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Abstract: Deep-SDM is a unified layer framework built on TensorFlow/Keras and written in in-
gPython 3.12. The framework aligns with the modular engineering principles for the design and
development strategy. Transparency, reproducibility, and recombinability are the framework’s pri-
mary design criteria. The platform can extract valuable insights from numerical and text data and
utilize them to predict future values by implementing long short-term memory (LSTM), gated recur-
rent unit (GRU), and convolution neural network (CNN). Its end-to-end machine learning pipeline
involves a sequence of tasks, including data exploration, input preparation, model construction,
hyperparameter tuning, performance evaluations, visualization of results, and statistical analysis.
The complete process is systematic and carefully organized, from data import to model selection,
encapsulating it into a unified whole. The multiple subroutines work together to provide a user-
friendly and conducive pipeline that is easy to use. We utilized the Deep-SDM framework to predict
the Nepal Stock Exchange (NEPSE) index to validate its reproducibility and robustness and observed
impressive results.

Keywords: deep learning; sequential data modeling; time series; LSTM; GRU; CNN

Highlights

• A simplified and scalable framework for implementing deep learning model architec-
tures: LSTM, GRU, and CNN for sequential data modeling.

• Extensive, automated, and data-driven approach for hyperparameter tuning.
• Numerous subroutines for data exploration, input preparation, model construction,

hyperparameter tuning, statistical validation, and results visualization.
• Tracks every intermediate and final result.
• Implements robust model selection strategies and performs statistical analysis to

validate the conclusions.

1. Introduction

Many powerful computational frameworks have been released recently for prediction
and classification domains [1–9]. Interestingly, these developed frameworks are guided
by different schools of thought, such as regression, traditional machine learning, and deep
learning. However, regardless of the approach, machine learning practitioners, researchers,
engineers, and data scientists often have to assemble the functionalities from multiple
frameworks to solve their unique problems. This gap has inspired the development of a
unified layered computational architecture that integrates end-to-end activities, enabling
complete machine learning pipelines. The developed layered architecture falls under a
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deep learning framework that combines basic functionalities with statistical validation,
making it a valuable tool for sequential modeling and time series forecasting.

Deep learning architectures that can process vast amounts of data, recognize patterns,
and make accurate predictions have opened up new possibilities across various sectors,
leading to increased efficiency, improved decision-making, and enhanced user experiences.
It has revolutionized many industries, including manufacturing [10–12], finance [13,14],
healthcare [15–18], environment [19], electronics [20], energy [21,22], agriculture [23,24],
transportation [25,26], entertainment [27,28], retail [29,30], e-commerce [31,32], and many
others, transforming the way we approach complex tasks and unlocking new possibilities.
Although it is a relatively new and emerging technology, many data-driven or rule-based al-
gorithms, from naive to complex, are already employed in various scientific fields [6,33–39].
With few exceptions, most of the architecture uses structured numerical data to predict the
given subject area [40–43]. The existing machine learning framework lacks an integrated
framework for combining numerical and text data for prediction. The proposed Deep-SDM
architecture provides two separate modules for processing the numerical and text inputs
and then combines the outputs from these modules in a subsequent layer. As a result,
the model can learn from mixed data types and capture the relationship in a broader spec-
trum. The cooperative framework is versatile and can handle multiple machine learning
tasks, including data collection, wrangling, and numerical and text data preprocessing.
Additionally, it integrates model construction, algorithmic implementation, and statistical
validation. These activities are integrated into a holistic framework, making the prediction
process more efficient and streamlined.

