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Abstract: The rise of multidrug resistance (MDR) bacteria in nosocomial and health-care institutions
is widespread and is currently recognized as a major medical challenge. Mechanisms of bacterial
resistance, namely, quorum sensing (QS), biofilm formation, and efflux pumps, have been identified
as critical biological processes in MDR bacteria. Following previous reports on the activity of
phenothiazines against mechanisms of bacterial resistance, in this work we focus on the synthesis
of xanthene derivatives aiming to discover phenothiazine bioisosteres with improved activity. Four
compounds were obtained from the conjugation of xanthydrol with sulfonamides and aniline and
were fully characterized. Their antibacterial activity was assessed considering their minimum
inhibitory concentration (MIC) against Gram-positive and Gram-negative strains, efflux pump
inhibition, influence on biofilm formation and quorum-sensing (QS) inhibition. It was observed
that the MIC of all the tested compounds was above 64 µg/mL The four 9-xanthenyl derivatives
obtained, particularly the xanthene sulfonamide derivatives 3b and 3c, showed promising results on
QS inhibition with a reduction of pigment production of 48 and 41 mm, and on biofilm formation
with a reduction of 78 and 79%, respectively.

Keywords: multidrug resistance; MDR; xanthene derivatives; quorum-sensing; biofilm formation;
xanthene sulfonamides

1. Introduction

Antimicrobial resistance has become a major threat to global health, enhanced by
the decreasing effectiveness of antibacterial agents due to their wide use in both human
and veterinary medicine. Currently, multidrug resistant (MDR) bacteria are widespread
in nosocomial and health-care-acquired infections, and are responsible for more than
700,000 deaths each year, which are predicted to grow to 10 million by 2050 [1–3].

Regarding the mechanisms of antimicrobial resistance in bacteria, the formation of
biofilm plays a central role, allowing their survival even in the presence of antibiotics and
other adverse environmental conditions. For instance, in the field of biomedical implants, a
clinical procedure that is increasing worldwide, biofilms are responsible for the persistence
of implant infections and are a source of bacterial dissemination to other body sites and
eventually lead to systemic and fatal infections [4,5]. One of the processes that regulate the
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formation of biofilms is quorum-sensing (QS), a bacterial cell-cell communication process
that involves the production, detection, and response to extracellular signaling molecules
called autoinducers. The contribution of QS to biofilm formation, as well as bacteriocin
production and virulence, reveals its importance to bacterial pathogenesis [6–8].

These phenomena are intrinsically connected to efflux pumps [9], whose overexpres-
sion contributes not only to the potentiation of these mechanisms, but also to increase
transport of antibiotics and antiseptics outside the bacterial cell. In fact, efflux pumps
can increase the efflux of QS molecules, such as acyl-homoserine lactones (AHL), as well
as extracellular polymeric substances for biofilm formation, and regulate biofilm genes
and promote bacterial aggregation [10]. Hence, the identification of new agents capable
of overtaking these mechanisms of antimicrobial resistance would represent a novel and
important strategy to fight multidrug resistance strains.

Xanthenes (1, Figure 1) are a class of oxygen-incorporating tricyclic compounds, ex-
plored for different biological applications, where the presence of different substituents in
position 9 impacts their chemical properties and bioactivity [11]. The synthesis of xanthenes
through the modification of the carbonyl in position 9 of xanthones represents the most
straightforward procedure to easily obtain a variety of xanthenes [11] Several studies have
shown their potential as antibacterial agents, where xanthenes revealed moderate to good
inhibition in Gram-positive and Gram-negative bacteria [12–17]. Additionally, the tricyclic
nucleus of xanthenes possesses electronic and geometrical similarities to phenothiazines,
thioxanthones and thioxanthenes, classes of compounds known for their activity in inhibit-
ing biological processes responsible for antimicrobial resistance, namely QS [18,19] and
efflux pump activity [19–23]. Sulfonamides (2, Figure 1) represent another important class
of therapeutic agents in medicine. After their discovery as potent antimicrobial agents
for systemic infections in humans [24,25], sulfonamides were further derivatized to yield
compounds with different biological applications. This strategy led to the development
of sulfonamides with diuretic [26], hypoglycemic [27], anticonvulsant [28], anticancer [29]
and antiviral activity [30].
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Figure 1. Structure of xanthene (1) and sulfonamide (2) derivatives.

Therefore, in this work we focus on the synthesis of xanthene sulfonamide derivatives,
aiming to explore their activity against bacterial resistance mechanisms. The compounds
obtained were fully characterized and evaluated regarding their minimum inhibitory
concentration (MIC) on Gram-positive and Gram-negative strains, efflux pump inhibition
(EPI) activity, influence on biofilm formation, and QS inhibition.

