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Abstract: Infectious bursal disease (IBD), caused by an Avibirnavirus, belonging to the family
Birnaviridae, is an immunosuppressive disease that affects 3–6-week-old chickens, resulting in clinical
or subclinical infection. Although clinical disease occurs in chickens, turkeys, ducks, guinea fowl,
and ostriches can be also infected. IBD virus (IBDV) causes lymphoid depletion of the bursa, which is
responsible for the severe depression of the humoral antibody response, primarily if this occurs within
the first 2 weeks of life. IBD remains an issue in chicken meat production due to economic losses
caused by the spread of variants or subtypes, resistant to the most common vaccines, responsible
for a subclinical disease characterized by reduced growth performance and increased susceptibility
to secondary infections. Very virulent strains of classical serotype 1 are also common in several
countries and can cause severe disease with up to 90% mortality. This review mainly focuses on the
immunosuppressive effect of the IBDV and potential vaccination strategies, capable of overcoming
challenges associated with the optimal time for vaccination of offspring, which is dependent on
maternal immunity and IBDV variant occurrence.
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1. Introduction

Infectious bursal disease (IBD), also known as Gumboro disease, is an immunosup-
pressive disease that occurs in young chickens between 3 and 6 weeks, resulting in clinical
or subclinical infection, both of which are responsible for immunosuppression [1,2]. Gan-
grenous dermatitis [3], coccidiosis [4], and vaccination failures are frequently associated
with IBDV-induced immunosuppression [2].

In 1962, the first case of IBD was reported in Gumboro, Delaware [5]. It spread across
the United States and invaded Europe in the 1970s [6]. Control of IBDV infections has
been complicated by the recognition of “variant” strains of serotype 1, originating in
Delmarva, USA, which caused rapid bursal atrophy without mortality and were capable
of evading maternal immunity directed primarily at “classical” strains [7]. These variants
or subtypes exhibited different biological properties, compared to classical strains, and
could be a consequence of immune pressure due to the extensive application of vaccine
plans [8]. Successively very virulent (vv) IBDV strains, responsible for 90% mortality
rates, spread to the Netherlands and the United Kingdom in 1988 [9] and then to the rest
of world, except Australia, New Zealand, Canada, and the United States until 2008 [10].
Significant differences between vvIBDV strains in Europe and Asia suggest independent
IBDV evolution [11]. Jackwood et al. [12] concluded that approximately up to 60% of IBDV
isolates worldwide belong to the vvIBDV genotype of the virus. Since then, several studies
have addressed the evolution of IBDV around the world, focusing on the emergence of
variants [13], recombinant [14,15], and reassortant strains of the virus [16,17].

An Italian IBDV strain (ITA strain), responsible for the subclinical disease associated
with a severe immunosuppression status, has been recently detected [18,19]. Whole genome
characterization has evidenced that ITA is genetically different from classical IBDV strains.
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It has been classified into genogroup 6, together with a few other strains detected in Saudi
Arabia and Russia [20].

There is evidence that good management practices, based on the “all in/all out”
application, associated with cleaning and disinfection practices of houses, can control the
virus infection between production cycles. However, these measures are not definitive
without a choice of suitable vaccine programs related to the epidemiological situation of
the geographic area. This review aims to provide an oversight of IBDV, mainly focusing on
the immunosuppressive effect of the IBDV and the aspects related to the application of a
successful vaccine strategy to overcome the obstacles posed by maternal immunity and
IBDV variants.

2. Etiology

IBDV is a double-stranded non-enveloped RNA virus belonging to the Birnaviridae
family, Avibirnavirus genus [21]. On the basis of virus neutralization tests two serotypes
have been recognized: serotypes 1 and 2. Both serotypes can naturally infect chickens,
turkeys, ducks, guinea fowls, and ostriches, although only serotype 1 has been reported as
pathogenic for chickens [2].