The Deep-SDM architecture employs a machine learning pipeline that consists of a
four-layered architecture. Figure 1 presents the schematic diagram of the architecture from
an aerial perspective. A pipeline aims to organize and automate the steps to create an
end-to-end workflow for developing and deploying deep learning architectures. Each layer
has a specific responsibility and interacts with the layers above and below it in a controlled
manner. Layer 1 consists of two branches that independently handle numerical and text
data, both of which are time series data with the date as an index. These two datasets are
ultimately merged into a single data frame, yielding a multivariate time series as the model
input. Layer 2 is responsible for preprocessing and normalizing the concatenated data
to prepare the input sequence for the model. Layer 3 provides several tools to construct
and implement three different deep learning architectures—LSTM, GRU, and CNN with
multiple configurations. Users can customize the model configurations with the desired
complexity depending on the underlying real-world problem while implementing the
selected architecture. The optimal model architecture is identified by utilizing extensive hy-
perparameter tuning strategies. Layer 4 provides several auxiliary subroutines to evaluate
and visualize the model outcomes and perform the statistical analysis.

Transparency, reproducibility, and recombinability are the framework’s primary de-
sign criteria. Therefore, all the source codes are available on GitHub (https://github.
com/mlrg2020/Deep-SDM/blob/main/Deep-SDM.ipynb (accessed on 25 February 2024)).
Additionally, Deep-SDM is characterized by the following key features:

• Scalable Framework: It is a simplified and scalable framework for implementing deep
learning model architectures: LSTM, GRU, and CNN for sequential data modelling.

• Unified Pipeline: The framework handles multiple machine learning tasks, such
as data exploration, input preparation, model construction, hyperparameter tuning,
statistical validation, and results visualization. These activities are integrated together
to make a unified framework.

• Optimization Methodology: It provides an extensive, automated, and data-driven
approach for hyperparameter tuning to select the optimal parameter of the model.

• Ease of Use: Every intermediate and final result is accessed through the objects or can
be stored in a separate file for future purposes.

• Model Validation: The framework implements robust model selection strategies and
performs statistical analysis to validate the conclusions. Root Mean Squared Error

https://github.com/mlrg2020/Deep-SDM/blob/main/Deep-SDM.ipynb
https://github.com/mlrg2020/Deep-SDM/blob/main/Deep-SDM.ipynb
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(RMSE), Mean Absolute Percentage Error (MAPE), and Correlation Coefficient (R) are
the evaluation metrics for model selection.

Figure 1. Analytical framework of the Deep-SDM architecture.

The Deep-SDM framework has been used in a recently published research article
to predict the closing price of the stock market index [44] and observed the impressive
result. We have presented the major outcomes in Appendix A, an illustrative example
demonstrating the framework’s reproducibility. Moreover, the developed pipeline can be
customized and expanded to include additional stages or specialized techniques based on
the project’s requirements.

The lack of maturity in the subject area has resulted in a scarcity of previously pub-
lished research articles on the integrated computational framework. Existing research
studies often speak about the reliability of their framework on their own method. However,
it is important to note that the model framework, underlying assumptions, and imple-
mentation vary significantly from one study to another. Thus, it is not easy to compare
published research articles unbiasedly, even if they use the same deep learning architecture
to construct their predictive models.

The rest of the paper is organized as follows: Section 2 explains the related work
in this field. Section 3 introduces and explains LSTM, CNN, and GRU along with their
functionalities for implementation. It also explores the code metadata and computing
environment. Section 4 explains the implementation of the proposed framework together
with illustrative examples. Section 5 discusses the impact of the architecture on related
fields. We have presented the discussion in Section 6. Finally, Section 7 presents conclusions,
followed by acknowledgments and a relevant list of references. Appendix A is presented
to justify our model architecture further at the end.
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2. Related Work

Over the last few years, studies on developing a time series forecasting framework
have been growing rapidly. Both academic researchers and practitioners have made
tremendous efforts in this field. This section focuses on the review of previous studies on
the frameworks built for time series forecasting.