2. Results and Discussion
2.1. Chemistry

The desired 9-xanthenyl derivatives were obtained following a previously reported
procedure describing the condensation of benzenoid sulfonamides with xanthydrol [31].
The solubilization of xanthydrol in glacial acetic acid allows the formation of the xanthylium
ion. Then, the nucleophilic attack by an electron pair from a molecule of relatively high
electron density leads to the substitution product (Figure 2A) [32].

The synthesis of a xanthene derivative possessing an aniline in position 9 (5) was also
performed for structure-activity relationship purposes. When using an aniline nucleophile,
due to the activating influence of the amine, the electrophilic aromatic substitution at the
para position of the aromatic ring with the xanthenyl group was observed (Figure 2B) [33].
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Figure 2. Synthesis of 9-xanthenyl derivatives 3a–c (A) and 5 (B).

To the best of our knowledge, this is the first time that these compounds have been fully
characterized and explored against mechanisms of bacterial resistance. Figure 3 depicts
the structure of compounds 3a–c and 5 obtained by single-crystal X-ray crystallography.
Further details regarding the characterization data are provided in Supplementary Materials
(Figures S1–S8).
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and compound 5 (D).

2.2. Minimum Inhibitory Concentration (MIC)

Sulfonamide drugs are important antimicrobial drugs with a broad spectrum of actions,
effective against Gram-positive and certain Gram-negative bacteria, such as Escherichia
coli, Klebsiella sp., Salmonella sp., Shigella sp. and Enterobacter sp. strains. They act as
bacteriostatic agents through the competitive inhibition of para-aminobenzoic acid, an
essential component in the synthesis of folic acid synthesis, which prevents the growth and
reproduction of bacteria [34,35]. Structure-activity relationship studies of sulfonamides
have shown that, in addition to the sulfonamide group attached directly to the benzene
ring, the presence of the free aromatic NH2 group in the para position is essential for the
activity of sulfonamides [36].

Firstly, compounds 3a–c and 5 were evaluated for their antibacterial activity by assess-
ing their minimum inhibitory concentration (MIC) on eight different strains of bacteria:
the reference strains E. coli American Type Culture Collection (ATCC) 25922, Staphylo-
coccus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Enterococcus faecalis
ATCC 29212; the clinical strains S. aureus 272123 (oxacillin- and methicillin-resistant),
the extended-spectrum β-lactamase (ESBL) producing E. coli SA/2, and the vancomycin-
resistant E. faecalis B3/101; and the acrA gene-deleted strain Salmonella enterica serovar
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Typhimurium SL1344. The broth microdilution method was used, in a 96-well plate, and
the concentrations tested ranged from 64 µg/mL to 4 µg/mL. It was observed that the
MIC of all the tested compounds was above 64 µg/mL, which means they do not present
antibacterial activity for the strains used, in the concentrations tested.

Therefore, despite possessing a sulfonamide moiety, the presence of the xanthenyl
group in the free amine of the sulfonamide drug 2a–c should be responsible for the absence
of bacteriostatic activity of compound 3a–c. Compound 5, not structurally related to
sulfonamides, also presents unsatisfactory antibacterial activity.

2.3. Quorum-Sensing Inhibition

The QS inhibitory effect of compounds 3a–c and 5 was examined against three
Gram-negative strains: Sphingomonas paucimobilis Ezf 10–17 (EZF) and the sensor C. vio-
laceum CV026 (CV026) strains, Chromobacterium violaceum wild type 85 (wt85) and Serratia
marcescens AS-1 [37]. The results are depicted in Table 1.

Table 1. Results of the quorum sensing inhibition assay.

Compound
Quorum Sensing Inhibition ± SD (mm)

S. marcescens wt85 EZF + CV026

Promethazine a 18 ± 0.8 40 ± 0.1 41 ± 0.5
3a 0 0 0
3b 0 0 48 ± 0.1
3c 0 0 41 ± 0.8
5 0 0 0

a Promethazine was used as a positive control; n = 3.

It was observed that compounds 3b and 3c inhibited QS in EZF and sensor CV026
strain, showing a reduction of pigment production of 48 and 41 mm, respectively. Com-
pounds 3a and 5a showed no activity as QS inhibitors.

Previous works reported the QS inhibition activity of phenothiazines and related com-
pounds, namely, promethazine, amitriptyline and acridine orange [38]. These compounds
possess a tricyclic nucleus and a heterogenic substituent at the central ring. Varga et al. [18]
suggest that their tricyclic nucleus, quasi-planar structure, and electron donor capacity of
the conjugated electron system appear to be critical for the inhibition of QS. Nevertheless,
the substituents at position 9 should also play an important role, justifying the different
activities found for the compounds explored. Particularly, more hydrophobic substituents
(comparing 3b with 3a sulfonamides) favor this activity.