The IBDV genome consists of two segments of double-stranded RNA. The larger
fragment, A, encodes viral proteins VP2, VP3, VP4, and VP5, while the smaller fragment, B,
encodes VP1, the RNA-dependent RNA polymerase [2]. The conclusive cleavage of VP2,
a capsid protein of IBDV containing major immunodominant epitopes and stimulating
the production of neutralizing antibodies against IBDV, is of primary importance in the
replicative process of the virus [22]. This domain, due to the presence of major hydrophilic
peaks, A (212–224 aa) and B (312–324 aa), undergoes possible mutations that can influence
virulence, tissue culture adaptation, and antigenic properties of the virus, thus rendering
several commercial IBD vaccines ineffective [23,24].

In accordance with their pathogenicity and antigenicity characteristics, IBDVs have
been traditionally grouped into four phenotypes: classic, variant, very virulent, and attenu-
ated [25].

With the emergences of novel strains produced by continuous mutations and recombi-
nation, defining new IBDV strains with traditional descriptive classification has become
increasingly difficult. Consequently, IBDV has been classified into seven genogroups based
on the characteristics of the amino acids in the hypervariable region of the capsid protein
VP2 of serotype 1 [26]. Recently, Wang et al. [27] proposed a new scheme based on the
molecular characteristics of both VP2 and VP1 capsid proteins, encoded by segments A
and B, respectively. Following this scheme, IBDV can be categorized into nine genogroups
of A and five genogroups of B, and the genogroup A2 can be further divided into four
lineages. The classic, variant, very virulent, and attenuated phenotypes correspond to the
A1B1, A2B1, A3B2, and A8B1 genotypes.

3. Clinical Signs

The acute form of IBDV occurs usually after 2–3 days of incubation in 3–6-week-old
chickens, and it is characterized by sudden onset of depression, expressed by head resting
on the litter [28], polyuria, ruffled feathers, dehydration, and death. At times, chickens show
vent pecking due to the discomfort caused by the increased size of the bursa of Fabricius.

Older birds usually develop subclinical forms, although a recent acute outbreak has
been reported in Nigeria in 24-week-old hens vaccinated against IBD [29]. Morbidity
varies according to the strain involved and can reach 100% in highly susceptible groups,
while mortality rates may peak at 20–30% in outbreaks caused by classical IBDV [2].
Nowadays, the most common form of IBDV infection is subclinical, but the impact on
growth performance is still high and mortality can range from 5% to 30%, depending
on the affected birds’ degree of protection and/or the strains involved. Weight loss and
increased food conversion ratio (FCR) have been reported following IBDV-associated
immunodeficiency, due to susceptibility to secondary infections [30,31].
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4. Macroscopic and Microscopic Lesions

Birds suffering from acute-form IBDV are dehydrated and may present petechiae in
the pectoral and thigh muscles, likely due to coagulation disorders [32]. The most charac-
teristic lesion is an enlarged bursa with yellowish transudate, which may also cause urate
deposits in kidneys, leading to dehydration and/or ureter blockage [33]. Occasionally,
hemorrhages are evidenced in proventriculus mucosa and throughout the bursa of Fabri-
cius. Histological examination indicates marked oedema located in the subserosal and
interfollicular spaces. As the infection progresses, bursal lymphocyte necrosis also advances
towards the cortex. Subsequently, heterophils and reticuloendothelial cells replace necrotic
lymphocytes in follicles that at times show the formation of cysts [34]. The proliferation
of cortico-medullary epithelium of bursal follicles can create glandular-like intrafollicular
structures (Figure 1A,B) [35]. VvIBDV strains are known to produce severe lesions also in
non-bursal lymphoid organs, especially in the thymus, spleen, and cecal tonsils, likely due
to the action of the virus at these levels [36]. Lymphocytic depletion, both in the cortex and
the medulla of the thymus, is caused by apoptosis as well as necrosis, clearly highlighted
by electron ultrastructural examination [37] (Figure 2). An immunohistochemical study has
revealed virus-antigen positive epithelial reticular cells in the thymus medulla, indicating a
possible viral direct action [38], although a TNF (Tumour Necrosis Factor) action could not
be excluded [39].
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Figure 2. Electron microscopy. Thymus. Apoptotic lymphocytes with crescent-like chromatin accu-
mulations beyond the nuclear membrane (B). Nuclei transformed in round apoptotic bodies are also 
evident (A) [37]. 
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of IBDV, and surface immunoglobulin M (sIgM) is the cellular receptor, firstly described 
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outer membrane, cannot enter the target cells directly by membrane fusion and different 
mechanisms as the cellular membrane perforation and conformational alteration have 
been hypothesized to explain the viral passage across the membrane [43]. In an IBDV in-
fection, a capsid-associated peptide was demonstrated to have permeabilization activity, 
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NN1172, was able to produce the TLR3-IFN-α/β pathway, macrophage activation, and the 
Th1/2 cytokine expression stronger than the B87, a vaccine-attenuated strain. 