In 2020, Livieris et al. proposed a framework that ensures a time series is suitable
for fitting a deep learning model by performing a series of transformations to satisfy the
stationarity property. The enforcement of stationarity is performed by the application of the
Augmented Dickey–Fuller test, and the deep learning model’s predictions are guaranteed
by rejecting the hypothesis of autocorrelation in the model’s errors using the Ljung–Box Q
test. They used data from the financial market, energy sector, and cryptocurrency areas.
The performance of forecasting models was compared. The empirical method indicated
that their proposed methodology considerably improves the forecasting performance of
the deep learning models [45]. Similarly, in 2017, Bao et al. proposed a deep learning
framework where wavelet transforms, stacked autoencoders, and LSTM were combined for
time series forecasting. The time series data were decomposed by wavelet transformation to
eliminate noise, then deep high-level features were generated by autoencoders, and, finally,
extracted features were fed into LSTM to forecast the next day’s closing price of six market
indices. They claim that the proposed model outperforms similar models in predictive
accuracy and profitability performance [3]. Furthermore, in 2020, Yan et al. proposed
a deep learning framework that integrated complementary ensemble empirical mode
decomposition, principal component analysis, and LSTM to predict the closing price of
the next trading day. The author claims that their proposed framework outperforms
benchmark models in both absolute and risk-adjusted profitability performance on six
different datasets, including the New York Stock Exchange, Dow Jones Index, and S&P 500
Index [4].

In 2019, Chen and Shi proposed a deep learning framework using a relative position
matrix and convolutional neural network for the time series classification task. They
investigated a time series data representation method called relative position matrix to
convert the raw time series data to two-dimensional images, which enables the use of
techniques from image recognition. They also constructed an improved convolutional
neural network architecture to automatically learn a high-level abstract representation
of low-level raw time series data. The author claims that their proposed framework
outperformed the existing time series classification models by a significant margin [46].

In 2018, Du and Horing [47] proposed a sequence-to-sequence deep learning frame-
work for multivariate time series forecasting to address the dynamic, spatial–temporal,
and nonlinear characteristics of multivariate time series data using LSTM-based encoder–
decoder architecture. Through the air quality multivariate time series forecasting experi-
ments, they claimed that their proposed model had better forecasting performance than
classic shallow learning and baseline deep learning models. In 2019, Du et al. proposed a
hybrid deep learning architecture to extract local trends, spatial correlation, and spatial–
temporal dependencies from multivariate time series data. The first component of the
architecture consists of layers of a one-dimensional CNN component. The concatenated
output from CNN is then fed into Bi-LSTM layers, which predict the targeted sequence
value at the end. The experimental results on two datasets show that the computational
framework outperforms the baseline statistical/machine learning models (ARIMA, SVM)
and deep learning models (LSTM, GRU, CNN) based on evaluation metrics RMSE and
MAE [5]. Similarly, Khorram et al. utilized a CNN–LSTM hybrid classification model
architecture for fault diagnosis [48], while Gilik et al. employed a similar computational
framework by combining two/three-dimensional CNN and LSTM architecture for air
quality prediction [7].

In 2022, Wang et al. proposed a novel framework for interpretable deep learning in
time series analysis by embedding a human–machine collaborative knowledge represen-
tation within an autoencoder architecture [49]. The framework addresses the “black-box”
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nature of deep learning models. Experimental results across various datasets demon-
strate competitive classification performance while ensuring interpretability. Additionally,
integrating a human-in-the-loop mechanism further improves classification accuracy by al-
lowing human intervention, offering a promising framework for sequential data modeling
and time series analysis.

DeepAD [50], an anomaly detection framework for time series data, leverages various
time series forecasting models to enhance anomaly detection accuracy without relying on
labeled datasets for training or optimizing thresholds based on class labels. To test the
framework’s efficiency, the authors performed comparative experiments against the EGADS
framework [51] on real and synthetic data and demonstrated significant performance
improvements. The study concludes by highlighting the potential for further enhancement
by integrating additional time series forecasting models, such as convolutional neural
networks, particularly for spatiotemporal datasets.

The paper by Li et al. introduces a deep learning framework coupled with time series
analysis methods for runoff prediction in the middle Yangtze River [52]. The framework
enhances the precision of daily runoff prediction compared to existing models by incor-
porating LSTM networks and two-time series methods, namely, mutual information and
seasonal and trend decomposition using LOESS. The key findings of the work include the
framework’s adaptability to data quantity analysis, robustness in capturing seasonal trends,
and minimal prediction errors. This work demonstrates the potential of combining deep
learning with time series analysis for more accurate runoff prediction in hydrology research.

