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Abstract: Patterns of structural change associated with monodominant tropical forest complexes
have remained enigmatic for decades. Here we extend previous efforts [1,2] in presenting the first
longitudinal, local-scale analysis of forest dynamics in central Africa. Using four 10-ha censused
plots measured across three time periods (959,312 stems ≥1 cm DBH), we analyzed changes in
a number of biometrical attributes for four distinct forest types capturing the developmental
gradient from mixed to Gilbertiodendron dewevrei-dominated forest. We modeled above-ground
biomass (AGB), basal area (BA), and stem density across all species, and diameter at breast
height (DBH), recruitment, and mortality for Gilbertiodendron dewevrei. We hypothesized that
trends in these attributes would be consistent with a slow spread of Gilbertiodendron dewevrei
into adjacent mixed forest. We identified statistically significant increases in AGB and BA across
sites, and positive, though non-significant, increases in AGB and BA for most forest types. DBH
and relative recruitment increased significantly for Gilbertiodendron dewevrei stems, while relative
mortality did not. When looking from mixed to transitional to monodominant forest types,
we found a statistically significant pattern of developmental aggradation and net expansion of
monodominant forest. We do not attribute this to atmospheric forcing, but to a combination of
(a) landscape-scale recovery or response to widespread disturbance (primarily historical fires),
(b) Gilbertiodendron dewevrei’s ectomyccorhizal association, and (c) Gilbertiodendron dewevrei’s
exceptional stress tolerance traits.
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1. Conceptual framework

From the outset, this research sought to explore the temporal and spatial dynamics
of Gilbertiodendron dewerei by moving extensive tabular data into a spatial framework.
At its heart, this was made possible by field-measured locations for every stem. Much
of the statistical analysis that appears to be aspatial is intrinsically spatial by virtue
of the fact that model inputs were derived from aggregated spatial data structures,
discussed below. With one minor exception noted below, we conducted all analysis in a
scripted framework using R version 3.5.3 [3] via RStudio version 1.1.463 [4]. We relied
heavily on a number of R packages, which are referenced individually. The analytical
workflow can be thematically grouped into: data pre-processing, creation of spatial data
structures, and regression modeling, with quality control checking throughout. In the
interest of reproducibility, we detail our methods in the following sections.

https://www.mdpi.com
https://dx.doi.org/10.3390/f12060738
https://dx.doi.org/10.3390/f12060738
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2 of 18

1. Data pre-processing

This research relied on data from the Ituri Forest Dynamic Plots curated by the Smithsonian Institution’s Center
for Tropical Forest Science (CTFS). The Ituri plots are part of the CTFS’ Forest Global Earth Observation Network
(ForestGEO), currently comprised of 67 long-term forest monitoring plots. In partnership with the CTFS, the Ituri plot
data is made available through a collaborative effort between the Centre de Formation et de Recherche en Conservation
Forestière (CEFRECOF, in the D.R.C.), the Wildlife Conservation Society (WCS, regional office in the DRC), and the
Okapi Faunal Reserve (OFR, in the D.R.C). Researchers wishing to explore these core datasets can submit requests at
https://forestgeo.si.edu/sites/africa/ituri. There are four Ituri plots (also referred to below as field sites) measuring 10
ha in size (200 m x 500 m), situated in two groups: (a) edoro1 and edoro2, and (b) lenda1 and lenda2. The field sites are
named for the Edoro and Lenda Rivers that flow nearby, and the sites were established in 1994 based on specific forest
conditions. The edoro2 site was selected as a reference plot. At the time of establishment, it was of mixed forest structure
and species composition and did not contain any Gilbertiodendron species. The edoro1 site was selected because it had a
comparable structure and composition to edoro2, with the exception of select, non-dominant patches of Gilbertiodendron
dewevrei. The lenda1 and lenda2 plots were selected based on a mixed forest structure and species composition, but
with Gilbertiodendron dewevrei dominance on portions of each site. At the lenda1 and lenda2 sites, ≥50% of trees larger
than 30cm diameter at breast height (DBH) were Gilbertiodendron dewevrei at the time the sites were established. Additional
details on the field sites can be found in Makana et al. [5].

Our original tabular data inputs were .rdata files from the CTFS data repository. Each of 12 files documented one
of three complete censuses for one of the four field sites. The duration of the first census was greater than subsequent
censuses, due to the initial establishment of the field sites, the tuning of monitoring protocols, and field crew training. The
first census was conducted between the 1994 (4.3% of all records), 1995 (17.9%), and 1996 (9%) field seasons; the second
census was conducted between the 2001 (32.5%) and 2002 (0.6%) field seasons; and the third census was conducted in the
2007 (35.7%) field season. Here a census is defined as the measurement of a suite of attributes (including relative spatial
location) on all stems of all trees ≥1 cm DBH (diameter at 1.3 m height). The field sites were surveyed by theodelite, and
were divided into 20 m x 20 m quadrats and 5m x 5 m sub-quadrats to ease the record keeping process (See also [5]).

We combined the 12 tabular inputs to produce a single master dataset before computing basal area from measured
DBH, formatted time stamps, field site identifiers, and census identifiers. We relied on the status variable included with
the original data in downstream analysis. The status variable contains one of three codes to indicate that a given stem
is alive (A), dead (D), or prior (P). A code of P indicates that the referenced stem does not yet exist, and reflects the
underlying CTFS plot data structure: each dataset for each field site contains all trees that have ever been documented at
that site. For example, a dataset from the first census will contain a record for each tree documented in census one, but
also a record for each new tree documented in the second or third censuses, even though those trees did not exist at the
time of the first census. All records with P status (n = 69,367) were omitted from analysis since they effectively represented
duplicates and had no diameter measurements. Any missing values in the master dataset’s status variable were populated
through interpretation of the codes variable originally distributed with the data. The codes variable provides a more
nuanced indication of tree condition. Due to the temporal span of data collection and the use of different field crews,
inconsistencies in the codes variable were resolved with the help of CTFS staff.

Species information was coded into the original data (sp variable), and primarily contained six letter codes in which
the first four letters conveyed the genus and the last two letters conveyed the species (e.g., Gilbertiodendron dewevrei was
coded as GILBDE). Trees were identified to the species level for >99% of records. Data cleaning was required to clean and
unify typographic errors, and to re-code unique but unidentified species of known genera with seven letter codes indexing
the genus and the unique but unidentified species (e.g., ACANSP0). There were 438 unique tree species identified across
all sites and censuses. Our processed tabular dataset was comprised of 959,312 individual stem measurements from
342,893 unique trees across the four field sites and three censuses. It contained records of alive (n = 872,333, 90.9%), dead
(n = 66,995, 7%), and missing stems (i.e., the stem tag could not be found, n = 19,984, 2.1%). Trees whose stem tags could
not be located were treated as dead. Stem diameters ranged from 1 cm to 176.5 cm for live trees. Diameter measurements
were missing from all dead and missing stems, and for 806 alive stems. These records were omitted from some analyses,
detailed below.

2. Creation of spatial data structures

Where our analysis depended on locational information, we used two techniques to populate the (x,y) coordinate
information missing from 13,102 non-prior records. In the first, we used individual stem identifiers stored in the tag
variable to identify stems that contained at least one set of valid coordinates across the three censuses. We then associated
these coordinates with the respective records missing coordinates (n =1 tag). In the second technique, we made use of
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the quadrat variable, which contains coded values specifying to which 20 m x 20 m quadrat a particular stem belonged.
The quadrat codes are four digit codes in which the first digit reflects the field site, the second digit increments quadrats
along the short axis of the field site (relative to the origin), and the third and fourth digits increment quadrats along the
long axis of the plot (relative to the origin). For each record that lacked coordinates but possessed a quadrat code (n =
13,101), we parsed the quadrat codes and used the parsed locational identifiers to locate each stem within its quadrat in a
spatially random manner. Randomization was performed across both x and y dimensions, and ensured that no two stems
were located in the same location. We felt this technique was suitable for our needs, given that much of our analysis
relied on aggregated spatial units (detailed below). While it was recorded in the field, sub-quadrat locational information
was not available in the original CTFS files. We corrected the longitude of one record that possessed a typographic error
in its location.