T lymphocytes, detected in the first stage of infection around the IBDV infected B 
cells, upregulate gene-expressing cytokines, responsible for macrophage activation and 
the production of IFN-γ, TNF, and NO (nitric oxide), exacerbating the bursal lesions [51]. 
In addition, IFN-γ appears to produce apoptosis in infected cells and in healthy B ones 
surrounding them [52,53]. 

Eterradossi and Saif [2] observed the dissemination of the virus to other lymphoid 
organs, such as bone marrow, thymus, spleen, Peyer’s patches, cecal tonsils, and Hard-
erian glands in chickens affected by vvIBD. Cecal tonsils and bone marrow could support 
a successive replication of IBDV [54]. The presence of maternal antibodies influences 

Figure 2. Electron microscopy. Thymus. Apoptotic lymphocytes with crescent-like chromatin
accumulations beyond the nuclear membrane (B). Nuclei transformed in round apoptotic bodies are
also evident (A) [37].
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5. Pathogenesis of IBDV

After oral and/or nasal infection, the virus replicates in macrophages and lymphoid
cells associated with the gut mucosa [1]. A primary viremia, occurring through portal
circulation, leads IBDV in bursal follicles, where an extensive replication is observed in B
lymphocytes [40,41] (Figure 3). In particular, the IgM+ B cells serve as the primary targets
of IBDV, and surface immunoglobulin M (sIgM) is the cellular receptor, firstly described
for IBDV [42]. However, IBDV, as in the case of other non-enveloped viruses without an
outer membrane, cannot enter the target cells directly by membrane fusion and different
mechanisms as the cellular membrane perforation and conformational alteration have been
hypothesized to explain the viral passage across the membrane [43]. In an IBDV infection, a
capsid-associated peptide was demonstrated to have permeabilization activity, responsible
for producing pores in the endosomal membrane [44,45].
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While classical IBDV serotypes primarily attack immature B lymphocytes, vvIBDV
strains affect both immature and mature B lymphocytes [46].

After replication in bursal lymphocytes a second viremia, leading the virus to spread to
other organs such as muscle tissue and kidneys, produces clinical signs and death [2,10]. A
similar, but more dramatic, trend has been observed in infections caused by vvIBDV strains,
producing an increase in mortality, from 50% to 90% compared to classical serotypes, and a
more severe state of immunosuppression [47].

Recent studies have shown that the upregulation of proinflammatory cytokines and
chemokines, as well as the migration of inflammatory cells, display an unquestionable
role in IBDV pathogenesis [48,49]. Chen et al. [50] demonstrated that the vvIBDV, strain
NN1172, was able to produce the TLR3-IFN-α/β pathway, macrophage activation, and the
Th1/2 cytokine expression stronger than the B87, a vaccine-attenuated strain.

T lymphocytes, detected in the first stage of infection around the IBDV infected B
cells, upregulate gene-expressing cytokines, responsible for macrophage activation and
the production of IFN-γ, TNF, and NO (nitric oxide), exacerbating the bursal lesions [51].
In addition, IFN-γ appears to produce apoptosis in infected cells and in healthy B ones
surrounding them [52,53].

