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Simple Summary: Toxoplasma gondii is considered one of the most successful parasites in the world,
potentially infecting any vertebrates, including humans. Its complex life cycle encompasses many
transmission pathways, which remain enigmatic in northern ecosystems. The aim of our study was
to assess Canada lynx as potential reservoir of and sentinel for T. gondii by (1) using serological and
molecular assays to detect T. gondii, (2) determining if lynx are definitive hosts for the parasite, and
(3) identifying potential risk factors that may contribute to lynx exposure. For the first time, T. gondii
DNA was found in tissue and feces of Canada lynx, indicating that they can be both intermediate and
definitive hosts in northern regions. Our findings would help identify high-risk regions for infections
in northern Canada, with lynx serving as indicator for potential human exposure of T. gondii.

Abstract: Toxoplasma gondii is a zoonotic parasite globally infecting a wide range of species, including
humans. Felids are the only known hosts that can excrete environmentally resistant oocysts into
ecosystems. In boreal regions, Canada lynx (Lynx canadensis) are sought by hunters primarily for
their fur, and they are occasionally eaten. We examined carcasses salvaged from trappers from boreal
regions of eastern (n = 97) and western (n = 357) Canada. We detected T. gondii antibodies in fluid
from thawed heart tissue using an enzyme-linked immunosorbent assay, DNA in brain and heart via
magnetic capture and real-time PCR assay, and presence of DNA in feces using a real-time PCR with
melt curve analysis. We detected antibodies against T. gondii and DNA in tissues in 24% and 19% of
lynx, respectively. One lynx was positive for DNA of T. gondii in feces, which could indicate intestinal
infection and potential for shedding oocysts. Our results indicate that lynx may be a useful sentinel
species for monitoring environmental circulation of T. gondii in northern boreal regions and may pose
a risk for transmission to other wildlife and to people handling or consuming lynx.

Keywords: Canada lynx; ELISA; MC-qPCR; melt-curve analysis; sentinel species; Toxoplasma gondii;
zoonosis
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1. Introduction

Toxoplasma gondii is a global, zoonotic protozoan parasite that is capable of infecting
and adversely impacting a wide range of vertebrates, especially if the immune system is
compromised or if a mammal becomes infected while pregnant [1]. Three infective stages
characterized T. gondii: sporulated oocysts, bradyzoites, and tachyzoites. The life cycle
of this parasite is complex; felids are the only natural definitive hosts excreting environ-
mentally resistant oocysts in their feces, and virtually all warm-blooded animals may act
as intermediate hosts, following consumption of sporulated oocysts (from contaminated
water/soil) or tissue cysts containing bradyzoites in other infected hosts [2]. Therefore,
once introduced into a food web, T. gondii can be maintained through trophic interactions
(such as predation) and vertical transmission (tachyzoites from mother to foetus).

In addition to the domestic cats as definitive hosts, wild Felidae have the potential to
shed millions of oocysts into the environment [3]. For instance, following a waterborne
outbreak of toxoplasmosis in humans [4], T. gondii was isolated from feces of two naturally
infected cougars (Puma concolor) from British Columbia, Canada [5]. Ingestion of infected
tissues is likely the most efficient means of transmission of T. gondii among felids [6,7].
Canada lynx (Lynx canadensis) likely acquire infection from consuming infected prey, which
themselves may become infected by consumption of oocysts in the environment or possibly
by vertical transmission. Lynx primarily prey on snowshoe hares (Lepus americanus) and
red squirrel (Tamiasciurus hudsonicus). Although infrequent, lynx can also demonstrate
cannibalism or scavenging behavior, especially in years of food shortage [8–10]. Lynx are
hunted primarily for their fur, but are also occasionally consumed by local people [11].
Thus, infected lynx could represent a risk of transmission of T. gondii to people that consume
their meat (containing tissue cysts) if not thoroughly frozen or cooked.