While the corners of all sites were captured in the field using a civilian grade Global Positioning System (GPS)
transmitter, minor locational error led us to define spatial plot boundaries using the origins (in World Geodetic System of
1984, WGS84) and the known field plot sizes and orientations. The longitude and latitude of each stem in our dataset was
spatially referenced in meters from the respective plot origin (SW corners for lenda1 and lenda2, and NW corners for
edoro1 and edoro2). To obtain valid real-world (projected) coordinates of each stem, the known origin locations were
projected to Zone 35 North of the Universal Transverse Mercator (UTM 35N) coordinate reference system (in meters), and
the appropriate stem-specific offsets were applied to each record, relative to their respective plot origins.

In a two-phase process we spatially aggregated stem records into quadrats measuring 25 m by 25 m in size (n = 160
per site per census, n = 1,920 across all sites and censuses). The quadrat size was selected to provide a comparable scale
to what was recorded in the field, but also to provide units that would help remove measurement artifacts associated
with field-based quadrat delineations. We performed these aggregations using aspatial data that contained coded quadrat
identifiers. In the first phase we used the parallel [6] and doSNOW [7] packages to perform embarassingly parallel
aggregation by species. For all stems of each species within each quadrat, within each site, within each census, we:
(a) tallied the number of alive stems, the number of dead stems, and the total number of stems;
(b) assigned a quadrat identifier, field site identifier, and census identifier;
(c) identified the mean date of field work, ascribed this to each stem lacking a date attribute, and then computed the

mean of all stem measurement dates; and
(d) computed total basal area and above-ground biomass of living trees (status = A).

The above process yielded a tabular dataset that could be aggregated by quadrat and across species in the second
phase of aggregation. For each unique quadrat within each unique census, we:
(a) computed the total number of live and dead trees;
(b) computed the grand total number of stems;
(c) computed the total basal area and above-ground biomass;
(d) computed, separately, the total above-ground biomass of the species that held the largest and second-largest

proportions of AGB on the quadrat;
(e) computed, separately, the proportions that the two elements of (d) were of the AGB from (c);
(f) computed the total AGB of Gilbertiodendron dewevrei stems;
(g) computed the proportion that (f) was of the AGB from (c);
(h) computed the mean date of field work; and
(i) classified each quadrat into one of four land cover classes: Gilbertiodendron-dominated forest, mixed forest,

transitional forest falling between Gilbertiodendron-dominated and mixed forest structures, and riparian forest
(Fig. 2 main text). We performed classification using the total basal area of Gilbertiodendron stems ≥5 cm DBH,
relative to the total basal area of all stems ≥5 cm DBH. If Gilbertiodendron basal area represented ≥50% of the
total basal area, we classified the quadrat as Gilbertiodendron-dominated forest. If the Gilbertiodendron basal area
represented <5% of the total basal area, we classified the quadrat as mixed forest. We classified all other quadrats
as transitional forest. Then, in a subsequent step, we reclassified a quadrat to riparian forest if it shared direct
adjacency (i.e., direct intersection, or one or more shared boundary vertices) with polygonal hydrographic features
that were manually digitized using imagery, old field maps, and local knowledge of the landscape.

As a sub-task of the above process, for each site, for each census, for each quadrat, we also (a) isolated all Gilbertio-
dendron dewevrei records, (b) extracted the DBH values and associated census identifier, and (c) computed the change in
DBH between the maximum and minimum DBH values of each record. This information was held separately given its
non-aggregated structure, to be used for annual increment growth modeling.

We converted our aspatial aggregated dataset into a spatial dataset by binding quadrat-specific records to their
spatial counterparts. We created the spatially explicit counterparts by first defining tesselation objects (class tess)
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using the spatstat package [8,9], and then (using custom functions), converting the tesselation objects to objects
of class SpatialPolygonsDataFrame associated with the sp package [10,11]. Our SpatialPolygonsDataFrames were
geographically referenced to UTM 35N (Fig. 1 main text). Downstream tests of spatial dependency relied on centroid
coordinates from each quadrat, which were joined to the tabular records associated with each polygonal element. To
ensure we did not obtain artifacts produced from the regularity of the original centroid coordinates, we randomly
perturbed the coordinates up to a maximum of 12.49 m (one-half the quadrat width/length) across both x and y
dimensions, adding unbiased variability (with a mean of 0) into the locations of the centroids.

3. Regression modeling

3.1. Linear mixed effects modeling overview

We used our aggregated quadrat data in linear mixed-effects modeling to determine whether there were meaningful
and/or significant changes in a number of biometrics across time. Following Gregoire et al. [12] and Fitzmaurice et al.
[13], mixed-effects modeling was selected as a means of addressing the longitudinal and (possible) spatial autocorrelation
that was inherent in our spatially explicit, unbalanced, repeated measures data. Longitudinal data present us with three
sources of variability: between-subject, within-subject, and measurement error. The general objective is to properly
account for the first two sources, given the third, in order to obtain valid model inference. Thus, longitudinal data of this
nature require that we both model the mean response across time, and model the covariance among values of the same
subject, as the correlation implicit in the latter violates customary assumptions of independence that are central to linear
modeling [13] (p. 24-25). To the analyst, longitudinal autocorrelation may feel like a nuisance, while it is better viewed as
a beneficial, model strengthening attribute. “Accounting for the covariance among repeated measures usually increases
efficiency or the precision with which the regression parameters can be estimated” [13] (p. 163).

The basic linear mixed-effects model (1) is an extension of a traditional multiple linear regression modeling frame-
work, and is denoted by

Ŷ = X β̂ + Zγ̂ + ϵ̂ (1)

Mixed effects modeling is largely concerned with the estimation of subject-specific parameters (the random parame-
ters), where in our usage, a subject is a quadrat. Note, however, that these parameters are not necessarily of direct interest
(addressed below). Allow that i = 1, ..., n indexes unique subjects, and j = 1, ..., Ti indexes unique measurement periods
for the ith subject. Ti is thus the total number of observations for the ith subject, leading to T = ΣTi, or the total number
of observations across all subjects and measurement periods. In equation (1), the vector of response values Y , is a function
of a fixed effects term (X β̂), a random effects term (Zγ̂), and an error term (ϵ̂). The fixed effects term is comprised of
X, a T × p + 1 design matrix, and β̂, a T × 1 vector of coefficients, as would be the case in a generalized least squares
linear model. Here, p is the number of fixed effect predictors. The random effects term is comprised of Z, a T × nq block
diagonal matrix, and γ, and nq × 1 vector of random coefficients, where q is the number of random effect covariates. Each
of the Zi blocks contains a Ti × q design matrix. The error term is a T × 1 vector of unexplained residual variation. X and
Z need not include the same covariates, but the latter is always equal to, or a subset of, the former.

The values of the response vector Y|γ (2) reflect a normally distributed random variable with a mean derived from
the summed mixed and random effects terms, and, in the simplest form, a spherical error variance-covariance matrix

Y|γ ∼ N(Xβ + Zγ, σ2 I) (2)

Conditional on the X and Z matrices, γ and ϵ can be characterized by similar multivariate normal structures

γ ∼ N(0q, σ2B) (3)

ϵ ∼ N(0T , σ2W) (4)

where 0.. is a vector of subscripted length. B is a q × q correlation matrix of the γ random effect coefficients. The variance
of the q random effects coefficients in γ are estimated from the unexplained variability remaining after fitting the mean
model (i.e., the fixed effects term), and thus are computed across all records. This means that B captures an element of
between-subject correlation and is not subject-specific (i.e., no subscripted index), though it could be a scalar in the case
where there is a single random effect parameter to estimate, i.e., where Z is a unit vector, reflecting random variation
in the intercepts associated with each subject. W is a T × T block diagonal correlation matrix of all Wi, which capture
within-subject error correlations. In both (3) and (4), the global σ̂2 can be thought of as scaling factor to the correlation
values.
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The error variance-covariance matrix for the modeled response values, conditioned on the fixed and random effects
terms, is captured by the block diagonal matrix

Cov(Y) = Σ = σ2V = σ2(Z
◦
BZ′ + W) (5)

in which σ2 is a scaling parameter, and
◦
B is the Kronecker product [14] of In ⊗ B, a T × T block diagonal matrix in which

all of the B matrices appear on the diagonal and, in the case of uncorrelated subjects (addressed below), the off diagonals
are all zeros. Z

◦
BZ′ and W can both be viewed as correlation matrices that serve to scale the residual variance.

