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Simple Summary: The Ephemeroptera is an ancient lineage of insects, among which the Hepta- 13 
geniidae is one of the most species-rich families although its phylogenetic relationships have been 14 
controversial. The mitogenomes of Heptageniidae were found gene rearrangements of CR-I-M-Q- 15 
M-ND2 and a conserved intergenic gap between trnA and trnR. Thus, 15 complete and two nearly 16 
complete mitogenomes of Heptageniidae were used to explore mitogenome structures and clarify 17 
the disputes of phylogenetic relationships among Heptageniidae. Additionally, the Heptageniidae 18 
samples collected from habitats with significant temperature differences were applied to investigate 19 
the adaptive evolution of mitochondrial PCGs under low temperature stress. 20 

Abstract: We determined 15 complete and two nearly complete mitogenomes of Heptageniidae be- 21 
longing to three subfamilies (Heptageniinae, Rhithrogeninae and Ecdyonurinae) and six genera (Af- 22 
ronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron and Stenonema). Species of Rhithrogeninae and 23 
Ecdyonurinae have the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rear- 24 
rangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25- 25 
47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be 26 
a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the mon- 27 
ophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae and Ecdyonurinae). 28 
The phylogenetic results combined with gene rearrangements and NCR locations confirmed the 29 
relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the 30 
effects of low temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 pos- 31 
itive selection sites in 8 protein-coding genes (PCGs) using the branch-site model. The selection 32 
pressure analyses suggested mitochondrial PCGs underwent positive selection to meet the energy 33 
requirements under low temperature stress. 34 

Keywords: Heptageniidae; Mitochondrial genome; Gene rearrangement; Phylogenetic relationship; 35 
Non-coding region (NCR), Selective stress analysis 36 
 37 

1. Introduction 38 
As a primitive group of winged insects, Ephemeroptera is comprised of 40 families, 39 

460 genera and 3,700 species [1-3]. Ephemeroptera is characterized by multiple ancestral 40 
signs including extra appendages (seven pairs of gills on larvae along with the forceps 41 
and long tails of adults), unique prometamorphosis development pattern and wings that 42 
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do not fold flat over the abdomen, which have been intensely studied in phylogeny and 43 
historical processes [4-6]. As one of the most species-rich families among Ephemeroptera, 44 
Heptageniidae consists of 3 subfamilies (Ecdyonurinae, Heptageniinae, and Rhithrog- 45 
eninae), 37 genera, and 606 described species [1,3,7]. Much effort has been made to figure 46 
out the taxonomy and phylogeny of Ephemeroptera using morphology features, molecu- 47 
lar proofs and combined data [8-12]. Nonetheless, the phylogenetic relationships within 48 
Heptageniidae remain controversial [7,13]. The phylogenetic systems of both McCafferty 49 
[9] and Kluge [10,11] supported Heptageniidae as belonging to Branchitergalia (Hepta- 50 
genioidea) with a close relationship to Isonychiidae. The phylogenetic relationship devel- 51 
oped using combined data of morphological characters and several nuclear genes by Og- 52 
den et al. [12] was different from the former hypotheses, and supported Heptageniidae as 53 
a monophyletic group but its phylogenetic position still remained uncertain. According 54 
to the newly published study by Ogden et al. [15], the phylogenetic results supported 55 
Heptageniidae as s sister group to Isonychiidae using over 440 targeted genomic protein 56 
coding regions (exons). In addition, the internal phylogenetic relationships within Hepta- 57 
geniidae were divided into three subfamilies (Heptageniinae, Rhithrogeninae and Ec- 58 
dyonurinae) and their relationship was shown as (Ecdyonurinae + (Heptageniinae + 59 
Rhithrogeninae)) by Wang & McCafferty [13] and Webb & McCafferty [7]. By contrast, the 60 
phylogenetic analysiss was presented as (Rhithrogenidae + (Ecdyonurinae + Hepta- 61 
geniinae)) by Ogden et al. [15]. In addition, the genera Stenonema was redefined to include 62 
Maccaffertium via two mitochondrial genes (COX1 and 16S rRNA) and two nuclear genes 63 
(Wingless (Wg) and histone H3) by Zembrzuski & Anderson [16]. 64 

The typical mitochondrial genome (mitogenome) of insects is a 14-20 kb double- 65 
stranded circular piece of DNA [17-19]. It encodes 37 genes including 13 protein-coding 66 
genes (PCGs), two ribosomal RNAs (rRNAs, 16S rRNA and 12S rRNA), 22 transfer RNAs 67 
(tRNAs), and the A+T-rich region (control region, CR). Since the mitogenome has features 68 
like rapid evolution rates, small genome sizes, relatively low recombination and maternal 69 
inheritance, it is considered to be an excellent molecular marker for studies in phylogeny, 70 
evolution and comparative genomics [18,20-22]. Although most insect mitogenomes are 71 
conservative, gene rearrangements and long non-coding regions (NCRs) have been vari- 72 
ously reported in Coleoptera, Hemiptera, Lepidoptera, Mantodea, Orthoptera, Thysanop- 73 
tera, etc. [19,23-31]. According to published reports, gene rearrangements of tRNA genes 74 
including duplication, translocation and pseudogenization were mainly concentrated in 75 
the regions of CR-I-Q-M-ND2, COX1-K-D-ATP8 and ND3-A-R-N-S-E-F-ND5 [31,32]. 76 

Within the order Ephemeroptera, most species retain the same 37 genes as the hy- 77 
pothesized ancestral mitogenome of insects except for Siphluriscidae, Baetidae, Lepto- 78 
phlebiidae, Ephemerellidae and Heptageniidae [32-41]. The mitogenome of Siphluriscus 79 
chinensis (Siphluriscidae) encoded an extra trnK located between trnS and trnE in the mi- 80 
nor coding strand [36]. The trnC and trnY in Alainites yixiani (Baetidae) translocated from 81 
a position between trnW and COX1 into the gene cluster of I-Q-M and the gene order was 82 
rearranged as I-C-Q-Y-M. Furthermore, one copy of inversion and translocation of trnI 83 
was detected in Ephemerella sp. Yunnan-2018, Ephemerella sp. MT-2014, Serratella zapekinae, 84 
Serratella sp. Liaoning-2019 and Serratella sp. Yunnan-2018 along with three duplicate cop- 85 
ies of inversion and translocation of trnI in Torleya grandipennis and T. tumiforceps 86 
(Ephemerellidae) [32]. The trnA and trnR genes switched positions in Habrophlebiodes zi- 87 
jinensis (Leptophlebiidae) resulting in a gene arrangement R-A-N-S-E-F. Within the family 88 
Heptageniidae, an extra trnM was observed in the location between trnQ and ND2, thus 89 
the gene arrangement was arranged as I-M-Q-M in Epeorus herklotsi, Epeorus sp. JZ-2014, 90 
Epeorus sp. MT-2014 and Parafronurus youi [33-35]. Surprisingly, no gene rearrangements 91 
were found in Paegniodes cupulatus (Heptageniidae), showing that its gene order was con- 92 
servative and different from other Heptageniidae species. 93 