Eterradossi and Saif [2] observed the dissemination of the virus to other lymphoid
organs, such as bone marrow, thymus, spleen, Peyer’s patches, cecal tonsils, and Harde-
rian glands in chickens affected by vvIBD. Cecal tonsils and bone marrow could support
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a successive replication of IBDV [54]. The presence of maternal antibodies influences
pathogenesis in commercial chickens. The virus persisted up to 3 weeks in experimen-
tally infected specific-pathogen-free (SPF) chicks, but a shorter duration was noted in the
presence of maternal antibodies [55].

6. Immunosuppression

IBDV produces the depletion of B lymphocytes, the leading players in the humoral
immune response. In turn, it causes severe immunosuppression, making birds more sus-
ceptible to secondary infections and determining a poor vaccine response [56,57]. The
immunosuppressive effect of IBDV in response to NDV vaccination has been documented
over the years [58,59]. IBDV-infected chickens have also been reported to be more suscepti-
ble to other diseases, such as coccidiosis, gangrenous dermatitis, and salmonellosis [60–62].
Although B-lymphocyte re-population in the bursa occurs, the birds display a poor primary
antibody response until seven weeks post-infection [33,58]. It was shown that bird age and
strain pathogenicity affected bursal recovery [63], and the in ovo administration of classical
virulent IBDV caused severe depletion and apoptosis of thymocytes [64]. Additionally,
the downregulation of CD132+ and CD8+, upregulation of CD132+ and CD25+ T cells
in the bursa, and altered secretion and function of cytokines were also observed in the
thymus [65]. The recruitment of CD4 and CD8 T lymphocytes also promotes damage in the
BF by releasing cytotoxic cytokines, responsible for prolonged immune suppression after
IBDV infection [66].

Acute and Sub-Acute Influences of IBDV Infections in Single- and in Multiple Virus Infections

IBDV is one of the most known immunosuppressive (IS) viruses of chickens, including
also CAV, MDV, REV (Reticuloendotheliosis Virus), and ALV (Avian Leukosis Virus [67–69].
The presence of IS viruses in commercial poultry, especially in an unfavorable management,
plays a negative role in growth performances and animal health. IBDV co-infection is seen
responsible for the aggravation of the pathogenicity caused by poultry respiratory viruses,
such as avian influenza virus, subgroup H9N2, and Newcastle disease virus [70]. Chickens
infected with adenovirus and IBDV had more severe pneumonic lesions and tracheitis
than birds infected with a single virus [71]. Further, day-old SPF chicks coinfected with
IBDV and fowl adenovirus, serotype 4 (FAdV-4), showed increased mortality, enhanced
clinical symptoms, and more severe tissue lesions. The expression of interleukin (IL)-6,
IL-1β, interferon-γ, and mRNAs in the IBDV and FAdV-4 coinfected chickens was also
delayed, and the antibody response levels were significantly lower compared with the
FAdV-4 infected chickens, indicating that the IBDV infection could significantly promote
the pathogenicity of FAdV-4 and reduce the immune response in chickens [72]. Chicken
administrated IBDV vaccine, followed by S. Enteritidis infection, could cause severe effect
on the bursa of Fabricius, resulting in failure of systemic and mucosal antibody responses
to the S. Enteritidis and reduce its elimination and clearance [73]. Toro et al. [74] reported
that the effects immunosuppressive were even more pronounced in birds infected with
more than one IS viruses, as seen in IBDV associated with CAV infection [75] as well as
in combined infection with MDV and CAV [76]. Additionally, multiple infections with
CAV, IBDV, and adenoviruses, common on chicken farms, are often underestimated, due
to the similar subclinical evolution responsible for economic losses and lack of a suitable
diagnostic tool application [77]. In this respect, a multiplex RT-PCR assay combined with
fluorescence-labeled polystyrene bead microarray (MagPlex-TAG system) has been showed
to be a helpful tool to detect multiple infections due to IS such as IBDV, avian reovirus
(ARV), CAV, Marek’s disease virus (MDV), and reticuloendotheliosis virus (REV) [78].

