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S1 Micromechanical description of stress state according to Broutman [1]:  
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To describe the stress normal to the fiber-matrix interface σn within the Broutman test  
specimen [1,2], caused by axial, compressive stresses (z-direction) σz, under consideration 

 

of the different Poisson ratios of the polymeric matrix ϑm and the fiber ϑf, the Broutman  
equation is used. Where Em and Ef are the Young´s moduli of the matrix and the fiber,  
respectively. A combination of prevailing failure modes after the test (cohesive fiber fail- 
ure and adhesive fiber-matrix interphase failure) has already been observed by other au- 
thors. [2,3] [2] assumed a correlation between high interphase strength and  cohesive fi- 
ber failure due to higher compression stresses, than compression strength of the fiber. A 
stop restart mechanism was observed for the specimens where debonding could be ob- 
served. Also, in [4] the Broutman test was applied to perform a compression fragmenta- 
tion test and compare with the results of the standard tensile fragmentation test to deter- 
mine the shear stress in the interface. For interpretation of this compressive fragmentation  
test the critical fiber length has to be calculated. The critical fiber length is an important  
parameter, it describes the length of the fiber at which more energy would have to be  
expended for debonding and sliding than for fiber failure. The usual calculation of this  
length according to Kelly and Tyson [5] is difficult to, as the stress level at the separate  
fragment ends is not zero, since the fragments remain in contact after fracture. This sug- 
gests a high stress discontinuity at the failure points, thus making the stress state very 
difficult to describe. The description of such micromechanical processes is often very dif- 
ficult, also due to the lack of information on the damage itself.  

 

S2 Failure mechanism during Broutman test analyzed with additional methods  

To understand the interphase failure mechanism, a progressive loading test was  

done. Different loading steps were analyzed with the polarized light microscope  

indicating that fiber failure and debonding occur simultaneausly.   
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Figure S 1. post mortem polarized light microscopy images of the same Broutman test specimens  
(non-toughened) taken after different loading steps (4000 N and 6000 N).  

S3 illustration of the cum. Number of AE events (class 1) over the applied load of all  
tested specimens  

 

Figure S 2. shows the cumulative number of Events of class 1, which describes a class of AE events  
which can be correlated (frequency dependent) with the fiber and the compression force applied  
in N for the toughened system, the non-toughened and two different reference systems. The fur- 
ther results of the tested systems and the test itself will be published elsewhere.  

Figure S3 polarized light microscopy images of the toughened and non-toughened  
matrix system after loading  

S3 supporting information about the Broutman test configurations and the test set-up  

Broutman test was done using AE as control device to determine the debonding  

stress. Five samples of each configuration were tested. All samples were analyszed  

visually with polarized light microscopy revealing a repoducible failure pattern. A  

reference configuration without any fiber (not shown in Figure S 2) was used to  

distinguish between AE signals gathered from the matrix- and the C-fiber- 

dependent signals (frequency-dependent). The Broutman test itself and the  

description of the interpretation of the AE data will be published elsewhere. A brief  

description can be found in [6]. The frequency dependence of failure mechanisms  

in composites analyszed with AE is presented in [7].   
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S4 Comparison between toughened and non-toughened matrix systems via polarized  
light microscopy   

 

Figure S 3. post mortem polarized light microscopy image of the toughened and the non-tough- 
ened matrix system, indicating no visible difference in the degree of fracture.  
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