Notationally, (5) follows Gregoire et al. [12], who use W more liberally than Fitzmaurice et al.’s [13] R. Gregoire et
al. indicate that it is possible to both induce a structure in W through the use of random effects terms, and specify a
correlation structure for W . This is in some contrast to Fitzmaurice et al. [13] who feel that mixing these two covariance
modeling strategies can be problematic, and that it’s easier to provide that W = σ2 I, which puts constant variance on the
diagonal and zeros in all off-diagonal elements. The implied divergence in these points of view warrants a moment of
our attention.

Fitzmaurice et al. [13] speak to three broad approaches for modeling the error covariance matrix of repeated
measures data: (1) unstructured covariance, or allowing the modeling process to estimate all covariance parameters in
an unstructured manner; (2) use of covariance pattern models, or specifying a controlled, structured covariance matrix
through knowledge of the correlation structure or mechanistic processes of interest; and (3) random effects covariance
structures, in which the inclusion of random effects terms induce a covariance structure in W . Each of these approaches
has its merits and limitations, but Fitzmaurice et al. [13] (p. 195) do not promote combining random effects covariance
structures with covariance pattern models because: (a) when the W covariance matrix has a non-diagonal pattern there
can be issues with model misidentification that prohibit estimating B and W simultaneously. Patterning in W implies
that there is some model mis-specification that should, conceptually, have been captured by either Xβor Zγ (and the
estimated B associated with γ). Second, (b), the residual errors no longer have the simple interpretation of measurement
or sampling error, in part because they would contain some element of non-independence.

Here we elected to ignore Fitzmaurice et al.’s [13] suggestion for several reasons. First, since we regarded the implicit
meaning of the error values as unimportant, and since computerized model fitting permits refitting of misidentified
models with few keystrokes, the only risk to fusing covariance modeling strategies was the possibility that misidentified
models could not be fit. We felt this was of low cost. Second, the structure of W , dictated by the random effects
estimation process, is related to the within-subject correlation. Meanwhile, the off-diagonal blocks of W capture the
between-subject correlation and, in our data structure, should not be influenced by temporally-based random effects. It is
the off-diagonal blocks that allow us to relate subjects spatially, if necessary, and the lack of overlap between the temporal
and spatial blocks in W should not confound the interpretation of the model residual error. Third, our choice was
based on the potential need to account not only for longitudinal autocorrlation, but also for spatial autocorrelation and
heteroscedasticity. Within R there are limited model fitting functions that can accomdate this framework. In theory, this
trio could be addressed using spatio-temporal or crossed-random effects models (e.g., [15]). However, we were unable to
locate tools that could fit such models while also accounting for non-constant error variance. The one exception is Pinheiro
and Bates’ nlme package [16,17], which provides utilities for simultaneously fitting random effects and covariance pattern
models, while also permitting model adjustments to account for heteroscedasticity of the error variance. The limitation
with nlme is that the grouping variable for the random effects and spatial autocorrelation terms must be identical, which,
in the case of our longitudinal dataset, was not ideal. We did not know a priori whether our modeled Ituri data would
present spatial autocorrelation or heteroscedasticity, but we elected to use the most versatile toolset available.

In addition, it is worth noting that while “failure to take account of the covariance among the repeated measures
will results in incorrect estimates of the sampling variability and can lead to quite misleading scientific inferences” [13]
(p. 163), this is specific to model metrics derived from the variance-covariance matrix of the errors (standard errors,
confidence intervals, etc.). In fact, the “least squares estimators of the fixed-effect covariance parameters are unbiased
even in the presence of an incorrectly specified covariance structure” [12] (p. 137), and in practice the analyst will often
find that modifications to the covariance structure do not appreciably change the estimates of the fixed effect coefficients.

Mixed effects models of the structure presented above provide a way for the analyst to estimate what are effectively
sub-models for each level of a grouping variable that may or may not be nested. The random effects that are estimated
(i.e., the empirical best linear unbiased predictions), serve as offsets to the coefficients estimated for the fixed effects
term, whether a model has a single random effect parameter (i.e., random intercepts by subject) or as many random
effect parameters as there are fixed effect parameters (i.e., Z = X). These offsets reduce the over residual error by
providing mean models for each level of some grouping element, leaving ϵ to capture what Gregoire et al. [12] refer to as
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“unattributable deviations”, or “disturbances” (p. 138). A distinction can be made between modeling frameworks that
view the random effects coefficients as of intrinsic interest, versus those that view these as nuisance parameters. Here our
primary interest was in the mean models and so we regarded the random effects as nuisance parameters.

3.2. Linear mixed effects model fitting

Given the longitudinal study design, our primary interest was in modeling the change in biometrics over time, by
forest type. Here we present a detailed account of our workflow for modeling changes in AGB, followed by a more
abbreviated description of the models for BA and the number of alive trees, which followed identical workflows.

To fit the linear mixed effects model structures presented above, we used the lme function within the nlme package [16,
17]. We fit fixed and random effects terms simultaneously because the unbalanced nature of the data led to an interaction
in which the estimation of the random effects coefficients influenced the estimates of fixed effects coefficients, and vice
versa. For our fixed effects term we used an analysis of co-variance (ANCOVA) model [18] (p. 466) of the form

lme(fixed = agb ∼ year + class + year:class + alive + qmd) (6)

where year, alive (number of alive stems), qmd (quadratic mean diameter), and ba (basal area) are continuous and forest
class is a factor variable with four levels. In R, for a single observation, model (6) is internally expanded to the more
familiar form

Yij = β0 + β1yearij + β2class2ij + β3class3ij + β4class4ij + β5yearijclass2ij+

β6yearijclass3ij + β7yearijclass4ij + β8aliveij + β9qmdij + ϵij
(7)

where i = 1, ..., 640 indexes unique subjects (quadrats), and j = , ...,3 indexes measurement periods. Equation (7) is
simplified, of course, to Yi = Xiβ + ϵi . Equation (7) provides forest class-specific intercepts and slopes. We could have
modeled each forest type separately, but (7) provides equivalent results [19] but with the increased precision obtained
through a pooled sample size. Because forest class was defined based on relative Gilbertiodendron BA, we included some
form of basal area within the mean model as a structural variable that could help control between-site differences in the
same forest classes. The other predictors were the result of standard model selection procedures (i.e., evaluation of Akaike
Information Criterion [AIC][20], Bayesian Information Criterion [BIC][21], likelihood ratios, parameter significance, etc.).

The random effects design matrix (Z) contained a vector of ones and the year variable, set to estimate random
intercept and slope coefficients by unique quadrat. This is captured in R with

lme(fixed = agb ∼ year + class + year:class + alive + qmd,

random = 1+year|quadrat)
(8)

or, following (7),

agbij = β0 + β1yearij + β2class2ij + β3class3ij + β4class4ij + β5yearijclass2ij+

β6yearijclass3ij + β7yearijclass4ij + β8aliveij + β9qmdij+

b1i + b2iyearij + ϵij

(9)

where the i subscript on the random effects terms (third line) reflects values specific to the ith subject.
We thoroughly tested the conditional residuals from (9) for spatial autocorrelation, as we expected, a priori, that

our quadrat data would contain spatial dependencies. Using the moran.test function of the spdep package [11,22], we
evaluated the estimates and variance of the estimates of Moran’s I under the assumption of randomization. Of the twelve
census × site combinations, only edoro1 at census 3 (I = 0.09±0.006 [1 s.e.], p=0.002), lenda 2 at census 3 (I = 0.03±0.003;
p=0.06), and lenda 2 at census 3 (I 0.06±0.005; p=0.03) contained statistically significant positive spatial autocorrelation.
Using the variogram function from the gstat package [23,24], we visually evaluated variograms to explore the spatial
autocorrelative patterns suggested by these test results. We detected no discernible patterns of spatial association, despite
the numerical results.