2.4. Biofilm Formation Inhibition

Biofilm formation inhibition was performed with the strains S. aureus ATCC 25923
and the oxacillin- and methicillin-resistant S. aureus 272123, a strain with a strong impact in
nosocomial infections [4,5]. The biofilm inhibition, presented in percentages, is depicted
in Table 2. It was observed that compounds 3b and 3c were effective in inhibiting the
formation of biofilm in S. aureus 272123 strain, showing a reduction of 78 and 79%, respec-
tively. Compounds 3a and 5 showed a slight inhibition of biofilm formation in this strain.
Regarding S. aureus ATCC 25923, none of the tested compounds showed significant activity.

Similarly to what was observed in QS inhibition, the introduction of hydrophobic
substituents at C-9 led to a more pronounced inhibition of biofilm formation, suggesting
this property increases compound penetration on biofilm matrices.
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Table 2. Percentage of biofilm inhibition of compounds 3a–c and 5.

Compound
Inhibition of Biofilm Formation (%) ± SD

S. aureus ATCC 25923 S. aureus 272123

Reserpine a 22.29 ± 2.09 * 77.62 ± 1.44 ***
3a 4.49 ± 0.27 * 18.16 ± 0.27 ***
3b 1.91 ± 1.74 78.29 ± 9.27
3c 0.06 ± 0.99 * 79.22 ± 1.12 **
5 1.08 ± 1.33 16.07 ± 0.72 **

a Reserpine was used as a positive control; n = 4; Statistical comparisons were performed using the t-test [* p < 0.05;
** p < 0.01; *** p < 0.001 vs. control (bacteria)].

2.5. Efflux Pump Inhibition

Lastly, the compounds were evaluated for their ability to inhibit efflux pumps. The
assay was performed on the strain Salmonella enterica serovar Typhimurium SL1344, with
the acrA gene deleted, and on S. aureus 272123, by monitoring the intracellular accumulation
of the efflux pump substrate ethidium bromide (EB) through the real-time fluorimetry.
Reserpine and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) were used as posi-
tive controls.

As depicted in Table 3, compounds 3a–c and 5 increase the fluorescence in comparison
to the positive control, which can be attributed to the inhibition of the efflux of EB in
the tested strains. Nonetheless, for compounds 3a–c, a high fluorescence value at t = 0
in relation to the positive control was observed, which indicates a potential intrinsic
fluorescence of these compounds (Supplementary Materials, Figures S9 and S10). To clarify
this matter, the compounds were tested alone in phosphate buffered saline (PBS) against a
solution of EB and a solution of EB and the compound together (Supplementary Materials,
Figures S11–S13). If the compound presents an irregular fluorescence pattern, or if the
fluorescence of the compound with EB is higher than the fluorescence of the compound
alone, no conclusions can be drawn, as this is a limitation of the assay.

Table 3. Efflux pump inhibition assay for compounds 3a–c and 5.

Compound
Relative Fluorescence Index (RFI) ± SD

S. aureus MRSA 272123 S. typhimurium SL1344

3a 0.63 ± 0.09 2.75 ± 0.11
3b 0.33 ± 0.04 2.18 ± 0.04
3c 0.14 ± 0.10 2.94 ± 0.23
5 0.14 ± 0.05 1.66 ± 0.01

Positive control
Reserpine 0.56 ± 0.04 —

CCCP — 0.34 ± 0.04
CCCP: cyanide 3-chlorophenylhydrazone; n = 3.

The analysis of the curves of the variation of fluorescence over the course of the
assay showed that compounds 3a–c displayed an erratic curve in combination with EB,
their effect being considered inconclusive. On the other hand, compound 5 showed a
regular fluorescence pattern (Figures S9 and S10), confirming that the relative fluorescence
index (RFI) result obtained with this compound is related to the inhibition of the efflux
pump of the bacterial strains tested, which warranted no further fluorescence studies.
This compound showed a 5-fold higher RFI value compared with the respective reference
standard on strain S. typhimurium SL1344. These results are in line with previous studies
regarding the inhibition of some efflux pumps by phenothiazines and thioxanthenes [20–23].

Additionally, xanthones and thioxanthones—two classes of tricyclic compounds also
structurally related to xanthenes—were recently explored as potential efflux pump in-
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hibitors [19,39,40]. Once again, the tricyclic nucleus appears to be an important structural
characteristic for the activity as efflux pump inhibitors.