In the Nearctic boreal region, Canada lynx are often the only wild felid present. To
date, efforts to detect oocysts in feces of Canada lynx have not been successful [12], possibly
due to the short period of time that oocysts are shed, and the difficulty in detecting the
small oocysts on routine fecal examination. Previous studies have reported Canada lynx
seropositive for T. gondii, indicating exposure to the parasite [12–14], but active tissue
infection based on detection of DNA in tissues has not been demonstrated. Therefore,
this study was conducted with the primary objective to understand whether lynx could
act as a definitive and intermediate host for, as well as sentinels of, T. gondii in northern
Canada. We performed an enzyme-linked immunosorbent assay (ELISA) on fluid from
thawed heart; magnetic capture and a real-time (MC-PCR) technique on tissues; a real-time
quantitative PCR (qPCR) assay with fluorescent melting curve analysis (MCA) on fecal
samples that can detect, differentiate, and identify DNA from multiple coccidian species,
including T. gondii [15]; and fecal flotation on suspicious samples. Association between
T. gondii exposure and potential risk factors was also assessed.

2. Materials and Methods
2.1. Sample Locations and Lynx Sampling

During the fur trapping seasons of 2015–2020, we collected carcasses of skinned lynx or
gastrointestinal tracts (GIT) from licensed fur trappers in boreal regions of eastern (Labrador
and Québec, n = 97) and western (Yukon, n = 357) Canada (Figure 1). Carcasses and GIT
were kept frozen at −20 ◦C until shipped to the Department of Environment in Whitehorse,
Yukon; the Western College of Veterinary Medicine in Saskatoon, Saskatchewan; the Faculté
de Médecine Vétérinaire in Saint-Hyacinthe, Québec; the Nunavik Research Centre in
Kuujjuaq, Québec; or the wildlife division office at the Department of Fisheries, Forestry
and Agriculture in Goose Bay, Newfoundland and Labrador. We collected whole hearts,
brains, and feces, and recorded sex, age, body condition, and harvest location when possible.
We determined sex during necropsy by inspecting internal reproductive organs [16]. We
counted cementum annuli (Matson’s laboratory, Manhattan, Montana, USA) to determine
age, or used the total body length when not possible. We classified lynx as juveniles
(≤1 year old) and adults (≥2 years old) [17]. A body condition index (BCI) was obtained by
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visually estimating the relative amount of fat deposits, using a scale of 1–3 as follows: 1, no
to very little visceral fat deposits in abdominal and peritoneal cavity; 2, moderate visceral
fat deposits; 3, abundant visceral fat deposits, as described in Bouchard et al. (2022) [18].
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2.2. Serological Analysis

Since commercially available serological assays are not validated in lynx, we evaluated
(using a subset of samples) heart fluid dilutions for two different techniques, ELISA and
the indirect fluorescent antibody test (IFAT), using magnetic capture (MC)-qPCR as the
gold standard. As validated in Sharma et al. (2019) [19] and described by Bouchard et al.
(2022), we detected antibodies to T. gondii in fluid from thawed hearts (diluted 1:2) using the
commercially available ID Screen® Toxoplasmosis Indirect Multi-Species enzyme-linked
immunosorbent assay (ELISA) (IDvet, Grabels, France). Heart fluid was collected from the
heart of individual lynx and processed as per the work of Bouchard et al. (2022) before
being transferred to a labeled 1.5 mL Eppendorf tube. Heart fluids were stored at 4 ◦C for
use within the next 3 days or at −20 ◦C until used for testing.

2.3. Molecular Analysis
2.3.1. Detection of DNA of T. gondii in Tissue Samples

As validated by Opsteegh et al. (2010) [20] and described by Bouchard et al. (2022),
we extracted sequence-specific DNA of T. gondii from whole heart and brain combined
(or heart only if brain was not available) for each lynx using the MC-qPCR technique to
determine infection status using the Tox 9F (5′-aggagagata tcaggactgtag-3′) and Tox 11R
(5′-gcgtcgtctc gtctagatcg-3′) primers, for the detection of the 188 bp T. gondii sequence
within the 529 repeat-element. We quantified parasites using the following formula (1):

log10 (tachyzoites) = (43.3 − Cq)/3.07) (1)
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We expressed this value as the number of tachyzoite-equivalents (TE) and calculated
the intensity of infection by dividing TE by the weight of the tissue processed, expressed as
tachyzoite equivalents per gram (TEG) [21].