Yao et al. proposed a computational framework for sequence modeling focusing on
proteins, which comprises two independent feature extraction techniques: a pre-trained
Bert-encoder and a 1D-CNN + LSTM. The first is responsible for the feature represen-
tation of the sequence, while the 1D-CNN + LSTM model captures the compositional,
evolutionary, and physicochemical properties of peptides. These two sets of features are
then concatenated and fed into a feed-forward network to classify two groups of pep-
tides. Experimental results demonstrate a high accuracy of over 92% across three different
datasets [53].

Somu et al. developed a hybrid computational framework incorporating k-means
clustering, CNN, and LSTM. The first component aims to discern sequence patterns/trends,
the second extracts complex features with non-linear interactions, and the third captures
long-term dependencies by modeling temporal information in time series data. The model’s
robustness is evaluated using an energy consumption dataset [8].

Yang et al. [54] proposed a deep learning framework that employs the LSTM model as
a benchmark to predict the financial indicators’ values. They used three financial indicators
to validate their proposed model: return on tangible assets, price-to-sales ratio, and price-
earnings ratio of Mondelez International and Hormel Food Corp stock companies. They
claim that their proposed framework is of great importance to forecasting the financial risks
in the financial sector, regardless of the size of an organization.

Aiming to capture the nonlinearity inherent in multivariate financial time series,
the author [55] proposed a deep learning framework that integrates the two-stage feature
selection model and the deep learning with the error correction model. Case studies and
the corresponding sensitivity analysis were carried out to validate the performance of their
forecasting framework. Based on these studies, they claim that their proposed framework
outperformed the existing sixteen benchmark models.

In 2021, Wen and Yang [9] designed a framework with three learning parts, namely,
LSTM based on the Generate Performance Model, ensemble learning based on the Restrict
and Control Model, and one-dimensional CNN of the Dirichlet distribution based on the
Overall Verification Model. Before learning steps, they exploit the K-means method as
pre-processing and hypothesis verification to improve the prediction accuracy. After learn-
ing the steps, they constructed four forecasting progresses—the Point by Point Generated
Method, Sequence Full Generated Method, Sequence Multiple Generated Method, and Im-
provement with Restrict and Control Model and Overall Verification Model—to predict the
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positions and trends of dimensions in each system. The author claims that their proposed
framework performs better than that of the former authors.

Ye and Dai introduced TrEnOS-ELMK, a hybrid algorithm blending transfer learning
and ensemble learning. It leverages long-ago data for improved time series forecasting.
Their approach combines an Online Sequential Extreme Learning Machine with Kernels.
Comparative evaluations against numerous existing methods across synthetic and real-
world datasets showcased its superior performance [56].

The studies mentioned above have delved into various methodologies proposed to
address the complexities inherent in sequence modeling. Each approach showed its unique
blend of techniques to the forefront and expanded the horizons of sequence forecasting by
highlighting the potential for cross-pollination of ideas across domains. These advance-
ments underscore a dynamic landscape, wherein researchers continually push the envelope
to refine existing techniques and explore novel paradigms in pursuit of more accurate and
interpretable sequence forecasting methodologies.

3. Methods and Functionalities

The proposed framework focuses on implementing LSTM, GRU, and CNN models
for various sequential modeling tasks. LSTM is an improved version of a vanilla recurrent
neural network (RNN) designed to capture long-term dependencies in sequential data.
It consists of input, hidden state, cell state, and output, with four gates controlling the
flow of information [57]. LSTM maintains a memory cell to retain information over long
sequences, making it suitable for time series forecasting and natural language processing
tasks. GRU is a variation of LSTM that simplifies the architecture by merging the hidden
and cell states into a single vector [58]. GRU has three gates controlling information flow, is
computationally more efficient than LSTM, and is quite popular for sequential data analysis.
LSTM and GRU have been successfully applied to solve problems in various domains, such
as finance [59], ecology [60,61], medical imaging analysis [62,63], and natural language
processing [64,65].