To ensure that we were not mistaken, we used the fit.variogram function from the gstat package to fit a number
of correlation functions to the spatially lagged variogram data built from each these three subsets. The models included,
among others, exponential, Gaussian, linear, spherical, and Matern correlation structures. None of the models converged
with reliable estimates. We also tried adding a patterned covariance model to our mixed effects model (9) through the
lme function, which uses its own model fitting algorithms. Here too we had limited success, with the exception of a
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rational quadratic correlation structure that suitably converged and provided a defined variance-covariance structure.
However, the added complexity of this model was not compensated for by increased explanatory power, and it proved a
less likely fit to our data than did (9), when comparing the models using AIC [20] and BIC [21]. An element dictating
the success of adding a patterned covariance model to a linear mixed effects model, is that when using the nlme::lme

function, the analyst is forced to use the same stratification (grouping) variable for both the random effects structure
and the corStruct [16] (p. 234) object supplied to the function’s correlation argument. To account for longitudinal
dependency, our stratification variable for our random effects was a quadrat identifier. However, it would make little
sense to examine spatial correlation structures across time. If we omit a grouping variable all together, then spatial
association is evaluated across space and time simultaneously. While we individually tested each census’ worth of data
for spatial dependencies, it was fortunate that we did not detect marked evidence of spatial dependence, as our actual
modeling framework would not have been able to accommodate such dependencies in an optimal manner.

Plots of the conditional residuals of (9) were evaluated for each census × site combination and as a group, with
respect to observation order, each of the covariates, and the fitted values, and with normal quantile plots. We considered
both standardized “Pearson” residuals, in which the raw residuals associated with each subject were divided by their
respective standard errors, and Cholesky residuals. Fitzmaurice et al. [13] (p. 237-239) argue that evaluating conventional
residual plots associated with mixed effects models (i.e., using Pearson residuals) is often a poor choice given the potential
issues of heteroscedasticity and correlation between residuals and covariates that may induce systematic trends in the
residual plots. In regression frameworks we consider these issues to be the rule, as opposed to the exception, and see
no reason why standardized or normalized residuals can’t be used to evaluate these two behaviors. However, as a
quality control measure, we explored the Choleksy residuals. Following Fiztmaurice et al. [13], Cholesky residuals were
computed as

r∗i = L−1
i ri (10)

where L−1
i is, for the ith subject, the inverse of the conjugate transpose of a Cholesky decomposition of the

unexplained model error variance covariance matrix, such that Σ̂i = LiL′
i, and where ri are the raw conditional residuals

for the ith subject.
There were no clear patterns of heteroscedasticity in the Cholesky residual plots, and color coding by subject

confirmed our above finding that there was no apparent spatial autocorrelation. Again, for quality control purposes,
we experimented by adding to (9) a model for undetected heteroscedasticity within Σ. Using the varFunc classes from
the nlme package [16,17], we applied weighting functions to (9) as one would in a weighted least squares regression.
However, the weighting functions provided by the varFunc classes [16] (p. 208) are more nuanced, and variance can be
modeled as a function of one or more covariates, as well as by subject. We tested models using:
(a) fixed variance (by year, ba, qmd and the proportion of agb that was Gilbertiodendron dewevrei);
(b) different variances estimated by grouping stratum (site, forest classification, site × classification, quadrat, census

ID);
(c) variance as a function of the power of a covariate (year, ba, qmd, NumO f Trees, ba or qmd) by site, ba or qmd by

forest class, ba or qmd by quadrat, ba or qmd by site-census pairings);
(d) variance as a function of the exponential or a covariate (ba, qmd, NumO f Trees, and each of these with the grouping

variables site, censusID, site × censusID, or f orestclass).
(e) variance as a function of a constant plus a power of a covariate (year, ba, qmd, NumO f Trees, and each of these

with the grouping variables site, censusID, site × censusID, or f orestclass); and
(f) variance as a combination of (b) and (c), (b) and (d), or (b) and (e).

During model evaluation and comparison, candidate models were fit using maximum likelihood (ML). Those
that properly converged were compared using an ANOVA table and associated AIC and BIC measures. We define
proper convergence as successful optimization and as the stable estimation of a variance-covariance matrix. Often when
fitting complex mixed effects models with nlme::lme, models appear to converge correctly, while close scrutiny of the
correlation coefficients from B reveal perfect correlation values of ±1, or close scrutiny of the variances from Σ reveals
values of ≈ 0 [25]. These problems are associated with models that include estimated singular variance covariance
matrices, and generally appear when trying to fit models that are too complex (particularly with respect to the random
effects structure) to be supported by the data [26]. In our workflow, the top ranking model (type (d) above) with proper
convergence was refit with restricted maximum likelihood (REML) to reduce possible bias associated with estimates
derived from Σ. The top ranking variance sub-model for our mode of AGB model was captured by

Var(ϵij|Xij) = σ2exp(2δcij Xij) (11)
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where Xij is a covariate value associated with the ith subject and the jth measurement occasion, and δc is an unrestricted
parameter that is estimated from Σ̂, indexed by 1, ..., c unique field site identifiers (n=4). Here, X = ba. Thus, we extend
(8) to

lme(fixed = agb ∼ year + class + year:class + alive + qmd,

random = 1+year|quadrat, weights = varExp(form = ba|site))
(12)

and extend (9) to

agbij = β0 + β1yearij + β2class2ij + β3class3ij + β4class4ij + β5yearijclass2ij+

β6yearijclass3ij + β7yearijclass4ij + β8aliveij + β9qmdij+

b1i + b2iyearij + ϵij

Var(ϵij|baij) = σ2exp(2δcij baij)

(13)

If we maintain that i = 1, ..., 640 subjects, and j = 1, ..., 3 measurement periods, but now add a stratification index
of c = 1, ..., 4 unique field sites, we arrive at the variance-covariance matrix Σ of unexplained residual variation. We
illustrate one generic and two specific blocks from this block diagonal matrix:

Σi = σ2

Zi,1,1BZ′
i,1,1 + exp(2δi,1,1X2i,1,1 ) Zi11BZ′

i,2,1 Zi,1,1BZ′
i,3,1

Zi,2,1BZ′
i,1,1 Zi,2,1BZ′

i,2,1 + exp(2δi,2,1X2i,2,1 ) Zi,2,1BZ′
i,3,1

Zi,3,1BZ′
i,1,1 Zi,3,1BZ′

i,2,1 Zi,3,1BZ′
i,3,1 + exp(2δi,3,1X2i,3,1 )


Σ161 = σ2

[
Z161,1,2BZ′

161,1,2 + exp(2δ161,1,2X2161,1,2 ) Z161,1,2BZ′
161,2,2 Z161,1,2BZ′

320,3,2
Z161,2,2BZ′

161,1,2 Z161,2,2BZ′
161,2,2 + exp(2δ161,2,2X2161,2,2 ) Z161,2,2BZ′

320,3,2
Z161,3,2BZ′

161,1,2 Z161,3,2BZ′
161,2,2 Z161,3,2BZ′

161,3,2 + exp(2δ161,3,2X2161,3,2 )

]

Σ640 = σ2

[
Z640,1,4BZ′

640,1,4 × exp(2δ640,1,4X2640,1,4 ) Z640,1,4BZ′
640,2,4 Z640,1,4BZ′

640,3,4
Z640,2,4BZ′

640,1,4 Z640,2,4BZ′
640,2,4 × exp(2δ640,2,4X2640,2,4 ) Z640,2,4BZ′

640,3,4
Z640,3,4BZ′

640,1,4 Z640,3,4BZ′
640,2,4 Z640,3,4BZ′

640,3,4 × exp(2δ640,3,4X2640,3,4 )

]

(14)

While AGB was our primary focus, we also used linear mixed effects modeling to capture changes in BA, the number
of alive stems, and DBH, across time. For each of these, our modeling framework followed the process noted above, with
comparable mathematical structures. We modeled shifting BA with

baij = β0 + β1yearij + β2class2ij + β3class3ij + β4class4ij + β5yearijclass2ij+

β6yearijclass3ij + β7yearijclass4ij + β8qmdij + β9aliveij + β10qmdij + β11agbij+

β12max1ij + β13max2ij+

b1i + b2iyearij + ϵij

Var(ϵij|(max1ij)) = σ2exp(2δcij max1ij)

(15)

where max1 represents the proportion of quadrat-level AGB captured by the species that holds the most AGB on each
quadrat, max2 follows max1 but for the species that is second heaviest, and where c = 1, ..., 12 indexes 12 unique
site × class pairings. Here again, our variance covariance matrix of unexplained residual error is a 1,920 × 1,920 block
diagonal matrix.