As described in the work of Bouchard et al. (2022), we sent frozen aliquots of template
DNA (50 µL) to a specialized laboratory (Department of Microbiology, University of
Tennessee, Knoxville, TN, USA) for further genetic characterization, using a multiplex
multilocus nested PCR-RFLP with ten genetic markers (SAG1, SAG2, SAG3, BTUB, GRA6,
c22-8, c29-2, L358, PK1, and Apico) [22].

2.3.2. Detection of DNA of T. gondii in Fecal Samples

Genomic DNA from 300 mg of fecal sample was extracted using the Fast-DNA kit
for feces (MP Biomedicals, Solon, OH, USA), followed by a PCR Purification kit (Qiagen,
Valencia, CA, USA) to remove any additional inhibitors. We detected coccidian species
in each fecal sample using a universal coccidia primer cocktail designed to amplify a
≈315 bp region of 18S rDNA in a real-time quantitative PCR assay [15]. Genetically distinct
coccidian species can be differentiated by the melt curve shape and the PCR product
melting temperature (on the basis of the nucleotide sequence, length, and G-C content) and
identified by comparison to in-run controls and/or sequencing [15]. We performed all PCR
analyses as described previously [15], except for a few changes. For positive controls, we
included wells containing DNA from T. gondii (genomic, American Type Culture Collection
(ATCC), Manassas, VA, USA), Cryptosporidium parvum (genomic, ATCC, and Cystoisospora
(genomic, ATCC). We also included a negative control, two no-template controls, and
a standard curve consisting of DNA from Hammondia (105 to 101 oocysts) provided by
the Centre for Food-Borne and Animal Parasitology (CFAP). All samples were run in
duplicate. Melt curves from positive samples were visually compared to the controls for
preliminary identification, and amplified DNA from positive reactions were sequenced
(Macrogen, Seoul, South Korea) for confirmation using original primers. Forward and
reverse sequences were assembled with PreGap4 and Gap4 (Staden Package) and consensus
sequences were compared with reference sequences in GenBankTM using the nucleotide
Basic Local Alignment Search Tool (BLASTN, https://blast.ncbi.nlm.nih.gov/, accessed
on 31 March 2021).

2.4. Fecal Flotation

To detect oocysts of T. gondii in feces, fecal flotation was performed. We thawed,
weighed, and mixed 4 g of feces thoroughly in a paper cup with 40 mL of Sheather’s
sucrose solution to create a homogenized mixture. After sieving the fluid through a
cheesecloth into a second cup, we poured a 10 mL aliquot (≈25%, representing 1 g of feces)
into a test tube then topped it up with ≈5 mL of Sheather’s sucrose solution to form a
slight convex meniscus. We placed a coverslip on top and centrifuged the tube at 491 rcf
for 10 min, after which we lifted the coverslip and placed it on a glass slide. We viewed
slides under the microscope at 10–40X magnification and identified coccidian oocysts on
the basis of size and morphology [23].

2.5. Statistical Analysis

The agreement between serological and molecular tests, the association between
quantitative MC-qPCR and ELISA results, and the calculation for prevalences [24] were
performed as per the work of Bouchard et al. (2022). We used the term “prevalence”
to indicate proportion of positive results (positive on at least one test). We built binary
logistic regression models to test for (1) the presence of antibodies to T. gondii (sero-positive
or sero-negative), (2) the presence of T. gondii DNA (tissue-positive or tissue-negative),
and (3) the presence of antibodies to and/DNA of T. gondii (at least positive on one test
or negative on both tests). We evaluated age-class (juvenile and adult), sex (female and
male), body condition score (low, medium, and high), and location (eastern or western
Canada) for inclusion in our final multivariable model. Stepwise forward multivariable

https://blast.ncbi.nlm.nih.gov/
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regression analysis was performed to include risk factors and confounders in the final
model. Variables associated at a significance level of p < 0.05 were retained in the final
model. Goodness-of-fit of the final model was evaluated by the Hosmer Lemeshow test.
Finally, we used a generalized linear model to evaluate the effects of predictors on the
infection intensity. We performed all statistical analysis using IBM SPSS (ver. 24; Armonk,
New York, NY, USA).

