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A1 ESTIMATION OF ETHANOL STRIPPING

Ethanol can be partially stripped in gassed fermentation processes leading to underestimated parameters
such as gethanol or the carbon balance. We estimated a 4.8 % loss of ethanol in the liquid phase using the

approach reported by [1]. First, the millimolar stripping rate from the system was calculated according to

equation 1:
. __ Yethanol * ¢pMB QG
methanol,G - K . D (1)
ethanol,L/G
, with:
Methanol,G stripping rate of ethanol (3.26 mmol-h™)
Gethanol biomass specific ethanol production rate (7.98 mmol-gpme-h1)
CpMB biomass concentration (5 goms-L1)
QG volumetric gassing rate (25.5 L-h™)

KethanolL/G partition coefficient of ethanol between the gas and liquid phase (3125 L-L)

D dilution rate (0.1 h?)

Then, the 4.8 % loss of ethanol in the liquid phase due to stripping was calculated by dividing the

ethanol stripping rate by the ethanol production rate:

methanol,G

loss (%) =

-100 (2)
Qethanol * CpomB * Vi
, with:

V. liquid reactor volume (1.7 L)



A2 ESTIMATION OF g AND Kgiycose

glucose, max

As of to date, there are no published parameters for hyperbolic glucose uptake kinetics under anaerobic
growth conditions available for Ethanol Red™. In order to characterize the stimulus, we conducted a
parameter fitting of equation 3 to our experimental data. We repeated the reference steady state value
between -600 and 0 seconds in 50 s intervals as a means to increase the weight of the steady state relative to
dynamic data. For simulation and parameter fitting, the R packages deSolve v. 1.33 and minpack.Im v. 1.2.2

were used, respectively [2]. Glucose uptake was modeled according to:

dc q C
glucose ( glucose,max glucose
= \Cglucose,feed — € lucose) D — * CpmB (3)
dt g f g Kglucose + Cglucose
, with:
Cglucose glucose concentration (initial value: 5.2 mmolc-L" in s-LSL and 5.6 mmolc-L in r-LSL)

Cglucose,feed ~ glucose concentration in feed reservoir (1366 mmolc-L™)

CpMB biomass concentration (5.06 gpms-L" in s-LSL and 4.72 gpme-L! in r-LSL)

dglucose,max ~ Maximum biomass specific glucose uptake rate (initial guess: 65 mmolc-gpms-h)

Kgiucose glucose half-saturation constant (initial guess: 6 mmolc-L1)

D dilution rate (0.1 h?)

The famine stimulus within each perturbation cycle was implemented using an ifelse-loop where the
dilution rate was set to zero during the feed-off time. The ordinary differential equation (3) was solved with
the ode() function of deSolve (method = “ode45”) and the parameters qgpcose;max and Kgycose Were estimated
by curve fitting via a Levenberg-Marquardt routine implemented in nls.Im() of the minpack.Im package
(output and statistics in table S1). The simulated glucose levels versus experimental levels are shown in

figure S1 A+C. Furthermore, an estimation of uncertainty was conducted. A random variable within the



mean square error between model and experimental values was computed for each data point with rnorm()
to achieve a new simulated dataset. The parameters were then fit to 1000 simulated datasets and a 95 %

confidence ellipse was drawn around the resulting parameter tuples (figure S1 B+D).

Table S1. Parameter estimation and statistics output from nls.lm().

parameter data set estimate standard t-value Pr>Itl  p-value
error
Qgtucosemax (mmole-goush1)  sLSL 7150 0.02 8910 <2-10% <0.001
r-LSL 64.80 0.00 35-105 <2-10% <0.001
Ktucose (mmolc-11) sLSL  6.19 0.03 1.39 <2-10  <0.001
r-LSL 5.47 0.00 106 <2-101% <0.001
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Figure S1. Simulation readouts for determination of glucose uptake kinetic parameters. Simulated data for s-LSL in
shown in red (A) and r-LSL in green (C) with the corresponding experimental data as black circles. B and D depict the
corresponding estimation of uncertainty. Estimated parameters for 1000 iterations over the curve fitting routine with
simulated data, which was randomized within the mean square error of the model. The 95 % confidence interval is
shown in blue.



A3 DIFFERENTIAL GENE EXPRESSION ANALYSIS

For gene expression analysis, the complete count table was split into three datasets: (i) the single-(s)-LSL
time series including the reference steady state (RS) and post stimulus time points up to 3 h (figure S1), (ii)
the characterization of the dynamic steady state (DS) using RS as the reference and all samples of the
repeated-(r)-LSL time series representing DS (figure S2) and (iii) the r-LSL time series with timely
equidistant samples within one perturbation cycle of 9 min with time point 0 s serving as the reference
(figure S3). Except stated otherwise, all functions used in the subsequent section were called from the R
package DESeq2 v.1.32.0 [3]. Cook’s distances were computed for an initial outlier detection via calling
"cooks" from the “DESeqDataSetFromMatrix” object of the respective dataset. In order to discriminate
between the introduction of biological and technical variance, we included the variables time (for biological
variance) and intervallic RIN (technical, for RNA integrity number) into the model. Next, count tables were
transformed into the rlog space to stabilize the variance of genes with low counts using rlog(). Principal
component analysis (plotPCA) revealed a strong influence of the RIN values (figures S2-54 B+D). Thus, we
applied a batch correction using removeBatchEffect() from the limma v. 3.48.3 package [4] to dampen the
technically introduced variance leading to a reduced model, which allowed the investigation of biologically

introduced variance (figures S2-54 C+E).
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Figure S2. Analysis of all 24 samples from the s-LSL time series. (A) Boxplot of the Cook’s distances. (B) Individual
samples of 8 time points plotted on principal component 1 (PC1) and 2 (PC2). (C) Analogue to (B), but with the reduced

model. (D) Corresponding scree plot of (B). (E) Corresponding scree plot of (C).
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Figure S3 Analysis of 15 samples used for analyzing steady state DS (na_0 samples representing RS). (A) Boxplot of the
Cook’s distances. (B) Individual samples of 4 time points plotted on principal component 1 (PC1) and 2 (PC2). (C)
Analogue to (B), but with the reduced model. (D) Corresponding scree plot of (B). (E) Corresponding scree plot of (C).
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Figure S3. Analysis of all 12 samples from the r-LSL time series. (A) Boxplot of the Cook’s distances. (B) Individual
samples of 4 time points plotted on principal component 1 (PC1) and 2 (PC2). (C) Analogue to (B), but with the reduced
model. (D) Corresponding scree plot of (B). (E) Corresponding scree plot of (C).



A4 COMPARISON OF STORAGE COMPOUND LIBERATION BETWEEN EXPERIMENTS

Differences of trehalose and glycogen dynamics between this and the aerobic experiment with CEN.PK 113-

7D are visualized in the following figure S4. The comparing plots reproduce data from figure 3 for the 40-

minute time window of the main publication and from reference [5] to ease comparing the underlying

dynamics of the s-LSL response.
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Figure S4. Characterization of intracellular trehalose and glycogen pools during the s-LSL stimulus. The left panel
reproduces results from the aerobic stimulus-response experiment with CEN.PK 113-7D under otherwise identical
experimental conditions [5]. The right panel reproduces results from the anaerobic experiment with Ethanol Red™ of
figure 3 in this publication. The time series indicates dynamics following a single transition into starvation (“feed off”
phase in grey). Time point 0 min is equal to the reference steady state. All values indicate means * standard deviation

of three biological replicates.
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