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Supplementary Material-1 Description of Bayesian spatial-temporal model  

Spatial-temporal model with linear and quadratic temporal terms 

Yit ~  Poisson(µit)  

log µit = logeit + α +   φi +    νi +         tt       +   tt2 

The bayesian spatial-temporal model takes the age group distribution in each area and year into 

account through the derived expected counts in each and year (eit)1-4. In this model, the observed 

disease count in area i and year t (Yit) is assumed to follow a Poisson distribution with relative disease 

risk (µit). The log relative risk of lung cancer in each area and year was modelled as a function of the 

intercept (α), spatially structured (φi) and unstructured (νi) random effects and linear (tt)   and quadratic  

(tt2) temporal terms. The priors for the standard deviation of the precision estimates were set a uniform 

distribution (ranging from 0.01 to 10). Those for the means were assigned to a normal distribution with 

a standard deviation covering a wide range of values. The intercept term, coefficients for the time period 

indicator and unstructured spatial variation were assigned vague normal priors. Structured spatial 

variation was assumed to follow an intrinsic CAR (conditional autoregressive) prior that neighbours 

were assigned based on geographically adjacent boundaries1. This CAR prior allows smoothing of 

estimates in each LGA towards the mean risk in the neighbouring LGA and improves estimates where 

the expected counts are low1.   

Spatial-temporal model with autoregressive temporal terms 

Yit ~  Poisson(µit)  

log µit = log eit + α +  φi   +     νi +   tt      +      ωt   

We compared the Bernardinelli model with the autoregressive temporal terms, including the first-order 

random walk (ωt), to predict future disease rates based on past trends. It assumes that each year 

incidence depends on the preceding year incidence to enable correlation between consecutive years5.  

We ran two Markov Chain Monte Carlo chains starting from different initial values in each model using 

MultiBugs software6. Model convergence was relatively good, with convergence observed at 

approximately 10,000 iterations. The first 10,000 samples were discarded as burn-in, and further 90,000 

iterations were used to calculate the statistics. Convergence was assessed by Gelman-Rubin 

diagnostic plots and autocorrelation plots7. We also evaluated whether the Monte Carlo standard error 

estimates of the estimated parameters were less than 5% of the posterior standard deviation. We 

calculated the unexplained area-level variation associated with geographical location8.  

 



Among the competing models, we chose the best-fitted model based on deviance information criteria 

(DIC)9, 10. We considered the model selection criterion to suggest models within 1-2 DIC units of the 

best model (lowest DIC) as strongly supported, 3-7 as having less support, >7 as no support. 

 

References: 

1. Bernardinelli L, Clayton D, Pascutto C, et al. Bayesian analysis of space—time variation in 
disease risk. Statistics in medicine. 1995;14(21‐22):2433-43. 
2. Corpas-Burgos F, Martinez-Beneito MA. An Autoregressive Disease Mapping Model for 
Spatio-Temporal Forecasting. Mathematics. 2021;9(4):384. 
3. Beard JR, Earnest A, Morgan G, et al. Socioeconomic disadvantage and acute coronary 
events: a spatiotemporal analysis. Epidemiology. 2008:485-92. 
4. Wah W, Ahern S, Evans S, et al. Geospatial and temporal variation of prostate cancer 
incidence. Public Health. 2021;190:7-15. 
5. Bailey T. An introduction to spatial and spatio-temporal modelling of small area disease rates. 
Spring Course organizado pelos Instituto de Ciências Biomédicas de Abel Salazar, Faculdade de 
Medicina e Instituto de Saúde Pública da Universidade do Porto. 2008. 
6. Goudie RJ, Turner RM, De Angelis D, et al. MultiBUGS: A parallel implementation of the 
BUGS modelling framework for faster Bayesian inference. arXiv preprint arXiv:170403216. 2017. 
7. Brooks SP, Gelman A. Alternative methods for monitoring convergence of iterative simulation. 
Journal of Computational and Graphical Statistics. 1998;7:434-55. 
8. Dasgupta P, Cramb SM, Aitken JF, et al. Comparing multilevel and Bayesian spatial random 
effects survival models to assess geographical inequalities in colorectal cancer survival: a case study. 
International journal of health geographics. 2014;13(1):36. 
9. Martínez-Bello DA, López-Quílez A, Torres-Prieto A. Bayesian dynamic modeling of time 
series of dengue disease case counts. PLoS neglected tropical diseases. 2017;11(7):e0005696. 
10. Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease 
mapping. Statistical methods in medical research. 2005;14(1):35-59. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary table-S1 Comparison of observed and predicted male and female lung cancer counts 