Docking studies were performed for compounds 3a–c and 5 with the crystal structure
of AcrB (PDB: 4DX5 [41]), the efflux pump portion of the AcrAB-TolC efflux system, as it
presented the most favorable docking scores (Supplementary Materials, Table S1). The sites
studied in this scope were the substrate binding site and the hydrophobic trap, which have
been described in [42]. Furthermore, intermolecular interactions were observed between
these compounds and the substrate binding site of AcrB, as the best docking scores were
obtained in this portion. The compounds were predicted to fit into the substrate binding
site, and bind in the same sites, with slight variations in the residues they interact with
(Figure 4).
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Figure 4. Compounds 3a (blue), 3b (pink), 3c (yellow), and 5 (green) in the substrate binding site of
the AcrB portion. Crystal structure of the AcrB portion obtained from the Protein Data Bank (PDB:
4DX5 [41]).

Compounds 3a (Figure 5A,A’) and 3b (Figure 5B,B’) have similar interactions, being
able to establish hydrogen interactions between Gln-176, Ser-180, Gln-181, Glu-273, and
Asn-274. Compound 3c interacts with the residues Ser-48 and Glu-273 (Figure 5C,C’).
Interestingly, this compound also interacts with Arg-620 and Tyr-772, present in a different
subunit of the efflux pump portion. It is noteworthy that Arg-620 and Gln-176 were previ-
ously reported as interaction points with xanthone derivatives in a previous work of our
group [39]. Finally, compound 5 appears to interact with Leu-177 and Gly-179 (Figure 5D).
For compounds 3a–c, their capacity to inhibit efflux pumps should be repeated with a
different bioassay in which their fluorescent properties have no influence on the results.
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Figure 5. Molecular visualization of compounds 3a (A,A’), 3b (B,B’), 3c (C,C’), and 5 (D) A in the
AcrB portion of the AcrAB-TolC efflux system. Crystal structure of the AcrB portion obtained from
the Protein Data Bank (PDB: 4DX5 [41]).

3. Materials and Methods
3.1. General Information

All reagents and solvents were purchased from TCI (Tokyo Chemical Industry Co. Ltd.,
Chuo-ku, Tokyo, Japan), Acros Organics (Geel, Belgium), Sigma-Aldrich (Sigma-Aldrich
Co., Ltd., Dorset, UK), or Alfa Aesar (Thermo Fisher GmbH, Kandel, Germany) and were
used directly without any further purification. Thin-layer chromatography (TLC) was used
to monitor the reactions, and Merck silica gel 60 (GF254) precoated plates were used for
this end, accompanied by the appropriate mobile phases. The synthesized compounds
were purified by flash column chromatography using Merck silica gel 60 (0.040–0.063 mm),
and their melting points (mp) were measured by using a Köfler microscope (Wagner and
Munz, Munich, Germany) equipped with a Crison TM 65 (Crison Instruments, Barcelona,
Spain) and were uncorrected. 1H and 13C nuclear magnetic resonance (NMR) spectra were
taken in deuterated chloroform or dimethyl sulfoxide (DMSO), purchased from Deutero
GmbH (Kastellaun, Germany), on a Bruker Avance 300 instrument (300.13 or 500.16 MHz
for 1H and 75.47 or 125.77 MHz for 13C, Bruker Biosciences Corporation, Billerica, MA,
USA) or Bruker AVANCE III (400.14 MHz for 1H and 100.62 MHz for 13C), all at room
temperature. Tetramethylsilane (TMS) was used as an internal reference, in relation to
which all the chemical shifts are expressed. In order to assign the carbons, 2D heteronuclear
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single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC)
experiments were performed. HPLC Analysis (Purity & Peak Purity determination) were
performed with a system consisting of a Shimadzu LC-20AD pump, equipped with a
Shimadzu DGV-20A5 degasser, a Rheodyne 7725i injector fitted with a 20 µL loop, and an
SPD-M20A DAD detector (Kyoto, Japan). The data was acquired using a Shimadzu LCMS
Lab Solutions software, version 3.50 SP2. An ACE-C18 column (150 × 4.6 mm I.D., particle
size 5 µm; Advanced Chromatography Technologies Ltd., Aberdeen, UK) was used. The
mobile phase used was composed of water, methanol, and acetic acid (85:15:0.1 v/v/v),
and the solvents were HPLC grade, purchased from Merck Life Science S.L.U. (Darmstadt,
Germany). The flow rate was 1.0 mL/minute and the ultraviolet (UV) detection wavelength
was 254 nm. Analyses were performed at 27 ◦C in a 30-min run, isocratically. Peak purity
index was determined by total peak UV-Visible spectra between 210–800 nm with a step of
4 nm.

