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Supplementary material 

Supplementary methods 

On the selection of stand-alone tools to integrate 

Although the literature on the detection of differentially expressed isoforms and alternative 

splicing is rich and many stand-alone packages have emerged, nevertheless, many of them are 

either poorly or not supported at all, or even discontinued after the publication of an article 

describing their underlying methodology. In addition, there are packages such as DEXSeq1, 

which although their intended use implies differential isoform analysis, a more in-depth 

investigation reveals that DEXSeq detects differential exon usage and requires additional 

handling for specific cases of alternative isoform detection2. Last but not least, not all currently 

supported packages are user-friendly enough so as to be deployed relatively quickly by non-

trained bioinformaticians, as they might present runtime problems which are not errors but 

require special handling by trained experts to complete their runs and provide meaningful 

results. 

Therefore, we only further considered software packages that are relatively user-friendly as 

non-experts should be able to adequately use them. In this sense, we evaluated all investigated 

packages with respect to their relatively easy setup, running and completion without errors, 

not only for the test data provided by the relative developers but also for different data. Some 

packages had unmet dependencies not allowing to be compiled, while others run seamlessly 

only for the specific examples presented in their manual pages; they either didn’t start 

processing at all or they never completed execution successfully for different datasets. If after 

a fair amount of time and effort we were unable to properly execute a software package, then 

we excluded it from the integration framework and ignored it for the rest of the analysis. 

 

Differential isoform expression analysis methods 

We selected the Tuxedo suite, the New Tuxedo suite, RSEM, EBSeq, BitSeq and Sleuth based 

on the following criteria: firstly, all selected software packages were open-source and had their 

source code released under a license. Secondly, their development is still active, i.e. their code 

has relatively recently been updated in a repository or the software authors provide support 

or there is an active community, independently or under a wider framework such as 

Bioconductor. Third, they had a reasonable learning curve and documentation, so usage was 

made possible from others than the original developers. Last, all selected software packages 

 
1 https://pubmed.ncbi.nlm.nih.gov/22722343/ 
2 https://pubmed.ncbi.nlm.nih.gov/26327458/ 



were cited by other authors in the respective literature. The following outline briefly the 

methodological approaches of each package.  

 

• The Tuxedo suite offers a set of tools for analyzing a variety of RNA-Seq data, including 

short-read mapping, identification of splice junctions, transcript and isoform detection, 

differential expression, visualizations, and quality control metrics. It uses Tophat2 to align 

the reads on a genome and then Cufflinks to assemble aligned RNA-Seq reads into 

transcripts, estimate their abundances, and test for differential expression and regulation 

of transcriptome. The output result file contains gene and transcript expression level 

changes with statistics such as Fold Change (FC) in log2 scale, p-values (both raw and 

corrected for multiple testing) and gene- and transcript-related attributes such as common 

name and genomic coordinates. 

• The New Tuxedo suite includes a similar but distinct set of tools like the Tuxedo suite. 

HISAT2 aligns RNA-seq reads to a reference genome and discovers transcript splice sites 

while StringTie assembles the alignments into full and partial transcripts, creating 

multiple isoforms as necessary and estimating the expression levels of all genes and 

transcripts. The transcripts and expression levels from StringTie were fed to DESeq2 [30] 

for differential expression analysis. The final output result file of this method contains 

transcript expression level changes with statistics such as FC (in log2 scale), p-values and 

q-values (multiple testing corrected p-values). 

• RSEM (RNA-Seq by Expectation Maximization) is an algorithm and software tool for 

quantifying transcript abundances from RNA-Seq data, with or without an existing 

reference genome. RSEM is designed to work with reads aligned to transcript sequences 

and outputs both a) an estimate of the number of fragments that are derived from a given 

isoform or gene and b) the estimated fraction of transcripts made up by a given isoform 

or gene. The second measure of abundance is used by a script that internally uses EBSeq 

for isoform differential expression detection. The final output includes FC of the raw data 

as well as estimations of the posterior FC of the normalized data, and the transcripts with 

posterior probability of being differentially expressed (PPDE). 

• EBSeq is an algorithm coupled with RSEM, however it can also be executed 

autonomously, without using the default RSEM scripts but instead fine-tuned EBSeq 

functions. As expected, it produces the same type of output files as when using the default 

RSEM scripts. However, the actual results are different. 

• BitSeq infers transcript abundance and potential differential expression from sequencing 

data using a Bayesian approach for the estimation of transcript expression level and offers 

a differential expression analysis. The implementation of the transcriptome expression 

estimation and differential expression is written in C++ and Python and is also available 

as a Bioconductor R package. The final output result file contains the estimation of the 

Probability of Positive Log Ratio (PPLR) for each transcript along with the FC in log2 scale. 