We modeled the number of live stems (of all species) on each quadrat with

aliveij = β0 + β1yearij + β2class2ij + β3class3ij + β4class4ij + β5yearijclass2ij+ (16)

β6yearijclass3ij + β7yearijclass4ij + β8qmdij + β9baij+

b1i + b2iyearij + ϵij

Var(ϵij|Xij) = σ2δ2
1,cij

(δ2 + |baij|δ3)2) (17)

The reader will note that in (17) we are no longer employing (11) to model the variance, but are now employing the
interaction of two variance functions (in R parlance, nlme::varIdent and nlme::varConstPower). This follows Pinheiro
and Bates [16], and is a framework that can be extended to support any combination of variance models. Each of the δx
parameters in (17) is estimated from Σ̂. The first, δ1, is restricted to be positive and in our case, is indexed by c = 1, ..., 3
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unique censuses, with one δ being estimated for each census. The second, δ2, is a constant restricted to be positive while
the third, δ3, is unrestricted. Pinheiro and Bates [16] (p. 212) note that when δ3 > 0, which is most always, variance will be
approximately proportional to δ2 at covariate values of 0, and increases with respect to the absolute value of the covariate.
The combination of these two variance functions leads to the estimation of, potentially, six variance parameters — two
(δ2 and δ3) for each of three census periods.

We modeled changes in the DBH of all Gilbertiodendron trees on each quadrat using a slightly different framework
from that used for AGB, BA, or the number of alive stems. Here, instead of using aggregated values, we treated each tree
as a subject. This greatly limited the explanatory variables we had available to us, but we felt this was the most sensible
approach for capturing minor increment changes in tree diameter. Our best fitting model did not support a variance
sub-model, and could only be fit with ML; REML was not supported. To understand the bias introduced into Σ-derived
metrics from a model fit with ML, we computed the mean ratio of the fitted values (ŷ) from ML and REML models, for
BA models. We found the mean ratio to be 0.000006, leading us to conclude that there was negligible bias in our DBH
model’s estimated coefficient standard errors. Our final DBH model was

dbhij = β0 + β1yearij + β2class2ij + β3class3ij + β4class4ij + β5yearijclass2ij+

β6yearijclass3ij + β7yearijclass4ij

b0t + b1tyearijt + ϵij

Var(ϵij) = σ2

(18)

where the t subscript on the random effects coefficients identifies individual identification tags, and where the remaining
terms are as defined above.

Mean values and associated 95% confidence intervals reported in the main text were derived through bootstrapping.
Using the bootstrap.lme function of the lmeresampler package [27], model observations were case resampled across all
hierarchical levels (n = 10,000). In all cases we had only two levels: population and quadrat. The appropriate mixed
effects model with heteroscedasticity sub-model was then fit to the resampled observations in a parallel computing
framework. From the results we derived mean coefficient estimates and their 95% confidence intervals (percentile
confidence intervals).

3.3. Beta regression modeling overview

Two of our response variables, the proportion of Gilbertiodendron stems that were classified as new recruits and the
proportion that died, were continuous variables bounded by the unit interval [0-1]. Such data structures can lead to
non-normal model error distributions and require a distinct modeling framework compared to that presented above. We
elected to employ beta regression [28,29], which is effectively a generalized linear model (GLM), in that the response
is related to the linear predictor (η) by way of a link function. However, unlike a logistic regression for binomially
distributed data, here we are modeling data from a continuous distribution. Following Ferrari and Cribari-Neto [29] and
Pereira and Cribari-Neto [30], we allowed that each of the y1, ..., yn observations were beta-distributed random variables
with density

f (y; µi, ϕ) =
Γ(ϕ)

Γ(µiϕ)Γ((1 − µi)ϕ)
yµiϕ−1(1 − y)(1−µi)ϕ−1, 1 < y < 1 (19)

where γ is the gamma function, µ is the mean of yi, and ϕ is a precision parameter. This is not the traditional pa-
rameterization of this distribution, but as Espinheira et al. [31] (p. 408) point out, this presentation is useful in that
the var(yi) = µi(1 − µi)/(1 + ϕ). Thus, for a fixed value of the mean, the variance of yi shifts inversely to ϕ — as ϕ
increases, the variance of yi decreases [32]. ϕ is thus the inverse of dispersion. Because var(yi) is a function of the mean,
heteroscedasticity can be easily accommodated using beta regression. When µ = 1/2 and ϕ = 2, the beta distribution
equates to a standard uniform distribution. Following Ferrari and Cribari-Neto [29] and Cribari-Neto and Zeileis [33], a
model for the mean response and variance of yi can be captured by

g1(µ) = Xβ = η1 (20)

E(Y|X) = µ = g−1
1 (η1) (21)

var(yi) =
µi(1 − µi)

1 + ϕ
(22)
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where Xβ are the design matrix and vector of coefficients, respectively, and g1 is a strictly monotonic and twice
differentiable link function [32]. η1 is the linear predictor, indexed to identify it from the precision model’s link function
shown below (25). Farrari and Cribari-Neto [29] comment that a variety of link functions are possible in beta regression,
but note that the logit link is particularly useful. We implemented a logit link for our µ sub-model (23) and a log link for
our ϕ sub-model (24)

logit g1(µ) = log(µ/(1 − µ)) (23)

g2(·) = log(·) (24)

Simas et al. [32] extend Ferrari and Cribari-Neto’s [29] work by providing a non-linear beta regression framework,
and, of particular interest here, a regression modeling structure for the precision parameter (ϕ). Similar to the mean
model, Simas et al. [32] (p. 356) show how ϕ can be modeled using

g2(ϕ) = Zθ = η2 (25)

E(ϕ|µ) = ϕ = g−1
2 (η2) (26)

where Zθ are the design matrix and vector of coefficients for the ϕ model, and η2 is the linear predictor specific to
the precision parameter. Here, Z need not be identical to X, and could be a subset of X or have unique covariates.
Cribari-Neto and Zeilis [34] refer to a beta regression model with dispersion covariates as a variable dispersion beta regression
model, and from a conceptual point of view, shares similarities to Pinheiro and Bates’ [16] variance functions. In the
models we present below, we elected to model the variance using Simas et al.’s [32] approach.

In light of the inherent longitudinal autocorrelation, and minor spatial autocorrelation in our dataset, we endeavored
to reduce the bias and possible inconsistencies in our variance covariance-based metrics (i.e., standard errors, confidence
intervals, etc.) by applying a post hoc nonparametric sandwich estimator to our marginal beta regression model. Much
of the literature on sandwich estimators appears in econometric journals, and their use has not yet become common in
ecology. A wide variety of sandwich estimators exist [35], including those that are heteroscedasticity consistent, temporal
autocorrelation consistent, and/or spatial autocorrelation consistent. A number of correction methods to account for
cluster bias and/or heteroscedasticity-induced bias also exist, and are used in tandem with the sandwich estimators.
In the present study we explored two sandwich estimators: Driscoll and Kraay’s [36] heteroscedasticity-, temporal
autocorrelation-, and cross-sectional autocorrelation-consistent estimator, and a simpler heteroscedasticity- and temporal
autocorrelation-consistent estimator with bias correction [35,37,38]. In light of the fact that (a) our prior modeling efforts
revealed low (though heretofore non-meaningful) levels of spatial autocorrelation in a selection of our field site × census
period combinations; and (b) ignoring spatial dependence in temporally autocorrelated datasets “typically leads to overly
optimistic (anticonservative) standard error estimates” [39] (p. 282), we considered the Driscoll and Kraay’s approach
first, by way of the vcovPL function from the sandwich package [35,40,41].