3. Results
3.1. Descriptive Analysis

In total, 409 whole lynx carcasses and 45 GIT (28 from southern QC, 17 from Yukon)
were collected from the years 2015 to 2021. Male to female ratio was 3:2 (238 of 397 (60%)
vs. 159 of 397 (40%); information on sex was not available for 57 lynx). BCI score was
determined for 303 lynx; the highest proportion (61%, 186 of 303) of lynx had a medium
BCI score, followed by low (30%, 92 of 303) and high (8%, 25 of 303). More juveniles than
adults were collected (64% vs. 36%; age was determined only for 100 lynx). Most lynx (79%:
357 of 454) were from western Canada. Moreover, the number of lynx varied annually
(range = 28–137), with no carcass submitted during the winters of 2015–2016 and 2020–2021
from eastern Canada.

3.2. Cut-off Values and Best-Performing Serological Assay

We determined dilution cut-off values and best-performing serological test as per the
work of Bouchard et al. (2022) (Supplementary Tables S1 and S2).

3.3. Association between serological and molecular tests

We found that 308 lynx (75%) were negative on both serology and PCR, 75 (18%)
were positive on both, 22 (5%) were seropositive and tissue negative, and four (1%) were
seronegative but tissue positive. Using the McNemar chi-squared test (X2

1 = 11.1, p < 0.001,
n = 409), we found a significant difference between serological and molecular results; a
Kappa test was thus not performed [25]. No correlation (Spearman’s correlation coefficient
= −0.064, p = 0.522) was found between antibody concentration (S/P%) and quantification
cycle (Cq) values on MC-qPCR.

3.4. Prevalence and Potential Risk Factors Associated with T. gondii

Overall, seroprevalence (exposure to T. gondii indicated by presence of antibodies) was
24% (95% CI = 20–28), and tissue prevalence (infection of T. gondii indicated by presence of
DNA) was 19% (95% CI = 16–23) (Table 1). Prevalence of T. gondii (on the basis of positivity
on at least one test) was 25% (95% CI = 21–29). Results of univariate logistic regressions
(for the three models) are given in Table 1. Because a significant difference was observed
between the results of ELISA and MC-qPCR, and due to higher sensitivity when using both
tests together, multivariate analysis was performed only for the third model (positive on
ELISA and/or MC-qPCR).

In general, prevalence was higher in lynx in eastern (41%, 95% CI = 30–52) as op-
posed to western (22%, 95% CI = 17–26) Canada. Prevalence was higher in adult (59%,
95% CI = 42–74) as opposed to juvenile (8%, 95% CI = 4–18) lynx. Due to a large num-
ber of missing values for age (354 of 454) and BCI (151 of 454), only sex and location
were included in the multivariable analysis, which included 360 complete observations.
The odds of being positive to T. gondii were two times (OR = 1.83, 95% CI = 1.10–3.06,
p = 0.021) higher in male than female lynx, and two and half times higher in lynx from
eastern (OR = 2.49, 95% CI = 1.41–4.40, p = 0.002) than those from western Canada (Table 2).
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Table 1. Univariate analysis on variables associated with Toxoplasma gondii sero-positivity, tissue positivity, and overall positivity among Canada lynx (Lynx canadensis).

Seroprevalence 1 Tissue-Prevalence 2 Prevalence 3

Variable % (95% CI); P/T OR
(95% CI) p Value % (95% CI); P/T OR

(95% CI) p Value % (95% CI); P/T OR
(95% CI) p Value

Sex Female 4 19 (13–26); 27/145 16 (11–23); 23/145 20 (14–27); 29/145
Male 29 (23–35); 62/215 1.8 (1.1–3) 0.029 23 (18–29); 49/215 1.6 (0.9–2.7) 0.11 30 (24–36); 64/215 1.7 (1.0–2.8) 0.039