Despite the fact that mitogenomes are generally considered to be under neutral or 94 
nearly neutral selection [42], several studies have pointed out that positive selection acted 95 
on mitochondrial PCGs linked to environmental adaptations [43-45]. In this way, as a 96 
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potential target associated with energy metabolism under environmental selection pres- 97 
sure, the mitogenome may be suitable for studying positive selection or natural selection. 98 
Based on the mitochondrial PCGs of flying and flightless grasshoppers, a significant pos- 99 
itive selection was found in several genes including ND2, ND4, ND4L, ND5, ND6, ATP8 100 
and COX3 in flying lineages [45]. Hence, this indicated that positive selection stimulated 101 
mitochondrial genes to better suit the energy demands of flight in grasshoppers. Likewise, 102 
the mitochondrial PCGs were affected by positive selection from the last common ances- 103 
tor of Pterygota and flying insects, which illustrated that those mitochondrial PCGs re- 104 
lated to energy metabolism had undergone adaptive evolution during the evolution of 105 
flight capacity in insects [45]. As aquatic insects, mayflies spend most of their develop- 106 
mental stages in the water. Among various environmental factors, the water temperature 107 
was shown to be crucial to the morphology, behavior, growth and life cycle of mayflies 108 
[46,47]. Therefore, mayflies were proposed as appropriate models to investigate the adap- 109 
tive evolution of aquatic insects in a low-temperature environment. 110 

To explore the characteristics of gene rearrangements and the phylogenetic relation- 111 
ship of subfamilies in Heptageniidae, we determined the mitogenomes of seventeen spe- 112 
cies from all three subfamilies and six genera of Heptageniidae. The phylogenetic rela- 113 
tionship within Ephemeroptera was constructed with gene rearrangements and the loca- 114 
tion of NCRs to clarify the phylogenetic controversies. Moreover, samples of several Hep- 115 
tageniinae (Maccaffertium, Stenacron and Stenonema) and Leucrocuta were collected from 116 
Ottawa, Canada. The climate there is so cold that the lowest temperature is below 0 °C 117 
and water temperature is below 10 °C for eight months of the year [48]. Thus, these mayfly 118 
nymphs had to be exposed to low water temperature for a long time. Other samples of 119 
Epeorus and Afronurus were from southern provinces (Zhejiang and Yunnan) of China 120 
where the mean annual water temperature was about 24-26 °C. Accordingly, Hepta- 121 
geniidae samples collected from habitats with significant temperature differences were 122 
suitable materials to assess adaptive evolution of mitochondrial PCGs under low temper- 123 
ature stress. In brief, our research not only provided a novel insight into the gene rear- 124 
rangements and phylogenetic relationship within Heptageniidae, but also inquired into 125 
the evolutionary mechanisms of aquatic insect mitochondrial PCGs under low tempera- 126 
ture stress. 127 

2. Materials and Methods 128 
2.1. Sampling collection and DNA extraction 129 

Six specimens were collected from the Rideau River, Ottawa, Canada in July, 2017. 130 
Eleven specimens were collected from Wu River, Jinhua, Zhejiang province, and Chuan 131 
River, Jingdong, Yunnan province, China (Table 1). The specimens were all identified 132 
based on a combination of nymph morphology and the alignment of COX1 genes. Because 133 
some new species and genus were found in this study, we only identify those species at 134 
the genus or family level (Table 1). Samples were stored in 100% ethanol at -40°C in Dr. 135 
JY Zhang’s lab, College of Life Science and Chemistry, Zhejiang Normal University, 136 
China. Our study included seventeen specimens representing all three subfamilies, nine 137 
specimens from the subfamily Ecdyonurinae (Afronurus and Leucrocuta), five specimens 138 
from Heptageniinae (Maccaffertium, Stenacron and Stenonema), and two specimens from 139 
Rhithrogeninae (Epeorus). Total DNA was extracted from legs or half of the whole indi- 140 
vidual of every species using Ezup Column Animal Genomic DNA Purification Kit (San- 141 
gon Biotech Company, Shanghai, China).  142 

2.2. PCR amplification and sequencing 143 
This study used both normal polymerase chain reaction (PCR) and long-and-accurate 144 

PCR (LA PCR) methods with Takara Taq or Takara LA Taq DNA polymerase (Takara, 145 
Dalian, China). Normal PCR (product length <3,000 bp) or LA PCR (product length >3,000 146 
bp) reaction conditions were as in Gao et al. [49]. The mitogenomes were amplified in 700- 147 
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2000 bp short fragments with universal primers according to the method of Simon et al. 148 
[50,51] and Zhang et al. [33]. Afterwards, we designed specific primers (Table S1) with 149 
Primer Premier 5.0 [52] according to the obtained sequences. All PCR products were ob- 150 
tained in both forward and reverse directions using the primer-walking method and 151 
AB13730XL by Sangon Biotech Company (Shanghai, China). 152 

 153 

Table 1. Information on specimen sources of the samples used in this study and NCBI Genbank accession numbers. 154 

Subfamily Species Specimen No. Sampling localities Accession number 

Heptageniinae Maccaffertium mediopunctatum (McDunnough, 1926) 03FY33 Ottawa, Canada MK642302 
Maccaffertium modestum (Banks, 1910) 03FY62  Ottawa, Canada MK642303 
Maccaffertium vicarium (Walker, 1853) 03FY39  Ottawa, Canada MK642304 
Stenacron interpunctatum (Say, 1839) 03FY34 Ottawa, Canada MK642305 

Stenonema femoratum (Say 1823) 03FY36 Ottawa, Canada MK642306 
Ecdyonurinae Leucrocuta Aphrodite (McDunnough, 1926) 03FY51 Ottawa, Canada MK642301 

Afronurus furcata (Zhou & Zhen, 2003) 08BF03 Zhejiang, China MK642293 
Afronurus rubromaculata (You, Wu, Gui & Hsu, 1981) 08BF02 Zhejiang, China MK642294 

Afronurus sp1. YW01BF06 01BF06 Zhejiang, China MK642295 
Afronurus sp2. LS53BF04 53BF04 Zhejiang, China MK642296  

Afronurus yixingensis (Wu & You, 1986) 06BF03 Zhejiang, China MK642297 
Afronurus sp. 07BF85 07BF85 Yunnan, China MW450876 
Afronurus sp. 07BF86 07BF86 Yunnan, China MW450877 
Afronurus sp. 07BF96 07BF96 Yunnan, China MW450878 