Driscoll and Kraay [36] present a simulation study evaluating the performance of ordinary least squares (OLS)
and seemingly unrelated regressions (SUR) estimators of parameter standard errors, as compared to their proposed,
consistent, panel estimator. Their results indicate that for finite samples, their sandwich estimator performed markedly
better than either OLS or SUR in the presence of combined temporal and spatial autocorrelation, with some evidence that
the depth of the temporal dimension of the observations is associated with improved confidence interval coverage (i.e.,
more intervals capture the true value). Berger et al. [35] comment that in their suite of simulations, “empirical coverages
falling short of 0.95 are typically due to underestimated standard errors and would lead to inflated type I errors in partial
Wald tests of the coefficients” (p. 19). Poor performance may occur when the temporal dimension is too limited. When “T
is small or when there is only a single cross section, the problem of consistent nonparametric covariance matrix estimation
appears to be much less tractable” [36] (p. 559). Hoechle’s [39] modeling simulation results confirm that Driscoll and
Kraay’s [36] estimator clearly depends on large-sample asymptotics with respect to the temporal dimension, as the longer
the dimension the “better calibrated” the standard errors. Hoechle’s [39] (p. 299) results also suggest that with as few
as five time steps and an autocorrelation coefficient of 0.125, Driscoll and Kray’s standard errors are superior to OLS
and Roger’s [42] clustered standard errors. This superior performance holds “irrespective of whether a panel dataset
is balanced” [39] (p. 290), which our data is not. Importantly, though, in the absence of autocorrelation, Driscoll and
Kray’s estimator does not perform as well as others. A naive comparison with Berger et al.’s [35] figure 5 (p. 29) suggest
that with a data structure like ours (n = 480, a maximum group size of 3, and, in the case of recruitment, a temporal
autocorrelation coefficient of ρ = 0.18 using a lag of 1), we could expect the confidence intervals for our parameters to
have < 80% coverage.
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These latter points are important with respect to the present study, as our temporal dimension was, at most, three
time steps, and because we had so little spatial autocorrelation across all sites and time periods that we were not able
to model it. This, and suggestions from betareg package author A. Zeileis (personal commm. July 2019) led us to
explore the betareg::vcovCL function, which employs a simpler strategy to capture dependence within, but not between,
clusters [35]. Sandwich variance covariance estimators that capture one-dimensional clustering have existed for decades
[37,38]. Liang and Zeger’s [38] approach avoids “the need for multivariate distributions by only assuming a functional
form for the marginal distribution at each time. The covariance structure across time is treated as a nuisance” (p. 20). This
is not conceptually dissimilar from how random effects are often treated in mixed effects modeling. To obtain consistent
estimates of the variability, this approach requires that subjects are independent, but “no restrictions are placed on the
form of the autocovariances for a given individual” [37] (p. 431). More recently, [43] extended sandwich estimators for
clustered standard covariances to multiple, non-nested dimensions, as has been implemented in vcovCL function of the
sandwich package [35,40,41].

For both our models of recruitment and mortality we employed vcovCL with a single dimension of clustering,
being the quadrat identifiers, which link observations temporally, as in our mixed effects models. As noted above, bias
correction can be separated into cluster bias correction and heteroscedasticity bias correction. The cluster bias correction
corrects for the finite sample size, and is defined, following Berger et al. [35] (p. 6) as

G/(G − 1) (27)

where G represents the number of different clusters (n = 480 in our study). Of the two heteroscedasticity bias correction
options available for models of the R class betareg, we employed type “HC1”, which Beger et al. [35] show to perform
better than “HC0”. The HC1 bias correction corrects for heteroscedasticity within each cluster using

n/(n − k) (28)

where n is the number of observations and k is the number of model parameters to be estimated. In that we have a
maximum of three observations per cluster, we can’t expect any notable improvement from this bias correction method.

3.4. Beta regression modeling fitting

To fit the beta regression models discussed above, we used the betareg function from the betareg package [33,34,44].
We employed a logit link in all of our models, and followed Bayer and Cribari-Neto [45] in executing a two-stage modeling
process in which we first modeled the mean response before considering a model for variable dispersion. Model selection
was performed using two less common metrics: HQc and R2

LR. Bayer and Cribari-Neto [45] present the results of a
simulation study in which a large number of metrics used to evaluate the fit of variable dispersion beta regression
models were considered. For samples sizes ≥ 50 they found that the HQc metric proposed by McQuarrie and Tsai [46] (p.
34-35) performed best among information criteria. HQc is a likelihood-based metric not too dissimilar from the Akaike
information criterion (AIC), and incorporates a finite sample correction. Following Bayer and Cribari-Neto’s [45] (p. 734)
notation

HQc = −2ℓ(β̂, γ̂) +
2nklog(log(n))

n − k − 1
(29)

where β̂ and γ̂ are the maximum likelihood estimators of β and γ, ℓ is the log of the likelihood function, n is the number
of observations, and k is the number of parameters to be estimated in the model. We created a custom function that
returned the HQc value for any number of beta regression model objects supplied.

We also employed a pseudo coefficient of determination (R2
LR) originally proposed by Nagelkerke [47] and Long

[48], and recommended by Bayer and Cribari-Neto [45]. In the case of fixed dispersion models, Bayer and Cribari-Neto
[45] found R2

LR to perform similarly to other pseudo R2 metrics. However, in a variable dispersion framework, R2
LR was

more sensitive to the ϕ sub-model, taking “significantly larger values” when the dispersion model was correctly modeled.
We consider this to be desirable, in that the analyst has a lower chance of settling on a poorly fitting ϕ model. Nagelkerke
[47] discusses how this metric can be interpreted as one would interpret the traditional coefficient of determination.
Following Nagelkerke’s [47] (p. 691) notation

1 − exp
[
− 2

n
{l(β̂)− l(0)}

]
(30)
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where l(β̂) is the maximized log-likelihood of the model to be evaluated (presumably with covariates), l(0) is the
maximized log-likelihood of a beta regression model with only an intercept in each of the µ and ϕ sub-models, and n
is the number of observations. As with HQc, we created a custom R function that would return the R2

LR value for any
number of beta regression model objects supplied.

In addition to HQc and R2
LR, we used a typical array of residual plots to identify gross problems with model

fit. Following the recommendations from Espinheira et al. [31], we used “standardized weighted residuals 2” type
residuals when evaluating our models. These residuals proved superior in some applications because they can be used
to investigate model misspecification while also identifying influential data points. This comes from the fact that these
residuals implicitly take observation leverage into account. Following Espinheira et al. [31] (p. 409), these residuals are
computed using

rww
t =

r∗t√
ϕ−1(1 − htt)

(31)

r∗t =
y∗t − µ̂∗

t√
ϕvt

(32)

where y∗t is the tth value of the logit response, µ̂∗
t is the estimated value of y∗t , ϕ is the estimated precision parameter,

vt is the variance of y∗t , and htt is the tth diagonal element from the hat (projection) matrix. The “standardized weighted
residuals 2”, rww

t , are implemented in R through the residuals.betareg method of the betareg package.
We concluded our beta regression model selection process by employing a misspecification test originally proposed

by Ramsey [49] (p. 361). Ramsey’s “Regression Specification Error Tests”, or RESET, was advanced by Pereira and
Cribari-Neto [30] as a way to test the suitability of both fixed and variable dispersion 0-1 inflated beta regression models,
and suggested by Bayer and Cribari-Neto [45] as an element of the model selection process for non 0-1 inflated beta
regressions. The test is based on the idea that “omitted variables and other forms of model misspecification can be
proxied by some (unknown) analytic function of the linear predictor used in the definition of the” regression model [30]
(p. 635). In practice, we can regress on the response vector, our original covariates and different powers of the fitted
values from that original model. If the addition of the power covariates can approximate omitted explanatory terms,
the augmented model will appear significantly better than the original model using likelihood ratio or Wald tests. If
the model is suitably specified, the inclusion of the new explanatory terms will not improve the model fit. Pereira and
Cribari-Neto’s [30] numerical simulations indicate that a RESET performed solely on the µ sub-model, is generally better
performing than that applied to both the µ and ϕ sub-models. To extend (20),

g1(µ) = η1 + A1τ1 (33)

where A1 is a matrix of testing variables used to augment the mean model, and τ1 is a vector of estimated coefficients
associated with those testing variables. Broadly, A could contain a number of perturbed terms, but Pereira and Cribari-
Neto’s [30] (p. 655) “strong” recommendation is to augment the mean model with the squared values of the fitted linear
predictor. We followed this guidance in our testing.