3.2. Chemistry

Compounds 3a–c and 5 were synthetized as described in previous works [32,43] with
the following modifications.

Synthesis of 4-((9H-xanthen-9-yl)amino)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide
(3a):

To 1.2 mmol of xanthydrol in 5 mL of glacial acetic acid was added 1 mmol of sulfam-
erazine dissolved in 2 mL of N,N-dimethylformamide (DMF). Stirring was continued at
room temperature and the derivative began to precipitate in minutes. After 3 h, the product
was collected through filtration with a vacuum filtration unit possessing a nylon membrane
filter with Ø of 47 mm and pore size of 0.45 µm. After washing with 100 mL of water, the
product was dried in a vacuum desiccator over P2O5. The crude derivative was dissolved
in a minimum volume of THF at room temperature, and the resulting solution was filtered.
Water was slowly added until the visualization, which was a sign of cloudiness. Then the
solution was placed in a refrigerator at 8–10 ◦C for crystallization. After crystallization was
complete, the product was collected by filtration with a nail glass funnel. Compound 3a
was obtained as white crystals (298.3 mg, 66.7%).

Compound 3a: mp 207–208 ◦C (literature [32]: 206–207 ◦C); Purity (HPLC): 99.2%; 1H
NMR (300.13 MHz, DMSO-d6): δ = 11.21 (s, 1H), 8.32 (d, J = 5.0 Hz, 1H), 7.68 (d, J = 8.6 Hz,
2H), 7.49 (d, J = 9.1 Hz, 1H), 7.43–7.27 (m, 4H), 7.19 (dd, J = 8.2, 1.3 Hz, 2H), 7.09 (td, J = 7.3,
1.1 Hz, 2H), 6.84–6.90 (m, 3H), 6.12 (d, J = 9.0 Hz, 1H), 2.30 (s, 3H), 2.30 (s, 3H) ppm; 13C
NMR (75.47 MHz, DMSO-d6): δ = 168.1, 157.8, 156.9, 151.3, 150.7, 130.0, 129.0, 128.4, 125.9,
123.5, 122.5, 116.3, 114.9, 110.9, 46.10, 23.4 ppm.

Synthesis of 4-((9H-xanthen-9-yl)amino)-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide
(3b):

The same procedure described for the synthesis of compound 3a was applied to the
synthesis of compound 3b, with exception of the sulfonamide compound added to the
solution, where in this case sulfametazine was added to the reaction media. Compound 3b
was obtained as off-white needles (210.6 mg, 45.8%).

Compound 3b: mp 171–173 ◦C (literature [32]: 174–175 ◦C); Purity (HPLC): 99.9%;
1H NMR (300.13 MHz, DMSO-d6): δ = 11.07 (s, 1H), δ = 7.68 (d, J = 8.7 Hz, 2H), 7.46 (d,
J = 9.1 Hz, 1H), 7.42–7.26 (m, 4H), 7.18 (dd, J = 8.2, 1.2 Hz, 2H), 7.08 (td, J = 7.4, 1.3 Hz, 2H),
6.84 (d, J = 8.9 Hz, 2H), δ = (s, 1H), 6.12 (d, J = 9.0 Hz, 1H), 2.24 (s, 6H) ppm; 13C NMR
(75.47 MHz, DMSO-d6): δ = 167.9, 157.1, 151.6, 151.1, 130.7, 129.4, 128.8, 123.9, 123.0, 116.7,
114.2, 111.2, 46.5, 23.6 ppm.

Synthesis of N-((4-((9H-xanthen-9-yl)amino)phenyl)sulfonyl)acetamide (3c):
The same procedure described for the synthesis of compound 3a was applied to the

synthesis of compound 3c, with exception of the sulfonamide used, where in this case
sulfacetamide was added to the reaction media. Compound 3c was obtained as white
needles (254.9 mg, 64.7%).
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Compound 3c: mp 215 ◦C (literature [32] 208–208.5 ◦C); Purity (HPLC): 99.9%; 1H
NMR (300.13 MHz, DMSO-d6): δ = 11.70 (s, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 8.7 Hz,
2H), 7.45–7.28 (m, 4H), 7.20 (dd, J = 8.2, 1.2 Hz, 2H), 7.12 (td, J = 7.4, 1.3 Hz, 2H), 6.87 (d,
J = 9.0 Hz, 1H), 6.16 (d, J = 8.9 Hz, 1H), 1.88 (s, 3H) ppm; 13C NMR (75.47 MHz, DMSO-d6):
δ = 168.9, 152.2, 151.3, 130.2, 129.5, 128.8, 125.1, 124.0, 122.8, 116.8, 111.6, 46.5, 23.7 ppm.