7. Diagnosis

Clinical signs and post-mortem findings in chickens affected by acute form are suffi-
cient for a presumptive diagnosis, although laboratory confirmation is necessary especially
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in the subclinical disease, usually characterized by severe atrophy of bursa without the
presence of symptoms.

7.1. Virus Isolation

Isolation and identification of the virus is the most appropriate diagnostic tool, but it
cannot be applied routinely, because it is a time-consuming laboratory procedure. The most
sensitive diagnostic method for virus isolation is the inoculation of bursal homogenates
from IBDV-infected chickens into the chorioallantoic membrane of 9/10-day-old embry-
onated SPF chicken eggs. This method is suggested for vvIBDV that is not able to replicate
in conventional cell cultures, such as chicken embryo fibroblasts (CEF) or chicken em-
bryo kidney (CEK), unless the virus has previously undergone serial passages in the
embryos [79].

7.2. Detection of Viral Antigen

The most suitable procedures are agar gel immune diffusion (AGID) and antigen
capture enzyme-linked immunosorbent assay (AC-ELISA). Monoclonal antibody use could
be helpful in differentiating classic and variants strains. The one-step strip test based on the
use on colloidal gold-labelled monoclonal antibodies is recommended for quick diagnosis
in field, due to its high sensitivity and specificity [80].

7.3. Molecular Methods

Reverse transcriptase polymerase chain reaction (RT-PCR), nucleotide sequence analy-
sis, and multiplex and quantitative real-time RT-PCR (qRT-PCR) are the classic molecular
methods used for diagnosis. They are often combined to identify variable regions of the
VP2 gene for a more in-depth characterization of IBDV strains [81]. RT- PCR determines
the virus load in infected samples and the use of labelled probes further improves this
procedure, permitting a reliable differentiation of IBDV strains [82]. The restriction frag-
ment length polymorphism (RFLP) is currently considered an outdated approach since
restriction enzymes cannot distinguish accurately the subtypes. Rubinelli and Lin [83]
reported that real-time RT-PCR, targeting different regions of the IBDV genome, such as the
VP1, VP2, and VP4 genes, in association with melting curve analysis, is able to determine
up to a single nucleotide polymorphism and trace the diffusion of vvIBDV strains and of
atypical ones. Nowadays, the whole genome-sequencing approach represents a rapid and
reliable tool for isolate characterization, which allows for a greater understanding of viral
strains circulating in the countries [84,85].

7.4. Serological Diagnosis

The agar-gel precipitin (AGP) test or the antigen capture enzyme-linked immunosor-
bent assay (AC-ELISA) are the most common procedures used in IBDV diagnosis together
with the virus neutralization (VN) test. The ELISA is the most widely employed, since it is
quick, economical, and adaptive to computer software automation, but VN is considered
the gold standard, as it discriminates the antibodies following infections caused by IBDV
variants [86]. Serological tests, especially ELISA, are frequently used to determine the
effectiveness of vaccine-immune response and the level of maternally derived antibodies
(MDAs) [2]. In this regard, recently Gomez et al. [87] showed that the plants (Nicotiana
benthamiana) can be suitable platform for the production and assembly of subviral IBD
particles to be used as a reliable antigen in ELISA test.