The proportion of Gilbertiodendron recruits within each quadrat was modeled using stems ≥ 20 mm in diameter.
This threshold was established to avoid excessive skewing of the size class distribution, given that there were, at times,
very large numbers of new recruits that subsequently died. The edoro2 field site was established as a control site, and
contained no Gilbertiodendron in any of the censuses. Thus, we omitted these records in our analysis. From the edoro1,
lenda2, and lenda2 field sites, we omitted any quadrat that lacked Gilbertiodendron in every census. Since we did not
employ zero-one inflated beta regression, 0 and 1 values were manually altered to 0.001 and 0.999, respectively, to
accommodate the betareg model fitting algorithms. As described above, the remaining records represented quadrat-level
aggregations. We employed the following variable dispersion beta regression model

̂logit(pctRecruits) = η1 = β̂0 + β̂1yearij + β̂2class2ij + β̂3class3ij + β̂4class4ij + β̂5yearijclass2ij+ (34)

β6yearijclass3ij + β7yearijclass4ij + β̂8nTreesij + β̂9baij + β̂10max2ij + β̂11 pctMortij

̂log(ϕ|µ) = η2 = β̂ϕ0 + β̂ϕ1 yearij + β̂ϕ2 class2ij + β̂ϕ3 class3ij + β̂ϕ4 class4ij + β̂ϕ5 yearijclass2ij+ (35)

β̂ϕ6 yearijclass3ij + β̂ϕ7 yearijclass4ij + β̂ϕ8 site2ij + β̂ϕ9 site3ij + β̂ϕ10 mortij + ϵij

var(ϵij) =
logit−1(η1)[1 − logit−1(η1)]

1 + ϕ
(36)



13 of 18

where nTree represents the number of standing stems, pctMort represents the proportion of Gilbertiodendron stems that
were dead, padded by 0.001 as with the pctRecruits variable (noted above); site represents a categorical variable of three
field sites; and the remaining variables are as defined above. We implemented this model in R using

betareg(pctRecruits ∼ year + class + year:class + ntrees + ba +

max2 + pctMort | year + class + year:class +

pctMort + site, data = datasetName)

(37)

Similarly, to capture trends in mortality we modeled the proportion of Gilbertiodendron stems that were initially
dead or had died between censuses (i.e., the mortality of previously documented stems). In modeling stem mortality, we
employed the following variable dispersion beta regression model

̂logit(pctRecruits) = η1 = β̂0 + β̂1yearij + β̂2class2ij + β̂3class3ij + β̂4class4ij + β̂5yearijclass2ij+ (38)

β6yearijclass3ij + β7yearijclass4ij + β̂8baij + β̂9 pctRecij + β̂10site2ij + β̂11site3ij

̂log(ϕ|µ) = η2 = β̂ϕ0 + β̂ϕ1 yearij + β̂ϕ2 class2ij + β̂ϕ3 class3ij + β̂ϕ4 class4ij + β̂ϕ5 yearijclass2ij+ (39)

β̂ϕ6 yearijclass3ij + β̂ϕ7 yearijclass4ij + β̂ϕ8 pctRecij + ϵij

var(ϵij) =
logit−1(η1)[1 − logit−1(η1)]

1 + ϕ
(40)

where all variables are as defined above.
We used the boot function from the boot package [50,51] with custom functions to bootstrap the beta regression

models and their corrected variance-covariance matrices from vcovCL. We did this because of inherent instability in Σ̂

given the small number of observations per group. Bootstrapping was performed through selection of random records
(case resampling), which were then used to build models and variance-covariance matrices. Bootstrapping was performed
in parallel using a SNOW cluster [52]. Bootstrapping was repeated four times – one for each forest class (n = 40,000 total).
This ensured that the reference class (the withheld forest class) was the class of interest, yielding coefficient and standard
error estimates that were more reliable than those derived by adding variances and covariances from the model error
matrix. Previous testing indicated that this latter approach was unstable. We report BCa (bias-corrected) 95% confidence
intervals [53] derived from the boot.ci function.

Model coefficients from mixed effects and beta regression modeling, are presented in Supplementary Table 1.
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Table 1: Estimated coefficients and their standard errors (in parentheses) for models of above-ground biomass (AGB),
basal area (BA), the number of living stems (A), diameter at breast height (DBH), the proportion of Gilbertiodendron
dewevrei stems that were new recruits (pctRecruits), and the proportion of Gilbertiodendron dewevrei stems that were dead
(pctMortality). Estimates are derived through bootstrapping as discussed above, with standard errors from percentile
and BCa confidence intervals for linear mixed effects and beta regression models, respectively. The upper half of the table
contains parameter estimates for the mean models while the lower half contains parameter estimates associated with
residual variability and dispersion. (C) = categorical variable and (I) = interaction term. ProportionAGBForMax1st = the
proportion of AGB held by the heaviest species in each quadrat; ProportionAGBForMax2nd = the proportion of AGB
held by the second heaviest species in each quadrat; QMD = quadratic mean diameter; and the remaining entries are
either self-explanatory or are described elsewhere.

Parameter AGB BA Alive DBH pctRecruits pctMortality

Intercept 1.039 (6.992) -3.633 (0.214) 404.757 (39.232) -1446.835 (69.89) -2.906 (0.167) -3.78 (0.122)
A -0.015 (0.008) 0.004 (0)
BA 19.783 (2.14) -41.948 (19.243) -0.181 (0.034) -0.075 (0.027)
Mixed forest (C) -1.569 (0.762) -0.004 (0.041) -9.939 (6.797) -744.067 (206.603) 0.248 (0.13) -0.33 (0.293)
Transitional forest (C) -1.755 (0.85) 0.005 (0.039) -6.804 (5.457) 44.787 (101.948) 0.028 (0.084) -0.293 (0.115)
Riparian forest (C) -2.715 (0.648) -0.059 (0.039) -14.384 (5.652) -119.224 (141.763) 0.136 (0.099) 0.195 (0.107)
sqrt(BA) 714.156 (59.96)
NumOfTrees 0.002 (0)
pctMortality 3.651 (1.043)
pctRecruits 1.471 (0.456)
PropotionAGBForMax1st -0.161 (0.098) -38.094 (15.294)
PropotionAGBForMax2nd -0.24 (0.153) -35.406 (24.18) 0.657 (0.343)
QMD -0.952 (1.067) 0.57 (0.016) -114.623 (3.356)
edoro2 (C) -0.244 (0.41) 12.809 (2.778)
lenda1 (C) 1.987 (0.636) -2.434 (5.444) 0.126 (0.076)
lenda2 (C) 1.421 (0.698) 3.294 (6.194) 0.357 (0.08)
Year -0.034 (0.056) 0.029 (0.001) -5.615 (0.218) 0.803 (0.035) 0.056 (0.008) -0.015 (0.01)
Year:Mixed forest (I) -0.021 (0.021) -0.003 (0.001) 0.416 (0.217) 0.318 (0.104) 0.024 (0.03) 0.161 (0.052)
Year:Transitional forest (I) 0.034 (0.037) -0.003 (0.002) 1.248 (0.431) -0.061 (0.051) -0.002 (0.016) 0.008 (0.021)
Year:Riparian forest (I) -0.026 (0.029) 0.005 (0.002) -1.263 (0.318) 0.046 (0.071) -0.018 (0.019) 0.006 (0.02)

varExp (BA|edoro1) 0.427 (0.033)
varExp (BA|edoro2) 0.688 (0.046)
varExp (BA|lenda1) 0.215 (0.036)
varExp (BA|lenda2) 0.492 (0.031)
varExp (A) 0.002 (0)
varPower (QMD|Census1) -1.415 (0.267)
varPower (QMD|Census2) -0.982 (0.141)
varPower (QMD|Census3) -1.008 (0.141)
phi (Intercept) 1.737 (0.192) 3.094 (0.075)
phi Mixed forest (C) -0.48 (0.196) -0.173 (0.351)
phi Transitional forest (C) 0.188 (0.132) 0.138 (0.125)
phi Riparian forest (C) -0.29 (0.159) -0.213 (0.106)
phi pctMortality -3.79 (1.762)
phi pctRecruits -0.882 (0.49)
phi lenda1 (C) 0.244 (0.201)
phi lenda2 (C) 0.876 (0.197)
phi Year -0.02 (0.009) 0.014 (0.009)
phi Year:Mixed forest (I) -0.222 (0.062)
phi Year:Transitional forest (I) -0.003 (0.021)
phi Year:Riparian forest (I) -0.017 (0.019)

4. Mechanistic synthesis

Collectively, our findings support the hypothesis that Gilbertiodendron is a controlling determinant of the structure
of the Ituri Forest and, by extension, large portions of forested central Africa. However, attributing patterns of change
to particular causal mechanism is problematic [54]. To some extent, Hart et al.’s [55, p. 557] sentiment that the “factors
permitting the expansion of G. dewevrei remain mysterious”, still rings true. We did not directly explore the mechanisms by
which this species succeeds, but are of the view that a complement of factors is at work [54]. Although early explorations
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of tropical monodominance targeted isolated drivers [56], Gilbertiodendron dominance likely emerged, and is perpetuated
through, at least three interconnected channels: (a) recovery or response from rare large-scale disturbance (fires), (b)
ectomycorrhizal associations, and (c) stress tolerance traits.