CNN was initially developed for image processing and has been adapted for sequential
data analysis [66]. In the context of sequential data, CNNs treat each time step as a one-
dimensional image and perform convolutional operations over time. CNNs are effective
for capturing spatial patterns in sequential data and have been successful in tasks like
image recognition [67], cybersecurity [68], object detection [69], sentiment analysis [70],
and medical diagnosis [71].

The overall functionality of Deep-SDM is illustrated in Figure 2, which can be summa-
rized into four categories associated with the four layers: (a) data extraction and exploration,
(b) input preparation, (c) model construction, and (d) model evaluation and selection.

In the first stage, various functions access numerical and text data from the in-
tended sources. Functions such as read_csv() from Pandas library [72] are utilized to
read the numerical data, while unstructured data are cleaned up using functions such
as word_tockenize(), punctuation(), and WordNetLemmmatizer() extracted from the nltk
library [73]. Furthermore, we rely on the SentimentIntensityAnalyzer() that uses the
VEDER package [74] to calculate sentiment scores of the unstructured data. These scores
are combined with numerical data through the merge() function by the index date.

The ultimate goal of the framework is sequential data prediction, irrespective of any
subject area. Thus, the second stage prepares the input sequence and its corresponding
output based on the time step or look-back period. A DataCreation() function is con-
structed, which returns (input, output) pairs when time steps are supplied. By providing
(input, output) pairs based on the given time step, we can move forward with data_split()
to partition the original data into train–validation (or train–test) subsets. These subsets
are normalized using min_max_trans f ormation() for optimal performance. Later in the
process, the model prediction is inverse-transformed back into the original scale using
min_max_inverse_trans f orm().
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Figure 2. Workflow analysis of Deep-SDM functionalities.

The framework’s third stage includes functionalities that allow the creation of deep
learning models like LSTM, GRU, and CNN. These models can be customized with several
neurons/filters, layers, and other hyperparameters like learning rate, batch size, filter
size, optimization method, etc. The Tensorflow and Keras APIs are used through the
build_LSTM_model(), build_GRU_model(), and build_CNN_model() subroutines. Users
can experiment with the hyperparameters of the deep learning models using the LSTM_hy-
per_parameter_tuning(), GRU_hyper_parameter_tuning(), and CNN_hyper_parameter_tu-
ning() functions, which are automated and data-driven with available validation data.
The run_LS-TM_GRU_CNN_models() function automates the execution of multiple/single-
layer LSTM/GRU/CNN models, with inputs such as data, hyperparameters, time step,
test split, epochs, number of replicates, and provides complete performance scores on
both train and test data as an output dictionary. The crucial inputs like the time step,
number of features, optimizer, batch size, and learning rate can also be easily customized
in these routines.

When carrying out a computational project, it is essential to consider model evaluation
and selection as the last stage. Once the results are available, it is vital to calculate model
performance scores, visualize them, and conduct statistical analysis. The calculate_scores()
function computes the standard metrics, such as RMSE, MAPE, and R. The RMSE is
calculated as

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2,

which measures the average deviation of predicted values from the actual values. The
MAPE measures the percentage deviation of predicted values from the actual values and is
computed using the following formula.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%

The R measures the strength and direction of the linear relationship between predicted and
actual values and is obtained using the formula given below.

R =
∑n

i=1(yi − ȳi)(ŷi − ¯̂yi)√
∑n

i=1 (yi − ȳi)2(ŷi − ¯̂yi)2

where,
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yi: True value;

ȳi: The average value of the original sequence;

ŷi: Predicted value;
¯̂yi: Average value of predicted sequence;

n: Number of observations.

The results visualization and statistical analysis section provides various functions
that enable users to visualize results and perform statistical tests efficiently. By using a
single driver routine called create_visualization(), which combines different subroutines
listed in Figure 2, users can obtain prediction plots, error plots, and performance score
plots. Furthermore, the per f orm_statistical_analysis() function uses subroutines designed
for carrying out normality tests and two-sample t-tests, which help to validate conclusions
drawn from other empirical experiments.

