬂw? || Model Functional Flow, ngﬂgtlté?\%af\i‘:t;fr?trs
ructure, Elemen Functional '
F:;E{;SY;S ?:I'L;”;:Fgl [r:; . I I Decump{'::slitinn, Control
,]] OWS
— Decomposition LDM / ' |
a Logical Data q"qnf; l | 4 Sprint Backlogs
J I - Model sd /
4y I Prioritized user
4 / Sequence Diagram stories
rd | Objects interaction H
PO & |
Object Diagram PO 7 I |
Structural uc /£ |
it Physical Data e £ | /" Product Backl
Decomposition Model uc 7 og

Deprioritized user

stories

media/file23.jpg

media/file5.jpg
MBSAP

— Operational
Capabilities —> Viewpoint

i x)

i Logical/
Integrationand | > Fung:ional
Test Viewpoint

Y

Physical
Viewpoint

media/file24.png
#hekafy

Welcome
Sign up for Hekafy
Firstname -
2 Sara
oty
[—
Lostname Ly
Hi , Welcome to Hekafy!
email+
sara@john.com

#hekafy

Passwiord*

#hekafy

Welcome ba
Log in to Hekafy

After you verify your email, you

Fill in your information, then s

Reype the passwora -
a

info@hekafy.com

@ rassword

“Login”.

,__—— Enter

click on “create account”,

us a1 Info ekl com,

To activate your account, check
your inbox for ivati il

Already have an account? Login

Basic Information Assessment

Basic Information Basic Information

Choose the height unit []

Dietary Habits
O em

Q) inch b . " Qf:)

Lifestyle

Dietary Habits

Lifestyle

=i ﬁ—‘)
Medical Condition

Medical Condition

Mental Health

Mental Health
N . .
m After you answer a question, click .
“Next” ’ N ia]
Family Health History
&
)
Blood Test)
f] Blood Test
< Last section ! Next > |
his fe is under devel and the
N Jad e far il |
#hekafy

At soods - L
o B) e

Wi Caught Samon - Log otz

Organic Avocados - Lass suger nicke rganic Apples Less sugsrintsie

bk

Uneweetanad Drisd Cranberisa UE5E S15H TARS 1 "R Rvooado O Lass sugar make

=G

== £

E N i

« 2

e

Organic Orange - 15

Organic Ground Flax See - |55 sugar ke

Forgot your passviord? Reset password

Dorit have an account? Signup

After completing the health

i

4 assessment, you can view your

! “View report” button

Are you ready to view your health report?

1 hear fr
Click on the “Leave Feedback”

B
om you. Hedilficore Organ health
Organ health recommendation
95
o
Dietary
ks Spleen Blood
Lifestyle
)
3
4 & o
Disease risk
Brain Genitals
Organ health qp
Kiney
Mental health
Lungs Pancreas
Stomach Thyroid

Welcome to your health assessment

At the end, you will

Health score
3%
&

Dietary

Lifestyle

Disease risk

Organ health
£

Mental health

Navigate your

|
|
L

Health score

The health report will show
your I haakt

55%

Your overall health score

Click on the Ok button to start

Argyeumady‘i/ the health assessment

View my groceries

healthier statu:

Your high-level health

/ indications are here

medical conditions.

Click here to explore
groceries options that fit
your health needs and goals.

functions even more.

media/file29.jpg

media/file1.jpg
System Development Lifecycle (SDLC))

Document-Based System Development

Traditional System Agile System
Development Methods Development Mathods
ey (Agile Modeling SaFe
V-Modsl ASD Scrum
‘Spiral Model oz x»
RUP. Crystal Clear Rapid Prototyping
RAD. DSOM iterative Model
Big Bang Model oD Incremental Model

Lean Software Development

Architecture Frameworks e
INIST Enterprise Architecture

‘Agile MBSE Approach

May leverage an architecture
framework (for modeling), and
‘combined MBSE and an Agile
imethods (for development process)

use MBSE Approach
f1BM Telelogic Harmony-S&

May leverage an architecture
ramework (ior modeling) and a

TSDM (for development)

JPL State Analysis (SA)
Dori OPM
MBSAP

media/file25.jpg
oata

Behavior

Tauirements /-
ter Stores

media/file12.png
Customization

«user story»