Age-class Juvenile 4 8 (4–18); 5/60 7 (3–16); 4/60 8.3 (4–18); 5/60
Adult 59 (42–74); 20/34 15.7 (5.0–49.2) <0.001 44 (29–61); 15/34 11.1 (3.3–37.4) <0.001 59 (42–74); 20/34 15.7 (5.0–49.2) <0.001

BCI Low 4 13 (8–21); 12/92 11 (6–19); 10/92 13 (8–21); 12/92
Med 19 (14–26); 36/186 1.6 (0.8–3.2) 14 (10–20); 27/186 1.4 (0.6–3.0) 20 (15–26); 37/186 1.7 (0.8–3.4)
High 32 (17–52); 8/25 3.1 (1.1–8.8) 0.094 20 (9–39); 5/25 2.1 (0.6–6.7) 0.468 32 (17–52); 8/25 3.1 (1.1–8.8) 0.091

Region Eastern 41 (30–52); 28/69 32 (22–44); 22/69 41 (30–52); 28/69
Labrador, NL 33 (14–61); 4/12 33 (14–61); 4/12 33 (14–61); 4/12
Abitibi, QC 36 (24–50); 18/50 24 (14–37); 12/50 36 (24–50); 18/50
Kuujjuaq, QC 86 (49–97); 6/7 86 (49–97); 6/7 86 (49–97); 6/7

Region Western 4

Yukon
20 (16–25); 69/340 2.7 (1.6–4.6) <0.001 17 (13–21); 57/340 2.3 (1.3–4.2) 0.004 22 (17–26); 73/340 2.4 (1.4–4.3) 0.001

Total 24 (20–28); 97/409 19 (16–23); 79/409 25 (21–29);
101/409

1 Heart fluid was tested for exposure to T. gondii using ELISA; 2 tissues (heart and/brain) were tested to detect DNA of T. gondii using MC-qPCR; 3 animal was considered positive if
found positive on at least one test; 4 reference category; P = positive on particular test, T = number of samples tested, 95% CI = 95% confidence interval, OR = odds ratio.
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Table 2. Multivariable analysis on variables associated with Toxoplasma gondii positivity among
Canada lynx (Lynx canadensis).

Variables (n = 360) Odds Ratio 95% CI p-Value

Sex Female 1 0.021
Male 1.83 1.096–3.055

Region Western 1 0.002
Eastern 2.49 1.409–4.404

n: complete observations; 1 reference category.

3.5. Quantification of Infection Intensity and Risk Factors

A total of 72 observations with complete data were included in our generalized linear
model, with a mean infection intensity of 4361 TEG (95% CI: 2193–6584). Since more than
10% missing values were observed for age and BCI, only sex and region were included.
The mean infection intensity for the western (n = 51) and eastern (n = 21) regions were
5479.14 (2233.25–8725.03) and 1645.05 (173.10–3117.00), respectively. The mean infection
intensity for males (n = 49) and females (n = 23) were 4389.69 (1274.28–7505.11) and 4299.43
(800.48–7798.39), respectively. Our generalized linear model revealed a significant associa-
tion between region and TEG (Table 3).

Table 3. Potential risk factors for infection intensity (tachyzoites equivalent per gram; log transformed)
of Toxoplasma gondii in Canada lynx (Lynx canadensis).

Model β (SE) 95% Wald CI Wald
Chi-Squared df p-Value

Sex, female 0.345 (0.241) −0.128 0.818 2.039 1 0.153
Region,
eastern

− 0.710
(0.251)

−1.202
−0.218 7.991 1 0.005 *

* Statistically significant at p < 0.05.

3.6. CoproPCR and DNA Sequencing

Of 345 fecal samples tested, only one lynx from eastern Canada tested positive for
T. gondii on real-time PCR with melt-curve analysis following sequencing. The sequence
was trimmed to ensure that any low-quality portions were not included, and the BLAST
result gave 98.8% similarity with T. gondii. The PCR product melting temperature was
similar to the in-run controls of T. gondii genomic DNA (83 ◦C). Of 17 lynx tissue samples
(Cq value < 30), none amplified following sequencing.