Rhithrogeninae Epeorus dayongensis (Gui & Zhang, 1992) 18BF01 Zhejiang, China MK642298 
Epeorus sp. LA03FY06 03FY06 Zhejiang, China MK642299 

/ Heptageniidae sp. YW03BF02 03BF02 Zhejiang, China MK642300 

2.3. Mitogenome annotation and sequence analyses 155 
We inspected and assembled mitochondrial sequences using DNASTAR Package 156 

v.7.1 [53]. All tRNA genes and their secondary structures were identified by MITOS 157 
(http://mitos.bioinf.uni-leipzig.de/index.py) [54]. Two rRNA genes (12S and 16S rRNA) 158 
and thirteen PCGs were determined by alignments with homologous mtDNA sequences 159 
from several species in Heptageniidae using Clustal X [55,56]. The nucleotide composi- 160 
tion, codon usage, and relative synonymous codon usage (RSCU) were calculated by 161 
Mega 7.0 [56]. The GC skews and AT skews were separately calculated using the follow- 162 
ing formulae: AT skew = (A-T)/(A+T), and GC skew = (G-C)/(G+C) [57]. Ttandem repeats 163 
in CRs were detected via Tandem Repeat Finder V 4.09 [58]. The secondary structures of 164 
NCRs were found and mapped via RNAstructure Web Servers [59]. 165 

2.4. Phylogenetic analyses 166 
Forty-nine species from Ephemeroptera, including fourteen families (Table 2), were 167 

used in phylogenetic analyses of Heptageniidae and Ephemeroptera [32-41]. The taxon of 168 
Siphluriscus (Siphluriscidae) was recovered as a sister clade to all other mayflies and, 169 
therefore, S. chinensis from the family Siphluriscidae was selected as the outgroup [12,36]. 170 
Thirteen PCGs of mayfly mitogenomes were used to construct BI and ML phylogenetic 171 
trees. The nucleotide sequences of the 13 PCGs were used for DNA alignment by MAFFT 172 
v 7.475 [60] and the conserved regions were detected by Gblock 0.91b using default set- 173 
tings [61]. The program PartionFinder 1.1.1 was employed on the basis of Bayesian infor- 174 
mation criterion (BIC) to identify the best partitioning scheme and substitution model and 175 
all twelve partitions were observed (Table S2) [62]. ML analysis was run in RAxML 8.2.0 176 
with a GTRGAMMAI model and branch support for each node was evaluated with 1,000 177 
replicates [63]. BI analysis was performed in MrBayes version 3.2 using a GTR+I+G model. 178 
Each of four chains ran for 10 million generations and sampling every 1,000 generations 179 
was used for phylogenetic relationship reconstruction [64]. The convergence was evalu- 180 
ated using Tracer version 1.5 and trees from the first 25% of the samples were removed as 181 
burn-in during BI analysis.  182 
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Table 2. List of Ephemeroptera mitogenomes used to construct phylogenetic trees. 183 
Family Genus Species Length (bp) GenBank No. References 

Ameletidae Ameletus Ameletus sp. MT-2014 15,141 KM244682 [35] 
Baetidae Baetis Baetis sp. PC-2010 14,883 GU936204 Unpublished 

Takobia Alainites yixiani 14,589 GU479735 Unpublished 
Caenidae Caenis Caenis sp. JYZ-2018 15,254 MG910499 [33] 

Caenis sp. JYZ-2020 15,392 MN356096 [37] 
Caenis sp. YJ-2009 15,351 GQ502451 Unpublished 

Ephemerellidae Ephemerella Ephemerella sp. MT-2014 14,896 KM244691 [31] 
Ephemerella sp. Yunnan-2018 15,256 MT274127 

[32] 

Serratella Serratella sp. Liaoning-2019 15,523 MT274128 
Serratella sp. Yunnan-2018 15,134 MT274129 

Serratella zapekinae 15,703 MT274130 
Torleya Torleya grandipennis 15,523 MT274131 

Torleya tumiforceps 15,330 MT274132 
Ephemeridae Ephemera Ephemera orientalis 16,463 EU591678 Unpublished 

Ephemera sp. XL-2019 15,314 MK951659 [35] 
Heptageniidae Afronurus Afronurus furcata 15,420 MK642293 This study 

Afronurus rubromaculata 15,519 MK642294 This study 
Afronurus sp. 07BF85 15,473 MW450876 This study 
Afronurus sp. 07BF86 15,696 MW450877 This study 
Afronurus sp. 07BF96 15,491 MW450878 This study 

Afronurus sp. YW01BF06 15,360 MK642295 This study 
Afronurus sp. LS53BF04 15,866 MK642296 This study 

Afronurus yixingensis 15,883 MK642297 This study 
Epeorus Epeorus dayongensis 15,337 MK642298 This study 

Epeorus herklotsi 15,502 MG870104 [30] 
Epeorus sp. JZ-2014 15,338 KJ493406 Unpublished 
Epeorus sp. MT-2014 15,456 KM244708 [31] 

Epeorus sp. LA03FY06 15,514 MK642299 This study 
Leucrocuta Leucrocuta aphrodite 15,428 MK642301 This study 

Maccaffertium Maccaffertium mediopunctatum 15,319 MK642302 This study 
Maccaffertium modestum 15,324 MK642303 This study 
Maccaffertium vicarium 15,324 MK642304 This study 

Paegniodes Paegniodes cupulatus 15,715 HM004123 [104] 
Parafronurus Parafronurus youi 15,481 EU349015  [29] 

Stenacron Stenacron interpunctatum 15,330 MK642305 This study 
Stenonema Stenonema femoratum 15,332 MK642306 This study  

Heptageniidae sp. YW03BF02 15,663 MK642300 This study 
Isonychiidae Isonychia Isonychia ignota 15,105 HM143892 Unpublished 

Isonychia kiangsinensis 15,456 MH119135 [34] 
Leptophlebiidae Choroterpides Choroterpides apiculata 15,199 MN807287 [36] 

Habrophlebiodes Habrophlebiodes zijinensis 14,355 GU936203 Unpublished 
Potamanthidae Potamanthus Potamanthus sp. MT-2014 14,937 KM244674 [35] 
Siphlonuridae Siphlonurus Siphlonurus aestivalis 15,120 MT862395 Unpublished 

Siphlonurus immanis 15,529 FJ606783 Unpublished 
Siphlonurus sp. MT-2014 14,745 KM244684 [31] 

Siphluriscidae Siphluriscus Siphluriscus chinensis 16,616 HQ875717 [32] 
Teloganodidae / Teloganodidae sp. 12,435 KM244703  [31] 2,817 KM244670 
Vietnamellidae Vietnamella Vietnamella dabieshanensis  15,761 HM067837 Unpublished 