Synthesis of 4-(9H-xanthen-9-yl)aniline (5):
The same procedure described for the synthesis of compound 3a–3c was applied to the

synthesis of compound 5, where instead of a sulfonamide compound, aniline was added to
the reaction media. Compound 5 was obtained as yellowish needles (162.9 mg, 59.1%)

Compound 5: mp 183 ◦C (literature [44]: 175–180 ◦C); Purity (HPLC): 99.5%; 1H NMR
(300.13 MHz, DMSO-d6): δ = 7.19 (ddd, J = 8.5, 6.7, 1.8 Hz, 2H), 7.11 (dd, J = 8.2, 1.4 Hz, 2H),
7.06 (dd, J = 7.9, 1.9 Hz, 2H), 6.97 (td, J = 7.0, 1.2 Hz, 4H), 6.64–6.55 (m, 2H), 5.15 (s, 1H),
3.57 (s, 2H); 13C NMR (75.47 MHz, DMSO-d6): δ = 151.1, 145.0, 136.8, 129.7, 129.4, 127.7,
125.0, 123.1, 116.4, 115.4, 43.5 ppm.

3.3. X-ray Crystallography

X-ray diffraction data were collected with a Gemini PX Ultra (Rigaku/Oxford, Neu-
Isenburg, Germany) equipped with CuKα radiation (λ = 1.54184 Å), at 290 K. The structures
were solved by direct methods using SHELXS-97 and refined with SHELXL-97 [45]. Non-
hydrogen atoms were refined anisotropically. Hydrogen atoms were either placed at
their idealized positions using appropriate HFIX instructions in SHELXL and included in
subsequent refinement cycles or were directly found from difference Fourier maps and
were refined freely with isotropic displacement parameters.

3a: Crystal was triclinic, space group P1, unit cell dimensions a = 9.6353 (4) Å,
b = 10.7815 (7) Å and c = 12.0410 (7) Å, and angles α = 75.152 (5)◦, β = 88.427 (4)◦

and γ = 78.045 (5)◦ (uncertainties in parentheses). The refinement converged to R (all
data) = 8.02% and wR2 (all data) = 13.51%.

3b: Crystal was monoclinic, space group P21/n, unit cell dimensions a = 8.3568 (4) Å,
b = 10.1765 (4) Å and c = 32.294 (1) Å, and β = 94.539 (4)◦. The refinement converged to R
(all data) = 8.98% and wR2 (all data) = 14.31%.

3c: Crystal was monoclinic, space group C2/c, unit cell dimensions a = 13.8772 (3) Å,
b = 10.0064 (3) Å and c = 30.2805 (9) Å, and β = 95.769 (3)◦. The refinement converged to R
(all data) = 8.01% and wR2 (all data) = 13.99%.

5: Crystal was monoclinic, space group P21/n, unit cell dimensions a = 9.0383 (3) Å,
b = 10.7961 (4) Å and c = 14.5840 (5) Å, and β = 101.539 (4)◦. The refinement converged to R
(all data) = 5.88% and wR2 (all data) = 12.65%.

3.4. Microorganisms

The bacterial strains used were S. aureus ATCC 25923, E. faecalis ATCC 29212, and
methicillin and ofloxacin-resistant S. aureus 272123 clinical isolate, as Gram-positive mi-
croorganisms, and E. coli ATCC 25922, P. aeruginosa ATCC 27853, the acrA gene inactivated
mutant S. enterica serovar Typhimurium SL1344, and clinical isolates of the extended-
spectrum β-lactamase producer (ESBL) E. coli SA/2, as Gram-negative microorganisms.

To assay QS inhibition, Gram-negative strains were used: C. violaceum wild type 85
(wt85), which produces the purple pigment violacein, mediated by endogenously produced
AHL (signal molecules); C. violaceum CV026 (CV026), a Tn5 transposase-mutant incapable
of producing AHL, but still able to produce violacein in the present of an external stimuli,
provided in this case by S. paucimobilis Ezf 10–17 (EZF); and S. marcescens AS-1, which
produces the prodigiosin, an orange-red pigment, in response to the self-production of the
QS signal molecule N-hexanoyl-L-homoserine lactone [37].