3.7. Fecal Flotation

We tested 62 samples following suspicious results on melting-curve analysis. In the
one positive sample following sequencing, we observed a dozen oocyst-like structures
resembling T. gondii (Figure 2) with similar shape and size (spherical, 10–12 um).
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4. Discussion

Our study supports the fact that Canadian lynx are both intermediate and definitive
hosts for T. gondii; they may thus play an important role in contaminating the freshwater
environments and infecting wildlife [26,27] in boreal regions. They may also pose a risk for
transmission to people consuming lynx. These findings provide critical data in understand-
ing better the epidemiology of T. gondii in northern ecosystems and highlight the impact
lynx may have, which was previously unknown, on contaminating the environment with
oocysts in northern regions and maintaining transmission by infecting their prey.

We detected DNA of T. gondii in lynx tissues for the first time, which indicates that
lynx are suitable intermediate hosts for T. gondii. Lynx are occasionally consumed by
hunters and trappers which, in addition to skinning the animal for fur, may result in the
pathway for transmission to humans [11,28]. Most reports of T. gondii in wild felids are
from serosurveys [7], which give little information on tissue infection. Detection of T. gondii
DNA in tissues is thus of greater significance from a food safety perspective. As we only
tested brain and heart, future research should target consumed tissue (i.e., skeletal muscle)
and consumption trends in order to provide more insight on the food safety risks in this
species. Canada lynx can also be preyed on by coyote (Canis latrans), wolverine (Gulo gulo),
wolf (Canis lupus), cougar, and fisher (Pekania pennanti) [29], thus representing a risk of
transmission to other carnivore species and maintaining T. gondii in wildlife populations
regardless of shedding. However, further studies are needed to determine the degree of
infectivity of the parasite in tissue cysts from these lynx populations.

Our finding of DNA of T. gondii in one sample of feces emphasizes lynx as a potential
source of oocyst contamination in freshwater and snowmelt run-off in boreal regions of
Canada, as well as transporting oocysts north through marine currents [30]. Multiple oocyst-
like structures of around 10–12 um fit the description of T. gondii but lacked definition.
However, we should be cautious when interpreting these results, and the negative results
on fecal flotation on 61 other individuals since oocysts are likely shed only on first exposure
and for only a few weeks in the lifetime of the animal. Moreover, the intestines and
feces underwent ≥1 freeze–thaw cycles that could have affected the structural integrity of
the oocysts. Of note, the fragment of the sequence analyzed was non-discriminatory for
T. gondii and Neospora caninum, meaning that DNA material of N. caninum could have
been found in feces following ingestion of N. caninum oocysts through canid prey or feces.
Nevertheless, T. gondii DNA would be more likely, and we are confident in our finding
since the melting temperature was a match to the control, our sequences were of high
quality, and the BLAST match was above 98%. Lynx may therefore be a significant reservoir
and useful sentinel species for environmental circulation in boreal regions.

We found some disagreement following serological and molecular testing. As is often
the case, seroprevalence tends to be higher than tissue prevalence [18,31,32]. Adult lynx
had higher seroprevalence and tissue prevalence compared to juveniles. This likely reflects
an increase in exposure with age due to the persistence of both tissue cysts and antibodies,
often described in other wildlife studies [18,33,34]. Low exposure in juveniles suggests
that vertical transmission (mother to fetus) might not represent an important route of
transmission in lynx [6]. Moreover, male lynx were found to be at higher risk of being
positive to T. gondii compared to females. This may be due to males requiring greater food
intake, thus increasing the chance of ingesting contaminated prey, or differences in diet
between the sexes.