Vietnamella sp. MT-2014  15,043 KM244655 [31] 

2.5. Positive selection analysis 184 
The software EasyCodeML [65] was used to evaluate the selective pressure on the 185 

PCGs of Heptageniidae mitogenomes. Due to the significantly lower environment tem- 186 
peratures experienced by the Heptageniidae species from Ottawa, Canada, these were se- 187 
lected as the foreground branch to investigate the molecular evolution trends of mito- 188 
chondrial PCGs under low temperature stress. Both the branch model and the branch-site 189 
model were employed to explore whether positive selection occurred on specific branches 190 
and specific sites at the branch [66,67]. The branch models were performed under the one- 191 
ratio model (M0) presuming that ω was fixed over all of the tree or the two-ratio model 192 
presuming that ω in specific branches was different from the rest of the tree, respectively. 193 
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Also, the branch-site models were combined with heterogeneous ω across sites and 194 
branches, which allows positive selection along specified branches (Model A) and can be 195 
compared against a null model (Model Anull) that allows neutral evolution and negative 196 
selection. Likelihood ratio tests (LRTs) and Bayes Empirical Bayes (BEB) were used to as- 197 
sess these models and evaluate the posterior probability of positive selection sites, respec- 198 
tively. Additionally, information on the structure and function of the positively selected 199 
genes was acquired using UniProt [68] and 3D structures of the corresponding proteins 200 
were built by SWISS-MODEL Workspace [69]. 201 

3. Results 202 
3.1. General features of the mitogenomes  203 

The seventeen mitogenomes of Heptageniidae used in this study ranged in length 204 
from 15,319 bp in Maccaffertium mediopunctatum (McDunnough, 1926) [70] to 15,883 bp in 205 
Afronurus yixingensis (Wu & You, 1986) [71] (Tables S3-S4) and encoded 13 PCGs, two 206 
rRNA genes, 22 or 23 tRNA genes (containing an extra trnM gene in some species), and 207 
one CR (Fig. 1). Most of the genes were encoded on the major strand which also called J 208 
strand, whereas the minor strand (N strand) carried the remaining genes (4 PCGs and 8 209 
tRNAs). The A+T content, AT-skew and GC-skew of corresponding regions (mitoge- 210 
nomes, PCGs and rRNAs) were separately calculated for each mayfly species and shared 211 
conserved characteristics with others (Table 3). The tRNAs of these mayflies all showed 212 
the classical cloverleaf secondary structures.  213 

  214 

Figure 1. Circular visualization and organization of the complete mitogenome. External genes on the circle are encoded 215 
by the positive strand (5'→3') and internal genes are encoded by the negative strand (3'→5'). (A) the mitogenomes in the 216 
subfamily Ecdyonurinae (Afronurus and Leucrocuta) and Rhithrogeninae (Epeorus), (B) the mitogenomes in the subfamily 217 
Heptageniinae (Maccaffertium, Stenacron and Stenonema). 218 

All these mitochondrial PCGs used conventional invertebrate ATN as start codons, 219 
except that COX1 started with CCG in seven species:  Afronurus (A. furcata (Zhou & Zhen, 220 
2003) [72], A. rubromaculata (You, Wu, Gui & Hsu, 1981) [73], Afronurus sp. LS53BF04, Af- 221 
ronurus sp. YW01BF06, Afronurus sp. 07BF85, Afronurus sp. 07BF86 and Afronurus sp. 222 
07BF96). ATP8 started with GTG in most mayflies except for M. mediopunctatum (McDun- 223 
nough, 1926) [70], M. modestum (Banks, 1910) [13], M. vicarium (Walker, 1853) [74], 224 
Stenacron interpunctatum (Say, 1839) [75], Stenonema femoratum (Say 1823) [76] and Afronurus 225 
sp. YW01BF06. ND2 started with GTG except for Epeorus dayongensis (Gui & Zhang, 1992) 226 
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[77], Epeorus sp. LA03FY06 and Afronurus sp. 07BF96. ND5 started with GTG except for 227 
Leucrocuta aphrodite (McDunnough, 1926) [70] and ND6 started with GTT in S. interpunc- 228 
tatum. Typical stop codons TAA and TAG were observed in the majority of PCGs, whereas 229 
incomplete stop codons T or TA were assigned in Cyt b (M. mediopunctatum, M. modestum, 230 
M. vicarium and S. femoratum), COX2 (all species), ND4 (all species) and ND5 (all species). 231 
The codon number and RSCU in mitochondrial PCGs were conservative among these spe- 232 
cies (Table S5). 233 

Table 3. Base composition of seventeen mayfly mitochondrial genomes. Hence with a greater separation of each of the 3 234 
Mitogenome-PGC-rRNA-CR groups and separate underlining to mark the 3 different groups. 235 

Species name Mitogenome-PGC-rRNA-CR  
A+T (%) AT-skew  GC-skew  

Afronurus furcata 64.5 64.4 64.9 56.9 0.005 -0.198 -0.024 0.23 -0.215 -0.004 0.339 -0.16 
Afronurus rubromaculata 64.5 64.6 65.0 65.9 0.009 -0.193 -0.025 0.23 -0.218 -0.010 0.327 -0.11 

Afronurus sp. 07BF85 63.3 62.8 65.5 60.0 -0.03 -0.210 0.032 0.02 -0.16 -0.012 0.284 0.05 
Afronurus sp. 07BF86 64.0 64.4 65.7 54.1 -0.006 -0.191 0.02 0.13 -0.202 -0.017 0.310 0.02 
Afronurus sp. 07BF96 62.9 62.4 65.3 / -0.027 -0.213 0.035 / -0.16 -0.010 0.288 / 

Afronurus sp. YW01BF06 64.6 64.7 64.4 / 0.012 -0.186 0.002 / -0.225 -0.010 0.317 / 
Afronurus sp. LS53BF04 63.3 63.3 64.7 60.1 0.012 -0.198 -0.022 0.16 -0.227 -0.010 0.329 -0.30 

Afronurus yixingensis 65.0 65.1 66.0 63.2 0.003 -0.203 -0.002 -0.01 -0.218 -0.004 0.305 -0.21 
Epeorus dayongensis 64.8 64.2 66.1 73.6 0 -0.191 0.012 0.04 -0.212 -0.024 0.269 0.01 

Epeorus sp. LA03FY06 67.1 66.3 67.6 77.8 -0.014 -0.188 0.02 0.00 -0.24 -0.003 0.307 -0.19 
Leucrocuta aphrodite 65 65.0 65.1 65.4 -0.001 -0.187 -0.001 0.02 -0.186 -0.001 0.284 -0.18 