Analyses of charcoal remains and pollen records indicate that fires have been present in the Ituri region periodically
over the past 2,500 years, with a notable dry period prompting increased frequency and extent of fires in the range
of 3,000-2,000 BP [55,57]. Fires were more common in current mixed species forest structures than in Gilbertiodendron-
dominated forest in the Ituri region, as samples from the latter reflect the presence of fire only twice in the last 1,000 years,
and not at all in the last 500 years. Hart et al. [55] found that moist evergreen forest was predominate in the Ituri forest
over the past two millennia, though the species composition has shifted in critical ways. They found through charcoal
analysis that seven of eleven of the most abundant modern tree species, including Gilbertiodendron, were not present in
the Ituri Forest as recently as two centuries ago. This is in contrast to Torti et al. [56], who identified continued presence
of Gilbertiodendron-dominated forest in the Sangha River region (west of Ituri, in Republic of the Congo) over the past
2,700 years. Though, like Ituri, these findings also indicate an absence of fire over the past two millennia. Tovar et al.’s
[58] recent work also identified very little change in the vegetative composition across a number of sites in the past 2,700
years, though Gilbertiodendron pollen made up only a small proportion of all pollen at different points in time (possibly
due to limitations in pollen dispersal).

Hart et al. [55] propose that drier periods (see also [58]) may have led to the establishment of a mosaic of different
forest types, perhaps through opportunistic channels and refugia [57,59]. Oliver and Larson [60] provide support for
this idea, acknowledging the ubiquity of fire as an allogenic disturbance agent. They speak to the manner in which
fires, whether numerous or large, can lead to a spatial mosaic of remnant conditions, and they reference Davis [61] and
Lopez-Portillo et al. [62] in demonstrating that even tropical forests can burn during unusually dry periods. However, the
expansion of Gilbertiodendon is still remarkable given (a) what we would expect of the species’ growth and reproductive
characteristics, and (b) that no historical Gilbertiodendron was identified in any of Hart et al.’s [55] 279 charcoal-producing
Ituri test pits, dated to 130±70 to 4190±160 years before present. These factors suggest that Gilbertiodendron possesses
physiological and life-history traits that afford it a competitive advantage as a persistent monodominant, and possibly,
that its colonization is more recent than its physiology and life-history might otherwise suggest [55].

Connell and Lowman [63] identify two broad classes of tropical monodominance based on whether the dominant
canopy species persists beyond a single generation in the absence of disturbance (type I; e.g., [64]), or whether it is
supplanted by other species after a single generation (type II, e.g., [65]). Newbery et al. [66] add a third type corresponding
to transient monodominants that depend on disturbance to gain or retain dominance (e.g., [67]). Gilbertiodendron-
dominated forest of the Ituri region reflects type I monodominance [63,68], and a number of characteristics support
multi-generational persistence. One life history trait that may afford Gilbertiodendron a competitive advantage over
competitors is its ectomycorrhizae association (EM) with fungal symbionts [56,58,63,69]. An EM association generally
affords its host improved protection against natural enemies and harmful physical factors, and can provide access to
nutrients before they are available to vesicular-arbuscular mycorrhizal (VAM) associations [63]. These benefits may
provide EM host species an advantage over VAM host species, allowing the former to both replace themselves and
displace VAM host species over time [56,59,63]. Not all tropical monodominant species possess an EM association [56,69],
however Gilbertiodendron [63,69] and Julbernardia seretii both do, while some other local species do not [56,68,69]. An EM
association is neither a necessary nor a sufficient explanation of Gilbertiodendron monodominance when considered in
isolation [56]. However, it may afford the species a competitive advantage over others [59] in the region’s nutrient-poor
soils [69].

While historical landscape disturbance might have presented an opportunity for Gilbertiodendron to gain a small
foothold [55,57,59], and EM association may enhance success relative to other established competitors [56,58,63,69],
Gilbertiodendron’s stress-tolerance traits [56] may be of greater importance in maintaining and expanding the species’
territory. Seed mortality is high for both Gilbertiodendron and Julbernardia seretii, a common canopy dominant in the mixed
species forest [68]. The production of intermittent mast crops does help to offset losses through satiation of mammal
predators, but pre-dispersal seed predation by specialized beetles leads to low germination rates for both of these species
[58,68]. However, Hart [68] found that successful germination led to increased survival rates for Gilbertiodendron, relative
to Julbernardia seretii, across both the short- and long-term. This is at least partly attributable to tolerance of extremely
low light levels. Photosynthetically active radiation in the Gilbertiodendron-dominated understory is less than half that of
mixed forest, and given the homogeneity of the canopy, it is more consistently limited as well [56]. In both controlled
nursery experiments [69] and field experiments [70], Gilbertiodendron has proven to remain stable in a range of light
conditions, from full sunlight [69] to a photosynthetic photo flux density of 2.8 mol/m2/day (approximately 5.3% of full
sunlight) required for seedling maintenance [70]. If we consider that the highest rates of seed survival for Gilbertiodendron
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are in the transition zones at monodominant patch boundaries [68], we can begin to see a logical set of mechanisms by
which this species achieves dominance and spreads across the landscape:

(1) Gilbertiodron is initially present in the area, perhaps through historical refugia. (2) For productive trees, seed
survival and germination are greatest in areas adjacent to monodominant forest. (3) Tolerance of low (and high) light
conditions, paired with increased access to nutrients through an EM association, enables seedlings to continue to grow
slowly [71] beneath early-emergent, faster growing, or more light-demanding species that also occupy the transition
zones. These traits also permit success through opportunistic channels, such as within brighter canopy gaps. (4) In time,
Gilbertiodendron overtakes competitors while effectively suppressing their future growth through densitification of the
canopy and reduction of understory light [69]. This combination of factors indirectly suggests that Gilbertiodendron does
not necessarily possess enhanced resistance to pathogens, parasites, or animal predators [63], but instead, that it has
locally enhanced access to certain resources (i.e., soil nutrients), and that it indirectly increases stress on competitors
[56,69]. That such a suite of mechanisms may drive forest composition and structure is not unique among tropical forests
[72,73].

Changes in the species composition and structural dynamics of tropical forests have often been attributed, whether
directly or indirectly, to changes in climate and CO2 fertilization [54,74–76]. We certainly can’t exclude the effects of
anthropogenically altered atmospheric chemistry, but on a local scale we see no reason to believe there would be a
difference in the atmospheric conditions between Gilbertiodendron-dominated and mixed species forest types at Ituri. The
effects of a changing climate are more likely to have an effect through the shifting cycles of temperature and precipitation
[54], as has been common in central Africa since the Holocene [59]. These, in turn, may influence the duration and
frequency of fire, drought, and inundation, which may have more marked effects on floristic composition than the
changing atmosphere itself. However, according to Hart et al. [55], the patterns of floristic change over the past four
millennia do not actually reflect any directional climatic change. Recent findings [77] suggest that elevation, perhaps
through its relationship with climate, is responsible for differences between patterns and trends in Paleotropical and
Neotropical forests, though again, differences in elevation across the four Ituri plots are insufficient to offer an explanatory
mechanism. Chave et al. [72] remark that developmental changes in species composition are generally slower than those
in stand structure, though on a centurial or geologic time scale, it is possible that the type of monodominance we see in
Gilbertiodendron forest today could appear and disappear regularly [55,56].

Data Availability Statement: The research relied on data from the Ituri Forest Dynamic Plots curated by the Smithsonian Tropical
Research Institute’s Forest Global Earth Observatory (ForestGEO), currently comprised of 67 long-term forest monitoring plots.
The data is available to researchers upon reasonable request through the ForestGEO data request platform, currently located at
https://forestgeo.si.edu/sites/africa/ituri, and through correspondence with the plot principal investigators: Corneille E. N. Ewango
(corneilleewango@gmail.com) and Jean-Remy Makana (jeanremymakana@gmail.com). Limitations of use and requirements associated
with publication of analyses derived from the Ituri plot data can be found at the aforementioned URL.
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