8. Vaccination Strategies

Vaccination is an essential device for the prevention and control of IBD. Different
modified live vaccines (MLVs) have been developed and classified as mild, intermediate,
and intermediate plus, according to the degree of virus attenuation. Their effectiveness
depends upon their ability to break through maternally derived antibodies (MDAs), which
provide protection for chicks in the first 2–3 weeks, although it could interfere with an
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early vaccine administration [88]. A half-life of 6.7 days for IBDV-specific MDAs was
reported in slow-growing meat chicks and a shorter one (approximately 3 days) in broiler
chicks [89]. The MDA level could vary among hatches and among chicks from the same
hatches, and it is also influenced by management conditions [90]. The most common
method of IBDV prevention consists of the early administration of suitable attenuated
live vaccines, which do not interfere with chicks’ parental immunity and do not produce
significant bursal reactions [91]. Experimental conditions and field trials have shown that
humoral immunity following vaccination with a commercially available intermediate IBDV
vaccine is strictly associated with the bursal lesions [92,93]. Vaccination success is mostly
dependent on the MDA level, which, if it is below the breakthrough level of the vaccine,
allows the development of a protective level of IBDV antibodies without considerable
bursal lesions. Although agreeing that the administration of intermediate IBDV vaccines
was highly effective in SPF chickens, as demonstrated by clinical protection and antibody
response, Coletti et al. [92] stated that this protection could be poor in commercial chickens
depending on the degree of maternal immunity. On the other hand, vaccine-induced lesions
could be not differentiated from those produced by field virus infection [93]. However,
despite the limits associated with the use of IBDV-attenuated vaccines, they are commonly
administrated in 15/20-day-old chickens via drinking water, when the maternal immunity
is expected to be reduced. Recent field studies, performed in India by Ray et al. [94] on
the use of different strains of an attenuated live vaccine in commercial broilers, provide
a contrast to the common scientific knowledge that the live IBDV vaccine strains can be
inactivated or break through maternal immunity, causing permanent damage to the young
broiler chicken immune response, although it could be dependent on the vaccine strain.
Bursal lesion scores following live IBDV-attenuated vaccine, MB1 (derivative of the IBDV
MB strains), were lower in comparison to those reported for the immune complex vaccine
(Icx) and the conventionally used live IBDV vaccine (MB group). Additionally, the health
status and productive performances were also better in MB1 group.

Inactivated vaccines are usually administered in water-in-oil emulsions, as supporting
adjuvant, and in repeated injections to boost up priming vaccination with attenuated live
IBDV vaccines. Their use is common for breeder chickens in order to provide immunity to
the progeny against early infection with IBDV [95,96]. Thanks to advances in biotechnolo-
gies, new vaccines have been developed in recent years to overcome the difficulties related
to IBD vaccination and to create successful control strategies.

8.1. Subunit Vaccines

The VP2/3/4 polyprotein or VP2 (rVP2) alone has been encoded in different expression
systems, such as Baculovirus [97,98], Saccharomyces cerevisiae [99], Escherichia coli [100],
Lactococcus lactis [101], Pichia pastoris [102], or Fowlpox virus [103]. Although experimental
trials have demonstrated that these kinds of vaccines can provide good protection, they
need to be administered parenterally with adjuvants and recalls must be carried out, which
involves additional costs [10,104]. However, recombinant vaccines based on VP2 expressed
in E. coli, P. pastoris, and Baculovirus have been commercially licensed and used in some
countries [88,102].

8.2. DNA Vaccines

Another promising approach is a DNA vaccine based on plasmids expressing the
polyprotein gene [105,106] or VP2 gene [107] and able to promote both humoral and cell-
mediated immune response with variable efficacy, although resulting in bursal lesions.
A priming intervention in ovo or on day-old chicks followed by a booster of inactivated
vaccine resulted in satisfactory immune protection in offspring [108]. To improve the
effectiveness of this vaccine, the incorporation of cytokines genes, such as IL2, IL6, IL7, and
IL18, IF γ, has been considered [109,110]. The quantity of DNA used in the priming vaccine,
the challenge strain of the viruses, bird age, and the way of administration are fundamental
factors influencing the vaccine’s effectiveness, which is still experimental [104].
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8.3. Immune-Complex Vaccines