per year with 95% credible intervals 

 Male   Female   
Year Observed 

counts 
Predicted counts  
(95% credible intervals) 

Observed 
counts 

Predicted counts 
(95% credible intervals) 

2001 1353 1345.36(1220.06-1482.82) 759 755.98(675.03-845.51) 

2002 1340 1341.7(1219.11-1475.55) 775 775.37(693.53-865.86) 

2003 1341 1350.82(1232.59-1478.96) 774 773.83(693.76-862.25) 

2004 1498 1488.77(1357.52-1631.4) 850 852.87(766.52-947.84) 

2005 1458 1451.55(1326.45-1586.78) 882 885.58(796.5-983.65) 

2006 1496 1496.04(1365.32-1637.97) 922 913.89(822.88-1013.92) 

2007 1559 1551.06(1417.45-1696.04) 999 1001.05(898.06-1114.77) 

2008 1486 1484.65(1353.75-1626.9) 953 943.55(847.86-1048.9) 

2009 1449 1474.3(1346.43-1612.84) 1020 1028.62(922.36-1145.84) 

2010 1444 1453.89(1325.32-1593.44) 990 993.99(893.98-1103.82) 

2011 1535 1524.4(1392.18-1667.64) 1029 1021.18(917.72-1135.15) 

2012 1622 1612.9(1473.5-1764.15) 1160 1149.29(1034.29-1275.57) 

2013 1616 1604.36(1466.59-1753.53) 1145 1154.93(1037.19-1284.96) 

2014 1643 1629.33(1488.42-1782.03) 1229 1221.98(1097.1-1359.39) 

2015 1567 1559.08(1422.86-1707.3) 1196 1185.18(1065.9-1316.42) 

2016 1691 1683.54(1534.63-1845.71) 1364 1354.89(1219-1504.43) 

2017 1714 1718.03(1564.59-1885.22) 1338 1341.2(1203.55-1493.09) 

2018 1743 1751.61(1595.74-1921.45) 1357 1359.18(1216.41-1517.26) 

2019  1976.49(1789.72-2181.61)  1354.28(1208.78-1516.13) 

2020  2006.77(1810.46-2224.05)  1393.8(1238.64-1567.55) 

2021  2086.34(1872.72-2324.55)  1468.09(1297.01-1660.88) 

2022  2082.71(1857.6-2336.28)  1515.67(1329.32-1727.78) 

2023  2174.23(1924.64-2458.88)  1568.7(1363.32-1804.42) 

2024  2235.83(1961.33-2552.23)  1631.5(1403.06-1897.05) 

2025  2300.51(1997.43-2654.85)  1696.88(1441.72-1997.88) 

2026  2403.95(2063.17-2808.59)  1789.93(1499.85-2137.1) 

2027  2426.66(2056.24-2873.17)  1838.3(1516.92-2229.49) 

2028  2515.05(2101.2-3022.47)  1909.42(1549.17-2355.52) 

 

 

 

 

 

 

 



Supplementary Figure-S1 Plot of standardized residuals versus predicted male and female lung cancer 

counts  

 

 

Each point represents each local government area 

Standardized residuals = Observed counts ‐ Predicted counts /√Predicted counts 
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Supplementary Figure-S2 Prevalence of regular smokers  for all Australians and by gender (1980–2019) 

 

 

 

 

 