Table 1 summarizes the code metadata and the computational framework of the Deep-
SDM framework. The brief information on several attributes of code metadata, such as the
current code version, permanent link to the reproducible capsule, and legal code license, is
presented in Table 1.

Table 1. Code metadata and environmental setup.

Info: Code Metadata and Environmental Setup Description

Current code version Version 1.0

Permanent link to code/repository used for this code
version

https://github.com/mlrg2020/Deep-SDM

Permanent link to Reproducible Capsule https://codeocean.com/capsule/3410053/tree/
v1

Legal Code License MIT License

Compilation requirements, operating environments, and
dependencies

Code can be executed in Anaconda or Google
Colab

Support email for questions ml.researchgroup2020@gmail.com

Machine Configuration Google Colab with NVIDIA-SMI 495.44 GPU

Environment Python 3.6.0, TensorFlow, and Keras APIs

Architecture LSTM, GRU, and CNN

4. Implementation of the Proposed Framework: Illustrative Example

As part of our effort to analyze the robustness of the proposed model, we applied the
Deep-SDM framework to predict financial market indices, explicitly focusing on the NEPSE
index, in a study presented in [44]. The research objective was to forecast the closing price of
the NEPSE index for the following day using multivariate input sequences. We developed
several deep learning models based on LSTM, GRU, and CNN architectures utilizing
selected input variables and evaluated their performances using standard assessment
metrics: RMSE, MAPE, and R. The overall strategy of the Deep-SDM implementation
and the experimental results are provided in Figures A1–A6, and Tables A1 and A2 in
the Appendix A.

A broad overview of the Deep-SDM model building and implementation strategy can
be found in Figure A1, whereas the process of data exploration of the response variable (i.e.,
closing price) and input preparation are presented in Figure A2. Similarly, Figures A3–A5
provide the key experimental results, including the average performance scores of con-
structed models, true vs. predicted values plot, and true vs. predicted time series in test
data. The optimal set of hyperparameters for each model architecture is presented in
Table A1. Similarly, Table A2 provides the list of the best performing models with their
corresponding hyperparameters. Finally, Figure A6 provides a normality plot of RMSE
distributions of the best performing models obtained from multiple replicates. For more
detailed information, readers are encouraged to visit the full paper [44].

https://github.com/mlrg2020/Deep-SDM
https://codeocean.com/capsule/3410053/tree/v1
https://codeocean.com/capsule/3410053/tree/v1
ml.researchgroup2020@gmail.com
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5. Impact on Related Fields

This study aims to enhance research in deep learning and sequential data modeling.
It provides developers with powerful tools and comprehensive frameworks, allowing
easy experimentation with new models and techniques. The automated machine learning
pipelines comprise pre-built modules and functions so developers can focus on the applica-
tion level instead of detailed implementation technicalities. It leads to quick prototyping
and deployment of deep learning models.

One of the significant advantages of this study is its open-source code that follows a
collaborative framework. It can democratize deep learning by enabling a broader range of
activities to benefit from deep learning models, including those without extensive program-
ming or mathematical expertise. The developed framework can open up opportunities
for newcomers, promote knowledge-sharing and collaboration, and provide consistent
implementation and well-documented procedures for researchers and practitioners to
reproduce and validate results, fostering transparency and reliability. It can also positively
impact education by providing learning resources, tutorials, and examples that facilitate
the understanding of and application of deep learning concepts. Ultimately, companies
and researchers dealing with sequential data may use this package to analyze data and
make informed decisions.

6. Discussion

Modeling sequential data presents significant challenges due to its variable input
length, long-term dependencies, and interrelationship with other factors. Despite extensive
efforts [5,24,43,75,76] to create an adaptive framework, variations in time windows and in-
put features across studies make it difficult to have a unified framework. In addition, the dif-
ferences in model architectures, their configurations, and implementation complexity make
direct comparisons challenging. Addressing these challenges requires a computational
framework capable of capturing multifaceted information in an identical environment.
Additionally, ensuring consistency in the computational environment and transparently
addressing ethical considerations are crucial aspects of model implementation.