A mention should be reserved for the immune-complex vaccine, consisting of a mixture
of IBDV intermediate vaccine associated with antibodies [111]. It is suitable for in ovo
automated administration by injection through the eggshell on the 18th day of incubation,
when eggs are moved to hatching trays. The immune-complex vaccine can provide the so-
called “intelligent vaccination” against IBDV, ensuring the development of active immunity
in chicks with the continuous release of the virus by dendritic cells and macrophages until
the MDAs disappear, avoiding the immunity gap [112,113]. Recently, in order to evaluate
possible changes in immunological parameters in SPF chicks vaccinated against infectious
bronchitis (IB), following the use of different IBDV vaccines, Lupini et al. [18] showed
that the groups administered with an immune-complex vaccine exhibited lower IBDV
antibody titers compared to those given a vaccine consisting of a dual recombinant herpes
virus of turkey (rHVT) expressing both VP2 protein of IBDV, and F protein of Newcastle
disease virus.

8.4. Live Viral Vector Vaccines

Vector vaccines are genetically engineered vaccines in which a gene from one organism
genome (donor) is inserted into another organism genome (vector) to produce an active
immune response to both agents [114]. Concerning IBDV, several viruses have been
used as vectors of the capsid protein VP2: Baculovirus [98], Avian adenoviruses [115], and
Herpesvirus of turkey (HVT) [116]. In this respect, HVT has been successfully used, even in
the presence of MDAs [117,118]. Prandini et al. [118], in particular, studied the effect of the
HVT vector vaccine (vHVT-IBD) on circulating B cells and the ability to induce protection
against vvIBDV challenge application in commercial pullets, comparing an intermediate
and intermediate plus IBD vaccine based on the strains D78 and 228E, respectively. IBD
live-vaccinated groups showed significantly percentages of circulating B cells lower than
vHVT-IBD and non-IBD-vaccinated groups. Moreover, ELISA antibody levels against
NDV, IBV, and EDS were considerably higher in the vHVT-IBD and non-vaccinated control
groups compared to those observed in IBD-intermediate plus-vaccinated and intermediate-
IBD vaccine groups. After the vvIBDV challenge, the virus was detected by qRT-PCR in the
bursa tissue of all vvIBDV-challenged birds, but the most predominant virus in the bursa
of Fabricius of IBD live-vaccinated pullets was the vaccine strain. In contrast, the vvIBDV
challenge strain was prevalent in the SPF and vHVT-IBD-vaccinated and challenged birds,
suggesting that the IBD live vaccine may control vvIBDV replication by direct competition
toward the same target cell receptors or by a more effective activation of innate immunity,
as speculated by Ramon et al. [119].

Over the years, a number of VP2-based HVT-IBD vector vaccines, applied in ovo or
via the subcutaneous/intramuscular route in day-old chicks, have been developed and
licensed in various countries, and data on field efficacy have been reported [120,121].

Vaccinated chickens produce anti-VP2 antibodies that appear to be effective against
challenges by classic, variant, and vvIBDV strains [122,123]. Nowadays, HVT-IBDV vac-
cines seem to be the most suitable alternative to conventional IBD live vaccines since
they do not interfere with MDAs and have an improved safety profile compared with
live vaccine.

9. Conclusions

Years after its appearance, IBDV is still a problem causing economic losses in the
poultry industry worldwide. The extensive application of vaccination programs has created
a selective pressure responsible for the onset of an unexpectedly wide variety of variants, as
recently reported in Central Europe [124,125], some of which with established phenotypical
associations, producing a further challenge in the choice of suitable vaccines. Severe forms
of the disease, caused by vvIBDV strains, have been also reported worldwide, although the
subclinical IBD is more common. Moreover, some epidemiological aspects related to the
spread of the virus, such as the possible roles of vectors, e.g., dogs and wild birds [126,127],
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are not fully clarified. Although numerous vaccine solutions have been developed over
the years, the goal of an optimal large-scale vaccine strategy has not been achieved yet. It
is quite obvious that the choice and application of vaccines should be dependent on the
diagnostic screening to assess the predominant variants in a defined geographical area and
the possible presence of other immunosuppressive viruses, as well as a strict application of
biosecurity standards to control the virus spread.
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