1

«requirement»
Ask the user whether they
refer one question per . .
P q i X P Select weight unit of measure
page or all questions in the
same page
7 =7
e P
/ e
/ - «user story»
Ve - -
P 7 P Select height unit of measure
-~
«trace» Nt
/‘ _«include» ,—”7
7 -7 T
/ e — _-
v e Y «include»
L e ——"" «include» -
e —_— = .
- - — «requirement»
«user story» PR 1 «user story» Ask for a category of medical
1.2.2 Customize and I Choosehealth | — _ _ _ __] ctartwithashortneaitn — .- __ - —— conditions and ask later for
improve UX for HA «include» assessment sections to «include» «trace» specific condition
/ complete
\
AN
A
User N\ T
ea ssessment Navigation
Health A tN ti
(from User \
Roles) \ «requirement»
\ Make all sections of the
\ health assessment visible
\ on every screen of the
\ \ health assessment except «trace»
\ the welcome screen
\ B
«include»
N\ ‘
\ |
N \ II / «user story»
\ | y; /7 Go back to a previous «requirement»
N | P question S T — —| Save new response when
\ «tra':ce» «include» «trace» user go back and change
N\ ' / _ =7 their answer
\ I / P
\ / / i
\A ! ~«include»
-~
-~
«user story» «user story»
Navigate thehealth < See a message at the end
assessment «include» of each section
~
~
~ ~
] ~
| \ N
| \ «include»\
~
I \ A
| \
A
«trace» «include» «user story»
\ ransitions from a
Transiti fi
/ \\ section to another
!
] {\
«requirement»
List medical conditions «user story» Applies to "blood glucose
alphabetically Skip a question (or a cememmme=======-"""" |evel" and "oxygen
section) saturation”

media/file9.jpg
‘The diagram explains how epics, use cases, user stories and requirements are used in the SMBSAP approach

The Epc is 2 coherent set of
features, use cases, ser
stoies and requirements at -~
a strategic level. Epics:

typically requires 2-6 sprints

o complete,

The use case is composed o
a few scenarios. These -

scenarios can be expressed
as through activty disgram
or multple user tories
(which s the common
approach in Agle Software.
Development). Actity
diagram are not commonly.
used in Agie Software
Development

Ause case typcally requires
one sprint to complete

The userstory is a ingle nteraction of one.
o more actors with the product to archive
2 gosl s implemented i few days.

19
Although "Requirements* are not typcal in
Agile Software Development. It was found
that using the traditonal “shall
statemens combined with "user stories”
is aluabie

Douglass (2021) used a combination of
user tores and Requirements for
modeling a systemin SsML.

media/file0.png

media/file8.png
sMBSAP Meetings _
» Sprint Retro
sMBSAP Artifacts Sfryeieal
Viewpoint
A \ 4
Sprint / ' 4 Sprint /
Architecture | ogical/Functional ____ ncrement Product/Sprint Architecture

/ Modified to integrate :
Scrum and MBSAP Y

sMBSAP Roles

Operational |, Product Owner

|:| Inherited from MBSAP

Viewpoint Scrum Master
|:| Inherited from Scrum System Architect
Development Team
Common in both Scrum :
and MBSAP Daily P
Standups
sMBSAP Processes
" : Review and
Initiate Plan and Architect Implement Release
Retrospect
Inputs Inputs Inputs Inputs Inputs
¢ Project Business e Personas e Acceptance criteria of | e Prioritized Product e Accepted System
Case e Prioritized Product the Product Backlog Backlog Architecture
Backlog ltems e Updated System o Accepted Deliverables
e System Architecture e Sprint Backlog Architecture o List of Actionable
Overview and e System Architecture e Sprint Deliverables Improvements
Summary e Burndown Charts
e Release Plan
e Core Project Team
Processes Processes Processes Processes Processes
e Create Project and e Create and Update e Create e Demonstrate and ¢ Ship Deliverables
Product Scope Backlog ltems Deliverables/Product Validate Deliverables || e« Deliver Architecture
e Identify Project e Develop System Increments e Retrospect Sprint Models
Stakeholders and Architecture ¢ Communicate e Retrospect Project
Project Team e Commit User Stories Progress

e Create Architecture
Overview and
Summary

e Create Product
Breakdown

e Create Product
Backlog

o Develop Release Plan

Outputs

Personas

Prioritized Product
Backlog

e System Architecture
Overview and
Summary

Release Plan

Core Project Team

Create Product
Breakdown
Estimate Backlog
Items

Outputs

e Acceptance criteria of
the Product Backlog
ltems

e Sprint Backlog

e System Architecture

e Groom Product
Backlog Breakdown

¢ Update System
Architecture

Outputs

Prioritized Product
Backlog

Updated System
Architecture

Sprint Deliverables
Burndown Charts

Outputs

e Accepted System
Architecture

List of Actionable
Improvements

Accepted Deliverables

Outputs

e Working Deliverables
e Lessons Learned for
Future Implementation

Input, process or output => Inherited from MBSAP
Input, process or output => Inherited from Scrum

media/file17.jpg