Maccaffertium mediopunctatum 61.7 61.5 60.7 65.9 -0.002 -0.190 0.015 0.02 -0.178 -0.045 0.234 -0.35 
Maccaffertium modestum 61.3 61.1 60.7 64.0 0.004 -0.191 0.025 0.01 -0.177 -0.038 0.231 -0.33 
Maccaffertium vicarium 62.3 62.3 61.8 65.4 0.005 -0.169 0.013 0.00 -0.172 -0.046 0.253 -0.25 

Stenacron interpunctatum 59.7 59.5 58.8 61.7 0.021 -0.184 0.007 0.05 -0.19 -0.057 0.266 -0.24 
Stenonema femoratum 62.1 61.9 61.1 66.4 0.005 -0.190 -0.011 0.01 -0.166 -0.039 0.234 -0.30 

Heptageniidae sp. YW03BF02 64.2 64.1 64.3 68.5 -0.006 -0.191 -0.011 -0.09 -0.183 0.002 0.27 -0.19 
 236 
The CRs of Heptageniidae mitogenomes ranged from 487 bp to 1,037 bp, with the 237 

location between 12S rRNA and trnI. Almost all CRs of these mitogenomes showed the 238 
highest A+T content compared to other regions (PCGs, rRNA genes and tRNA genes) ex- 239 
cept for A. furcata, A. yixingensis, Afronurus sp. 07BF85, Afronurus sp. 07BF86 and Afronurus 240 
sp. LS53BF04. The A+T contents of these CRs ranged from 54.1% in Afronurus sp. 07BF86 241 
to 77.8% in Epeorus sp. LA03FY06. The AT-skew values of the CRs were a little positive 242 
except for A. yixingensis, Epeorus sp. LA03FY06 and Heptageniidae sp. YW03BF02, 243 
whereas the GC-skew was strongly negative except for Afronurus sp. 07BF85, Afronurus 244 
sp. 07BF86 and E. dayongensis. Additionally, tandem repeats were detected in the CRs of 245 
Afronurus sp. 07BF85, Afronurus sp. 07BF86, Afronurus sp. LS53BF04, A. furcata, A. ru- 246 
bromaculata, A. yixingensis and Heptageniidae sp. YW03BF02 (Fig. S1).  247 

3.2. Gene arrangements and NCRs 248 
Two types of gene rearrangements occurred in the I-Q-M tRNA cluster and were 249 

found in all seventeen freshly sequenced mitogenomes of Heptageniidae (Fig. 2). The ex- 250 
tra trnM was observed in the eleven mitogenomes of the subfamily Ecdyonurinae (Af- 251 
ronurus species, and L. aphrodite) and Rhithrogeninae (Epeorus species). As for the location 252 
of two trnM copies, one was situated between trnI and trnQ with another between trnQ 253 
and trnM. Thus, their tRNA cluster was shown as I-M-Q-M. The two copies of trnM genes 254 
showed high similarity (>70%) and had the same anti-codon (CAU) in nearly all species 255 
except for the second trnM (UAU) in L. aphrodite (Fig. S2). However, in mitogenomes of 256 
the subfamily Heptageniinae (Maccaffertium species, S. interpunctatum and S. femoratum), 257 
a translocation of trnM was found and the trnM gene translocated into the position be- 258 
tween trnI and trnQ. Furthermore, the NCR of 55-57 bp located between trnQ and ND2 259 
was detected in these species but showed low similarity to adjacent genes. Hence, the gene 260 
order in the species of Heptageniinae was shown as I-M-Q-NCR and this is the first report 261 
of this novel gene rearrangement (I-M-Q-NCR) among mayfly mitogenomes. 262 
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 263 
Figure 2. Proposed mechanism of gene rearrangements in the seventeen Heptageniidae mitogenomes. Gene sizes are not 264 
drawn to scale. Genes encoded by the L-strand are underlined whereas those without underline are encoded on the H- 265 
strand. Different colored boxes represent different genes. The remaining genes and gene orders that were identical to the 266 
ancestral insect are left out. Horizontal lines, asterisk symbols and crossed-out symbols represent gene duplications, gene 267 
mutations and gene deletions, respectively. (A) the rearrangement of I-M-Q-M, (B) the rearrangement of I-M-Q-NCR. 268 

The length, number and distribution of the NCRs in these mitogenomes of Hepta- 269 
geniidae were relatively conservative. The number of NCRs in every mayfly species ranged 270 
from 7 to 12, whereas the length varied from 1 bp to 57 bp. Excluding the NCRs of short 271 
length (<15 bp) and the NCR located between trnQ and ND2 (mentioned above), the NCRs 272 
located between trnA and trnR were observed in all Heptageniidae mitogenomes with 273 
lengths ranging from 25 bp (M. vicarium) to 47 bp (E. herklotsi). Interestingly, the NCRs could 274 
be folded as stem-loop secondary structures (Fig. S3) and were highly similar (>70%) to CR 275 
based on a comparison among the mitochondrial genomic sequences of most species (Fig. 276 
S4). Notwithstanding, the similarity between the NCR and CR was not exactly high (<70%) 277 
or the similarity sequence was short (<20 bp) in A. furcata, A. rubromaculata, Afronurus sp.- 278 
07BF86, E. dayongensis, Epeorus sp.-LA03FY06, M. mediopunctatum, M. modestum, M. vicarium, 279 
S. interpunctatum and S. femoratum. We also observed NCRs located between trnS2 and ND1 280 
in all mitogenomes of Heptageniidae, which were of 16 bp in length. 281 

3.3. Phylogenetic analyses 282 
The BI and ML phylogenetic relationships showed identical topologies (Fig. 3). How- 283 

ever, long-branch attraction (LBA) has been observed in Baetidae (Baetis sp. PC-2010 and 284 
Alainites yixiani) and Teloganodidae sp. MT-2014 and thus their phylogenetic positions 285 
still remain uncertain. In general, the monophyly of most families was supported in these 286 
phylogenetic trees except for Ephemeridae and Siphlonuridae, but the availability of only 287 
one species in Ameletidae, Polymitarcyidae, and Teloganodidae restricted a discussion of 288 
their monophyly and phylogenetic relationships. 289 

QICR M ND2

Duplication

QICR M ND2Q M

Deletion

ICR M ND2Q M

*Mutation

ICR M ND2Q NCR

A. the rearrangement of I-M-Q-M

B. the rearrangement of I-M-Q-NCR
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 290 
Figure 3. Phylogenetic tree of the relationships among 49 species of Ephemeroptera based on the nucleotide dataset of the 291 
13 mitochondrial PCGs. Siphluriscus chinensis was used as the outgroup. The numbers above branches specify bootstrap 292 
percentages from ML (left) and posterior probabilities as determined from BI (right). The GenBank accession numbers of 293 
all species are shown in the figure. Box images on the right show gene rearrangements and the location of the NCR for the 294 
various mayfly species. Genes encoded by the minority strand are underlined and those without underline are encoded 295 
by the majority strand. Different colored boxes represent different genes. The remaining genes and gene orders that were 296 
identical to the ancestral insect are left out. Gene sizes are not drawn to scale. The asterisks (*) by Siphlonuridae on the far 297 
right side mean the separation of these sequences 298 