3.5. Antibacterial Assay

The method used for the assessment of the MIC of the compounds towards the
bacterial strains used (S. aureus ATCC 25923, E. faecalis ATCC 29212, S. aureus 272123, E. coli
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ATCC 25922, P. aeruginosa ATCC 27853, S. typhimurium SL1344, and E. coli SA/2) was the
broth microdilution method, according to the Clinical and Laboratory Standard Institute
(CLSI) guidelines [46]. This was performed in 96-well microplates, using cation adjusted
Müller-Hinton broth (Sigma-Aldrich, St- Louis, MO, USA and Biokar Diagnostics, Allone,
Beauvais, France) as culture medium, using concentrations ranging from 64 µg/mL to
4 µg/mL, which were later converted to µM. The compound solutions were prepared from
a stock solution of 10 mg/mL in DMSO, kept at −20 ◦C, assuring that the concentration of
this solvent did not exceed the recommended 1% v/v. The MICs of the compounds were
determined visually, as the first well was devoid of bacterial growth. As negative control,
DMSO 1% v/v was used, and as positive control, the quinolone ciprofloxacin was used
(MIC S. aureus ATCC 25923 and P. aeruginosa ATCC 27853 = 1.50 µM; MIC E. faecalis ATCC
29212 = 3.00 µM; MIC E. coli ATCC 25922 = 0.048 µM; MIC S. aureus 272123 = 12.5 µM; MIC
S. typhimurium SL1344 = 6.25 µM).

3.6. Quorum-Sensing Inhibition

The QS inhibitory effect of the compounds was examined on the previously described
bacterial strains. Using a modified Luria-Bertani Agar medium [1.0 g yeast extract (Merck,
Darmstadt, Germany), 10.0 g tryptone (Biolab, Budapest, Hungary), 10.0 g NaCl (Molar
Chemicals, Halásztelek, Hungary), 1.0 g K2HPO4 (Biolab, Budapest, Hungary), 0.3 g
MgSO4 × 7H2O (Reanal, Budapest, Hungary), 5 mL Fe-EDTA stock solution and 20.0 g
of bacteriological agar (Molar Chemicals, Halásztelek, Hungary) per 1 L of media], the
bacteria were directly inoculated as single lines, with EZF and CV026 being paralleled
inoculated at an approximate distance of 5 mm. The volume of compound solution applied
was 8 µL of a stock solution of 10 mM, through the impregnation of filter paper disks (7 mm
diameter), which were placed on the center of the inoculated line(s). As a positive control,
the antipsychotic PMZ was used.

After a 24–48 h period of incubation at room temperature (20 ◦C), the results were
determined by visual inspection and measurement of the discolored, but intact, bacterial
colonies with a ruler [37,47].

3.7. Inhibition of Biofilm Formation

The ability of the compounds to inhibit the formation of biofilm was assessed by the
crystal violet (CV) method. For this assay, the Gram-positive S. aureus ATCC 25923 and S.
aureus 272123 were used. The dye CV, used in ethanol at 0.1% v/v, made the visualization
of the biofilm formation possible.

The initial inoculum was incubated in Tryptic-Soy broth (TSB, Biokar Diagnostics, Al-
lone, Beauvais, France), overnight, followed by the dilution to 0.1 (OD600). Afterwards, the
bacterial suspension was added to 96-well microtiter plates and the compounds were added
at a concentration of half their MIC, or 100 µM if their MIC was above this concentration,
to a final volume of 200 µL per well.

The assay lasted for 48 h, with the plates being gently stirred (100 rpm) at 30 ◦C.
After this incubation period, the TSB medium was discarded, and the plates were washed
three times with tap water to remove unattached cells. Then, 200 µL of the CV solution
were added to the wells, followed by a 15-min incubation at room temperature. The CV
solution was then discarded, followed by two times of tap water washing. Finally, 200 µL
of 70% ethanol solution were added to the wells, followed by a gentle shake to form a
homogenous mixture.

The determination of biofilm formation was performed using a Multiscan EX ELISA
plate reader (Thermo Labsystems, Cheshire, WA, USA) to measure the OD600. The effect
of the compounds against the formation of biofilm was expressed as the percentage (%)
of decrease in biomass. The alkaloid reserpine, which has been described to be a biofilm
formation inhibitor in S. aureus strains, was used as positive control [48].
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3.8. Efflux Pump Inhibition Assay

The ability of the compounds to inhibit efflux pumps was evaluated through the
real-time ethidium bromide accumulation assay, based on measuring the fluorescence
emmited by a complex formed between ethidium bromide, an efflux pump substrate, and
the bacterial nucleic acids, using a CLARIOstar Plus plate reader (BMG Labtech, Ortenberg,
Germany). The strains used were S. typhimurium SL1344 and S. aureus 272123, which were
cultured in Luria-Bertani broth (Sigma, St. Louis, MO, USA) and TSB, respectively, at 37 ◦C
until they reached an OD600 between 0.4 and 0.6. When this OD was achieved, the culture
was centrifuged at 13,000× g for 3 min, and the pellet was washed and resuspended with
phosphate-buffered saline (PBS), followed by another centrifugation and PBS washing. A
solution of EB was prepared at a nontoxic concentration in PBS (1 µg/mL), which was used
for making the solution of the compounds at 50 µM. Then, to a 96-well black microtiter
plate (Greiner Bio-One Hungary Kft, Mosonmagyaróvár, Fertősor, Hungary), 50 µL of the
compound solution and 50 µL of bacterial suspension were added to each well.