Higher seroprevalence and tissue prevalence were observed in eastern compared
to western Canada. Seroprevalence of 41% in eastern regions was quite similar to 36%
reported in a previous study on T. gondii in lynx from the boreal region of Québec, eastern
Canada [14]. However, Simon et al. (2013) found a seroprevalence of 14% in the same
region, which suggests spatio-temporal dynamics that may be a result of variation in prey–
predator cycles [12]. Methodological differences between studies (modified agglutination
tests vs. ELISA) could also explain these divergent results, although they both proved
to be good serological techniques to detect T. gondii antibodies [21,35]. Our finding of
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20% seroprevalence in lynx from the Yukon is comparable to 15% in previous work from
Alaska [11]. These results are also similar to the low seroprevalence (3%) found in people in
Alaska [36] and in recent Inuit health surveys (≈8% in the Inuvialuit Settlement Region) [37],
supporting genuinely lower levels of circulation of T. gondii in northwestern North America.

It is unlikely that the difference in prevalence between eastern and western regions are
caused by variations in diet since lynx consume mostly snowshoe hare throughout their
range; however, the proportion of hare in the diet may vary annually with their abundance,
which cycles on a 9–11-year basis [38,39]. During period of increasing density of lynx and
hares, we would thus expect higher transmission of T. gondii in both species [12]. Due to
the non-uniform distribution of samples in different years from both regions in the present
study, we were not able to explore this further. Abiotic factors such as a colder and drier
climate could also explain a lower prevalence in western northern boreal regions, thus
affecting the survival or the infectivity of T. gondii. Sporulated oocysts can remain infectious
for at least 18 months in moist conditions [40]. A higher prevalence in the eastern lynx
population, especially in Kuujjuaq (86%), could be due to them being adjacent to large
watershed that are potentially disseminating infectious sporulated oocysts coming from
temperate regions into northern coastal environment and surrounding wildlife. Snowshoe
hares could thus be more exposed from contaminated herbage (from snowmelt and water
run-off for example), and potentially through meat. Hares have been seen scavenging
a variety of different species that could act as intermediate hosts for T. gondii, including
lynx [41]. Future studies investigating prevalence in snowshoe hare from different regions
are required to understand better T. gondii transmission pathways in northern boreal regions.
Contrary to prevalence, the infection intensity in lynx from the Yukon was significantly
higher than from eastern Canada. The parasite stage when infected, strain virulence, and
age could play a role in intensity of infection [18,42,43]. Younger individuals with lower
immunity could have been trapped in the Yukon, as observed for wolverine (Gulo gulo), a
species similarly trapped in the Yukon [44]. Alternatively, a more transmissible genotype
could be present in the western boreal forest.

Knowledge of genotypes and strains circulating in a particular geographical region is
thus important to better understand the epidemiology of T. gondii. We were not successful
in genotyping even our strongly positive samples from tissues, which is not uncommon
when working with previously frozen tissue samples from naturally exposed wildlife
(in which amplification in vivo or in vitro is not possible). Unrecognized genetic diver-
sity has been increasingly reported in North American wildlife, but findings still remain
scarce [45,46]. Some strains may have more localized circulation in wild felids and their
prey species, which would allow us to better understand the molecular epidemiology and
biological significance of genetic diversity of this parasite in boreal regions and connected
ecosystems. However, recovering sufficient DNA in naturally infected wildlife to determine
which genotypes/strains are present remains a challenge [18,21]. To maximize chances of
recovering sufficient target DNA, future studies should seek fresh tissues from which the
parasite can be cultured and amplified to recover sufficient DNA to determine genotypes
of T. gondii circulating in lynx and other wildlife species in northern regions.

Annual temperature and precipitation are projected to increase throughout northern
Canada [47]; a changing climate will likely accelerate the development of T. gondii in en-
demic areas. As a consequence of temperature and precipitation change, the distributional
range of lynx and their primary prey, the snowshoe hare, will likely move northward, thus
facilitating oocyst transmission in more northern ecosystems. Moreover, lynx can serve as
a source of infection for humans consuming its meat or handling carcasses. Wearing gloves
during the skinning process, disinfecting tools, and thoroughly freezing and cooking meat
before consumption is recommended. Further studies aiming at detecting viable T. gondii
tissue cysts are needed to truly assess food safety risks to trappers and consumers of lynx.
Moreover, further investigation into the genetics of T. gondii is required to better understand
the ecological drivers for its introduction, persistence, and emergence in northern latitudes,
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especially the western North American where prevalence in wildlife and people is currently
relatively low.
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