Within Ephemeroptera, Isonychiidae was a sister group to the other familiesy, based 299 
on the phylogenetic topologies. Then, Ameletidae (Ameletus sp. MT-2014) and one branch 300 
of Siphlonuridae (Siphlonurus aestivalis and Siphlonurus sp. MT-2014) were found to be a 301 
sister group. Heptageniidae was supported as a sister clade to the remaining Ephemerop- 302 
tera (Baetidae, Caenidae, Ephemerellidae, Ephemeridae, Leptophlebiidae, Potamanthi- 303 
dae, Teloganodidae, and Vietnamellidae). Potamanthidae was the sister clade to 304 
(Ephemeridae + Siphlonurus immanis), whereas the remaining families formed another 305 
large clade. (Ephemerellidae + Vietnamellidae) was supported as a sister clade to (Lepto- 306 
phlebiidae + (Caenidae + (Baetidae + Teloganodidae))). 307 

Concentrating on the phylogenetic relationship within Heptageniidae, the mon- 308 
ophyly of three subfamilies (Ecdyonurinae, Heptageniinae and Rhithrogeninae) and the 309 
genera Afronurus, Epeorus and Maccaffertium was supported. The branch of Heptageniidae 310 
was divided into three clades, shown as follows: (Heptageniinae + (Rhithrogeninae + Ec- 311 
dyonurinae)). The first branch of Heptageniinae supported (S. interpunctatum + (S. femora- 312 
tum + Maccaffertium species)). Then Paegniodes cupulatus and Epeorus species formed the 313 
second branch of Rhithrogeninae. The third branch of Ecdyonurinae supported ((Hepta- 314 
geniidae sp. YW03BF02 + L. aphrodite) + (P. youi + Afronurus species)). 315 

Significantly, the phylogenetic relationships coincided with the gene order and the 316 
location of the NCRs. The lineage of Ephemerellidae was consistent with rearrangements 317 
of the trnI gene. The NCRs located between ND4L and trnT were found in the branch of 318 
Isonychiidae along with the NCRs located between trnQ and trnM in the branch of 319 
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Caenidae. Within Heptageniidae, these branches corresponded to different gene arrange- 320 
ments: the gene rearrangement of I-M-Q-NCR in Heptageniinae, and I-M-Q-M in the re- 321 
maining species of Rhithrogeninae and Ecdyonurinae except for I-Q-M in P. cupulatus. 322 

3.4. Positive selection analysis 323 
Based on the branch model, 3,722 amino acid sites were used to analyze selective 324 

pressure based on the alignment of 13 PCGs in 22 species of Heptageniidae. The results 325 
were as follows: p<0.001, ω0=0.02021, ω=0.02123<1, illustrating that the foreground branch 326 
(the Heptageniinae species from Ottawa, Canada) were not subject to positive selection 327 
(Table S6). On the contrary, we observed that 27 amino acid sites were under positive 328 
selection (p<0.001, BEB value >0.95) in the analyses of the branch-site models, of which 329 
five amino acid sites were under highly positive selection (BEB value >0.99) (Table 4). The 330 
27 positive selection sites corresponding to the mitochondrial PCGs were divided into 331 
eight genes, including COX1 (2 sites), Cyt b (2 sites), ND1 (2 sites), ND2 (5 sites), ND3 (1 332 
site), ND4 (2 sites), ND5 (6 sites) and ND6 (7 sites). Accordingly, the mitochondrial com- 333 
plex I was the main protein complex under selective pressure, including 23 positive selec- 334 
tion sites. To determine the functional meaning of these positive selection sites, we ex- 335 
plored the feature keys of eight positively selected PCGs from low-temperature branches. 336 
The majority of the positive selection sites located within or near to the functional domains 337 
of the proteins were encoded by these genes; 14 of which were situated in the protein 338 
transmembrane domain of the encoding genes with additionally 6 positive selection sites 339 
situated in other domains of corresponding genes (Table 5, Fig. S5). 340 

Table 4. Positive selection analysis of mitochondrial protein-coding genes based on the branch-site model. 341 

Tree Model Ln L Estimates of parameters Model com-
pared 2ΔL LRT P-

value Positive sites 

ML 
Model A 

-
121931.169

602 

Site class 0 1 2a 2b 

Model A 
vs 

Model A null 

17.148
7 

0.000044
34 

682 Q 0.988*，749 S 0.979*， 1340 
L 0.977*，1636 V 0.954*， 1827 E 

0.989*，1843 A 0.983*，2118 P 
0.995**，2123 F 0.983*，2167 S 
0.979*，2288 T 0.983*，2311 T 

0.991**，2398 A 0.970*，2613 S 
0.962*，2619 M 0.986*，3001 L 
0.971*， 3005 S 0.964*，3155 S 
0.969*，3313 S 0.984*，3444 S 
0.989*，3466 H 0.978*，3557 L 
0.976*，3566 I 0.996**，3582 C 
0.985*，3664 E 0.996**，3665 Q 
0.984* ，3679 I 0.993**，3712 Q 

0.981* 

Proportion 0.9141 0.0377 0.0463 0.0019 
Back-

ground ω 0.0137 1.0000 0.0137 1.0000 

Fore-
ground ω 0.0137 1.0000 2.7648 2.7648 

Model A 
Null 

-
121939.505

555 
/ / 

 342 

  343 
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Table 5. The features and description of the positive selection sites detected in the mitochondrial PCGs of Heptageniidae 344 
species. 345 

Genes Positive selection sites Amino acids BEB value Feature key* Description Foreground Background 

COX1 408 N Q/K 0.988* Domain COX1 
475 A S 0.979* Domain COX1 

Cyt b 62 T L 0.977* Domain CYTB_NTER 
358 T/I V/T/I 0.954* Transmembrane Helical 

ND1 173 Y E/K/Q 0.989* / / 
189 S A/T 0.983* Transmembrane Helical 

ND2 

148 S/G P/S 0.995** Transmembrane Helical 
153 T/S F 0.983* Transmembrane Helical 
197 N S/P/N 0.979* Domain Proton_antipo_M 
318 G/N S/L/T/A 0.983* / / 
341 S S/P/T/L 0.991** / / 

ND3 85 Q A/N/S/T 0.970* / / 

ND4 183 S G/S/K 0.962* Transmembrane Helical 
189 G M/L 0.986* Transmembrane Helical 