The article delves into a promising development in deep learning architecture, which
can have significant implications for predictive modeling. We can predict subject areas
in time series data by utilizing LSTM, GRU, and CNN models in a unified deep learning
framework. The architecture is designed to handle diverse input features, including textual
and numerical data, to capture the variability often found in mixed data types. Our study
follows established guidelines for modular engineering paradigms to create a reliable and
effective framework for deep learning architecture. The developed framework has the
potential to unlock the capabilities of deep learning, enabling better predictions and helping
to make more informed decisions across various disciplines.

7. Conclusions

Deep-SDM aims to develop a unified computational framework that gathers infor-
mation from various sources. It provides clear guidelines for data preprocessing, model
building, hyperparameter tuning, model evaluation, visualization, model comparison,
and statistical validation. This integrated computing framework is designed for supervised
sequential data modeling, offering user-friendly functionalities.

The developed machine learning pipeline helps to automate the process of build-
ing and deploying LSTM, GRU, and CNN models under the integrated compuational
environment. The outcome of the pipeline ensures validity, reliability, consistency, and re-
producibility, instilling a sense of trust and confidence in the architecture. The machine
learning scripts are also meticulously inspected to ensure interpretability, regardless of
the domain. As a result, it enhances the usability of the models and enables the users to
make well-informed decisions. Additionally, the model’s outcome can be considered as an
additional piece of information to delineate the cone of uncertainty in the given subject area.
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In the near future, we plan to compare our framework with existing literature to
enhance the trustworthiness further. Another potential direction is to implement the
existing framework with Transformers and Generative Adversarial Networks. We also
plan to enhance the framework with a sub-routine that leverages Intent Recognition and
Topic Modeling techniques on text data to extract meaningful features, thereby augmenting
the predictive power of the framework. The enhancements aim to refine and extend the
capabilities of the Deep-SDM framework to meet evolving challenges in sequential data
modeling from an alternative perspective.
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Appendix A

Figure A1. Model building and implementation strategy.
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Figure A2. Data exploration (response variable trend) and data preparation.

0 50 100 150 200 250
Neurons

12

14

16

18

20

Av
g.

 R
M

SE

(a)
LSTM
GRU
CNN

0 50 100 150 200 250
Neurons

0.7

0.8

0.9

1.0

1.1

1.2

Av
g.

 M
AP

E

(b)
LSTM
GRU
CNN

0 50 100 150 200 250
Neurons

0.960

0.965

0.970

0.975

0.980

0.985

Av
g.

 R

(c)
LSTM
GRU
CNN

Figure A3. (a–c) Average performance scores of different models.
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Table A1. List of the best hyperparameters for the LSTM, GRU, and CNN models.

No. of Neurons/Filters
LSTM GRU CNN

Optimizer Learning Rate Batch Size Optimizer Learning Rate Batch Size Optimizer Learning Rate Batch Size

10 Adam 0.01 16 Adam 0.001 4 Adagrad 0.01 8
30 Adam 0.1 16 Adagrad 0.01 8 Adagrad 0.1 8
50 Adam 0.001 16 Adagrad 0.01 16 Adagrad 0.01 16

100 Adagrad 0.01 16 Adagrad 0.001 8 Adagrad 0.01 16
150 Adagrad 0.001 4 Adagrad 0.001 16 Adagrad 0.01 16
200 Adagrad 0.001 16 Adagrad 0.001 16 Adagrad 0.01 16
250 Adagrad 0.001 16 Adagrad 0.001 16 Adagrad 0.001 8

Table A2. Best performing LSTM, GRU, and CNN models with their best hyperparameters.

Models No. of Neurons Optimizer Learning Rate Batch Size

LSTM 30 Adam 0.1 16
GRU 50 Adagrad 0.01 16
CNN 30 Adagrad 0.1 8

Figure A4. (a–c) True vs. predicted values in the test data.

Figure A5. (a–c) True and predicted time series plots in the test data.

Figure A6. (a–c) Normality plots of RMSEs.
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