The fluorescence was monitored at excitation and emission wavelengths of 530 nm
and 600 nm every minute for one hour, on a real-time basis. The activity of the compounds
was calculated considering the RFI at the last time point (minute 60) of the assay, using the
following formula:

RFI =
RFtreated − RFuntreated

RFuntreated

In this scope, RFtreated corresponds to the relative fluorescence (RF) at minute 60 of
the EB accumulation assay in the presence of the compound. Oppositely, RFuntreated is the
same time point of the negative control, consisting only of the solvent used, which was
DMSO 1% v/v. As positive controls, reserpine (S. aureus 272123) and CCCP (S. typhimurium
SL1344) were used, at the concentration of 25 µM.

The accumulation curves containing the RFI for each time point were designed using
Microsoft Excel® (Redmond, WA, USA).

3.9. Docking Studies

The docking studies were performed on the crystal structures of the three portions
of the AcrAB-TolC efflux system, which were all deposited in the Protein Data Bank [49]
(AcrB (PDB: 4DX5) [41]; AcrA (PDB: 2F1M) [50]; TolC (PDB: 1EK9) [51]). The docking
scores obtained are in Table S1 (Supplementary Materials). The sites chosen were the ones
described as relevant in the literature: for the efflux pump AcrB, the substrate-binding site
(SBS) and the hydrophobic trap (HT) [42]; the helical hairpin (HH) and the lipoyl domain
(LD) for the periplasmic adaptor AcrA [52]; and for the transmembrane channel TolC, the
region containing the lysine residues that interact with the 3,3′-dithiobis(sulfosuccinimidyl
propionate) bifunctional crosslinker [52].

The structures of compound 3a–c and 5 were drawn with ChemDraw (PerkinElmer
Informatics, Waltham, MA, USA), as were the known AcrAB-TolC inhibitors phenyl-arginyl-
β-naphthylamide (PAβN), minocycline, D13-9001, MBX-3132, and doxorubicin. In order to
obtain the most favorable energetical conformation, ArgusLab was used. For the docking
studies, the software applied was AutoDock Vina (Scripps, San Diego, CA, USA) [53],
and the top nine poses were collected for each molecule. The most favorable binding
conformation, associated with the lowest docking score value, was visualized using PyMol
(Schrödinger, New York, NY, USA) [54].

4. Conclusions

In summary, we have synthetized four 9-xanthenyl derivatives and assessed their
antibacterial activity and influence on bacterial mechanisms of resistance, namely, efflux
pump inhibition, QS inhibition, and influence on biofilm formation. The compounds herein
studied, particularly the xanthene sulfonamide derivatives 3b and 3c, showed interesting
preliminary results regarding their impact on different mechanisms of bacterial resistance.
In the future, a comprehensive series of related compounds will be synthesized to allow
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their assessment against a larger set of bacterial strains and the establishment of a structure-
activity relationship of the 9-xanthenyl derivatives, as well as to study their safety, stability,
and pharmacokinetic properties. Furthermore, studies on the specific pump being inhibited
are warranted, which can be achieved by genetic assays.
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1H and 13C NMR of compound 5; Figure S5. Chromatogram (HPLC) of compound 3a. Purity (%
a/a): 99.2%; Figure S6. Chromatogram (HPLC) of compound 3b. Purity (% a/a): 99.9%; Figure S7.
Chromatogram (HPLC) of compound 3c. Purity (% a/a): 99.9%; Figure S8. Chromatogram (HPLC) of
compound 5. Purity (% a/a): 99.5%; Figure S9. RFI curves of the tested compounds against S. aureus
272123; Figure S10. RFI curves of the tested compounds against S. typhimurium SL1344; Figure S11.
Fluorescence studies of compound 3a; Figure S12. Fluorescence studies of compound 3b; Figure S13.
Fluorescence studies of compound 3c; Table S1. Docking scores (kcal/mol) for the xanthenes and
reference compounds against bacterial efflux pumps.
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