ND5 

25 T L 0.971* Transmembrane Helical 
29 L/A S 0.964* Transmembrane Helical 
179 E/H S/G/T 0.969* Transmembrane Helical 
337 S S/N/I/T 0.984* Domain Proton_antipo_M 
468 L S/V/I/A 0.989* Transmembrane Helical 
490 F N/H/Q/G/S 0.978* Domain NADH5_C 

ND6 

3 T L/F/M 0.976* / / 
12 L T/I 0.996** Transmembrane Helical 
28 I/V C/S/I/V 0.985* Transmembrane Helical 
110 S E/D 0.996** / / 
111 D Q 0.984* / / 
125 P N/T/I/G 0.993** Transmembrane Helical 
158 N Q/N 0.981* Transmembrane Helical 

Note. * and ** indicate BEB values of >0.95 and >0.99, respectively. 346 

4. Discussion 347 
4.1. Gene arrangements and NCRs 348 

The typical gene arrangement occurs in most mayfly mitogenomes, except for Si- 349 
phluriscidae, Baetidae, Leptophlebiidae, Ephemerellidae and Heptageniidae [32-41]. 350 
Gene rearrangements in these groups are mainly concentrated in the regions of CR-I-Q- 351 
M-ND2 and A-R-N-S-E-F. In our study, the gene rearrangements in the mitogenomes of 352 
Heptageniidae were divided into two types: a gene arrangement of I-M-Q-M in the sub- 353 
family Ecdyonurinae (Afronurus, Parafronurus and Leucrocuta) and Rhithrogeninae (Epeo- 354 
rus) and a novel gene arrangement of I-M-Q-NCR in the subfamily Heptageniinae (Mac- 355 
caffertium, Stenacron and Stenonema). Moreover, two copies of trnM genes had the same 356 
anti-codon (CAU) in almost all species excluding the second trnM (UAU) in L. aphrodite. 357 
The codon AUA is translated as Met in the invertebrate mitochondrial genetic code, like 358 
the normal codon AUG, as reported in the fruit fly Drosophila melanogaster [78,79]. There- 359 
fore, the second trnM with anti-codon (UAU) was considered to be functional in L. aphro- 360 
dite. Furthermore, similar gene rearrangements occurring in the region of CR-I-Q-M-ND2 361 
were also reported in other orders of insects, e.g., M-I-Q tRNA cluster in Lepidoptera 362 
(Manduca sexta) [80], Q-I-M in Hemiptera (Neuroctenus parus) [81], I-I-I-I-I-Q-M in Man- 363 
todea (Schizocephala bicornis) [31], etc. Consequently, the region of CR-I-Q-M-ND2 is re- 364 
garded as a hot spot for gene rearrangements in insects. 365 

The tandem duplication-random loss (TDRL) model [82,83] was proposed and has 366 
explained similar gene rearrangements in other insects [81,84]. Therefore, the TDRL 367 
model can be reasonably used to explain the gene rearrangements of Heptageniidae (Fig. 368 
2). The region of CR-I-Q-M-ND2 was presumed to be the original gene arrangement. The 369 
mechanisms of gene rearrangement of I-M-Q-M was assumed to be as follows: a tandem 370 
duplication of Q-M happened, followed by random loss of the first trnQ, making the gene 371 
order as I-M-Q-M, as reported in Zhang et al. [33]. As for the gene rearrangement of I-M- 372 
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Q-NCR, we propose that the tandem duplication of Q-M happened, followed by the ran- 373 
dom loss of the first trnQ and the mutation of the second trnM. Consequently, the trans- 374 
location of trnM and the NCR located between trnQ and ND2 were observed in the sub- 375 
family Heptageniinae (Maccaffertium, Stenacron and Stenonema). Notwithstanding, the mi- 376 
togenome of P. cupulatus showed the typical insect gene order and was different from 377 
other mitogenomes of Heptageniidae. The conservative gene order of P. cupulatus was 378 
proposed to occur as follows: the extra trnM between trnI and trnQ was lost from the 379 
ancestral I-M-Q-M type and thus formed the I-Q-M gene arrangement. Therefore, the gene 380 
arrangements among genera of Heptageniidae need further study. 381 

Generally, insect mitogenomes are of high compaction with rare and short NCRs ex- 382 
cept for the CR [17]. The great majority of mayfly mitogenomes featured short NCR 383 
lengths. However, NCRs of 25-47 bp were located between trnA and trnR and observed 384 
in all mitogenomes of Heptageniidae [33-35]. This feature is rarely observed in other may- 385 
fly mitogenomes. Thus, this NCR located between trnA and trnR may be a synapomorphy 386 
for Heptageniidae. The NCRs can form stem-loop secondary structures (Fig. S3), which 387 
may contribute to the progress of replication slippage and then an increase in duplicate 388 
copies [85]. Also, the NCR was proposed as an alternative replication origin for mtDNA 389 
[86,87]. As for the occurrence of the NCR, it was inferred to derive mainly from the corre- 390 
sponding CR because of the high similarity between the two (>70%), such as the complete 391 
sequence (37 bp) in L. aphrodite (similarity 94.59%) and the partial sequence (23 bp) in P. 392 
youi (similarity 100%) (Fig. S4). Considering the long distance between the NCR and CR, 393 
the recombination model may be more suitable to explain NCR production [88,89]. The 394 
creation of the NCR was presumed to occur as follows: a fragment containing the CR was 395 
cleaved out and then inserted into a location between trnA and trnR. Although there is a 396 
low similarity between the NCR and CR (<70%) or the short similar sequence (<20 bp) in 397 
several species (as mentioned in the results), the NCR was proposed to have evolved in- 398 
dependently under relaxed selective pressure instead of evolving in concert with the CR 399 
[89]. In addition, the short NCR located between trnS2 and ND1 was detected in all Hep- 400 
tageniidae mitogenomes, which has also been reported in Ephemeroptera and other in- 401 
sects [23,32-34,49]. Based on the alignments of these NCRs of all Heptageniidae species 402 
(Fig. S6), a highly conserved motif of 16 bp (TACTTAAAAARKTCAR) may be the binding 403 
site of the transcription termination factor (DmTTF) [90]. 404 

4.2. Phylogenetic analyses 405 
Higher-level phylogenetic relationships within Ephemeroptera have not been gener- 406 

ally accepted [8-12]. In our results, the BI and ML phylogenetic analyses shared congruent 407 
topologies (Fig. 3). S. chinensis, the only species of Siphluriscidae, was deemed as the basal 408 
group of Ephemeroptera from the study of Ogden et al. [12] and Zhang et al. [33]. The 409 
next were Isonychiidae, Ameletidae, and one species of Siphlonuridae, as indicated by 410 
our results. The phylogenetic position of Isonychiidae was convincingly supported by Og- 411 
den et al. [12] as the primitive clade except for Siphluriscidae and Baetidae from topolo- 412 
gies. Then, Heptageniidae was supported as a sister clade to the remaining Ephemerop- 413 
tera by our results, contrary to the topologies constructed by Kluge [10,11] and McCafferty 414 
[8,9], as well as Ogden et al. [15], which suggested that Heptageniidae was sister to 415 
Isonychidae based on morphological characteristics and nuclear data, respectively. Based 416 
on a comparison of our results and other studies, the phylogenetic position of Hepta- 417 
geniidae is still challenging to determine.  418 

As for Heptageniidae, the monophyly of three subfamilies Ecdyonurinae, Hepta- 419 
geniinae and Rhithrogeninae was supported, consistent with the research of Wang & 420 
McCafferty [13] and Webb & McCafferty [7]. Nevertheless, the internal phylogenetic clas- 421 
sification within Heptageniidae in our study differed from Wang & McCafferty [13]. In 422 
our study, the phylogenetic relationship within Heptageniidae was shown as (Hepta- 423 
geniinae + (Ecdyonurinae + Rhithrogeninae)), opposite to the (Ecdyonurinae + (Hepta- 424 
geniinae + Rhithrogeninae)) presented in Wang & McCafferty [13] and (Rhithrogenidae + 425 
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(Ecdyonurinae + Heptageniinae)) in Ogden et al [15]. When the phylogenetic classification 426 
was combined with gene rearrangements and NCRs, there was a specific correlation. The 427 
gene rearrangement of I-M-Q-NCR was concentrated in Heptageniinae and the gene ar- 428 
rangement of I-M-Q-M was observed in the remaining species of Rhithrogeninae and Ec- 429 
dyonurinae except for I-Q-M in P. cupulatus. These results illustrated that Ecdyonurinae 430 
and Rhithrogenina were closely related and the two formed a sister group to Hepta- 431 
geniinae. Phylogenetic relationships highly congruent with gene rearrangements and 432 
NCR locations were also reported in other insects [91,92], which suggests that synapo- 433 
morphic gene rearrangements and NCRs have been forming continuously during evolu- 434 
tion and could provide effective phylogenetic information. However, the phylogenetic re- 435 
lationship of the three subfamilies within Heptageniidae was also controversial due to the 436 
lack of other evidence in our study. In addition, concerning the taxonomy of Stenonema, 437 
Stenacron and Maccaffertium, compared to the research of Zembrzuski & Anderson [16], it 438 
is a pity that we could not draw a valid conclusion based on our results because of the 439 
lack of sequences for these genera. Further morphological and molecular data are required 440 
to demonstrate a more exact phylogenetic relationship among Ephemeroptera. 441 

In fact, the gene arrangement of I-Q-M was found only in P. cupulatus of Hepta- 442 
geniidae. This was confusing as to whether such a gene arrangement was specific to the 443 
genus Paegniodes or formed during the random mutation progress. More mayfly mitoge- 444 
nomes are expected to be sequenced, which will help to explore the types of gene arrange- 445 
ments and clear phylogenetic classifications within Heptageniidae. 446 

4.3. Positive selection analyses 447 
Adaptive evolution of mitochondrial genes under environmental pressure is sup- 448 

ported by the present studies [43-45]. Environmental temperature significantly influences 449 
energy requirements and metabolic adaptation, which is essential to mayflies as aquatic 450 
insects [46,47]. Multiple subunits of  the mitochondrial complexes associated with oxida- 451 
tive phosphorylation are encoded by mitochondrial genes, with the exception of complex 452 
II [93]. In this way, positive selection of mitochondrial genes was proposed to be related 453 
to temperature and adaptation to the energy demands of mayflies.  454 

Analysis of the branch model showed that there was no positive selection on the fore- 455 
ground branch. It was proposed that information indicating positive selection was possi- 456 
bly covered by continuous neutral evolution or negative selection at most sites in the gene 457 
sequence [94]. According to the branch-site model, 27 positive selection sites were found. 458 
It was worth noting that 23 of the positive selection sites were concentrated on the coding 459 
sequence of mitochondrial complex I. As the first large protein complex of the respiratory 460 
chains, complex I provides the proton power for ATP synthesis during electron transfer 461 
from NADH to ubiquinone via the transmembrane proton pump [95-97]. Therefore, com- 462 
plex I is essential for the energy metabolism of cells and drives more than one-third of the 463 
total energy production in the mitochondrion [87]. ND1-ND6 subunits are regarded as the 464 
minimal assembly of complex I and form the core of the transmembrane region [98], with 465 
the ND2, ND4 and ND5 genes proposed to be main candidates to harbor the proton pump 466 
[99]. The importance of complex I and its subunits can explain the reason for more positive 467 
selection sites in complex I than in other complexes. In addition, several positive selection 468 
sites were also observed in the subunits (Cyt b and COX1) of complex III and complex IV. 469 
Cyt b is the main transmembrane subunit of Complex III and exerts a crucial function in 470 
ATP production [100]. Also, complex IV has regulatory effects in the electron transport 471 
chain and its subunit COX1 starts the assembly process of complex IV [101]. Moreover, 472 
the positive selection sites in the eight PCGs were located in or close to the functional 473 
domains based on the structural analysis (Table 5). Consequently, the adaptive changes 474 
in amino acids at these positive selection sites, especially in the functional regions, were 475 
proposed to affect protein stability or even function [102,103]. On the whole, mitochon- 476 
drial PCGs are related to energy metabolism and can experience positive selection to cope 477 
with energy needs under low temperature stress. 478 
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5. Conclusion 479 
Fifteen complete mitogenomes and two nearly complete mitogenomes of Hepta- 480 

geniidae were successfully determined. Gene rearrangements in these mitogenomes of 481 
Heptageniidae were divided into two types: one has the commonly reported gene order 482 
of I-M-Q-M in the subfamily Ecdyonurinae (Afronurus, Parafronurus and Leucrocuta) and 483 
Rhithrogeninae (Epeorus), whereas the other has a novel gene order of I-M-Q-NCR in Hep- 484 
tageniinae (Maccaffertium, Stenacron and Stenonema). These gene rearrangements were ex- 485 
plained by the tandem duplication-random loss (TDRL) model. In addition, the NCRs lo- 486 
cated between trnA and trnR were found in all Heptageniidae species and inferred to be 487 
a synapomorphy for Heptageniidae. The phylogenetic relationships within Ephemerop- 488 
tera were highly congruent with the gene rearrangements and the location of NCRs, sup- 489 
porting the monophyly of Heptageniidae and its internal phylogenetic relationship (Hep- 490 
tageniinae + (Ecdyonurinae + Rhithrogeninae)). The selection pressure analyses indicated 491 
that mitochondrial PCGs of mayflies underwent positive selection to cope with potential 492 
energy requirements under low temperature stress. 493 
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