• sleuth is a software for analysing RNA-Seq data, both in transcript- and gene-level that 

ships with an integrated interactive application for exploratory data analysis. It is 

compatible with kallisto pseudoaligner and accepts as input transcript abundances that 

have been quantified with the latter. The output of sleuth contains among other 

parameters, the p-values and q-values of a transcript being differentially expressed. 

 

Performance evaluation metrics 

To evaluate the performance of the six individual methods as well as our combined ML 

approaches, the following metrics were used: 

 

• Accuracy: the ratio of the correctly classified transcripts to the total number of transcripts. 

• Sensitivity: the probability of predicting a transcript as DE when it truly is DE. 

• Specificity: the probability of predicting a transcript as non DE when it is truly non-DE. 



• Positive Predictive Value (PPV): the probability of a transcript being DE when it is 

predicted as such. 

• Negative Predictive Value (NPV): the probability of a transcript being non-DE when it is 

predicted as such. 

• Area Under the Curve (AUC): the area under the ROC (Receiver Operating Characteristic) 

curve, created by plotting the true positive rate (TPR) against the false positive rate (FPR). 

All the implementations, executions and measurements were performed using in-house R 

scripts and available ML R libraries, including the packages randomForest for Random Forest, 

kernlab for Support Vector Machines, rotationforest for Rotation Forest and XGBoost for the 

respective method. 

  



Supplementary tables 

Table S1. For each of the six chosen methods and the four ML approaches, using Homo sapiens (hg19) 

simulated data, the performance on the six metrics is evaluated. In the last row of the table, the name of 

the best performing method for each metric is presented.  XGBoost outperforms all others in four out of 

the six metrics, but it is quite evident that there is no single method that clearly outperforms all others. 

Method Accuracy Sensitivity Specificity NPV PPV AUC 

BitSeq 0.9634 0.9291 0.9676 0.9909 0.7826 0.9484 

EBSeq 0.9889 0.9743 0.9908 0.9968 0.9297 0.9825 

Hisat 0.9232 0.9470 0.9203 0.9928 0.5982 0.9336 

XGBoost 0.9932 0.9976 0.9582 0.9798 0.9948 0.9893 

RF 0.982 0.9821 0.9855 0.9862 0.9808 0.982 

RSEM 0.9881 0.9359 0.9947 0.992 0.9568 0.9653 

RTF 0.9804 0.9779 0.9832 0.9838 0.9785 0.9785 

Sleuth 0.9376 0.9786 0.9325 0.9971 0.645 0.9555 

SVM 0.9788 0.9809 0.9838 0.9847 0.9782 0.9791 

TopHat 0.9729 0.9377 0.9773 0.9921 0.8379 0.9575 

Best XGBoost XGBoost RSEM Sleuth XGBoost XGBoost 

 

Table S2. For each of the six chosen methods and the four ML approaches, using Drosophila melanogaster 

(dm6) simulated data, the performance on the six metrics is evaluated. In the last row of the table, the 

name of the best performing method for each metric is presented.  XGBoost outperforms all others in four 

out of the six metrics, but it is quite evident that there is no single method that clearly outperforms all 

others. Another metric worth mentioning in the very poor performance of BitSeq for the specific species, 

which does not predict correctly not even one DE isoform 

Method Accuracy Sensitivity Specificity NPV PPV AUC 

BitSeq 0.8877 0 0.9996 0.8881 0 0.4998 

EBSeq 0.9746 0.932 0.98 0.9913 0.8543 0.956 

Hisat 0.9062 0.8809 0.9094 0.9838 0.5503 0.8951 

XGBoost 0.9862 0.9935 0.9289 0.9473 0.9910 0.9769 

RF 0.9634 0.9631 0.9713 0.9714 0.9608 0.9609 

RSEM 0.9777 0.9103 0.9862 0.9887 0.8924 0.9482 

RTF 0.9628 0.9625 0.9709 0.9705 0.9604 0.9592 

Sleuth 0.9318 0.9426 0.9305 0.9923 0.6306 0.9365 

SVM 0.962 0.9608 0.9694 0.9704 0.9579 0.9581 

TopHat 0.9513 0.8149 0.9685 0.9765 0.7653 0.8917 

Best XGBoost XGBoost RSEM EBSeq XGBoost XGBoost 

 

  



Table S3. For each of the six chosen methods and the four ML approaches, using Arabidopsis thaliana 

(tair10) simulated data, the performance on the six metrics is evaluated. In the last row of the table, the 

name of the best performing method for each metric is presented.  XGBoost outperforms all others in four 

out of the six metrics, but it is quite evident that there is no single method that clearly outperforms all 

others. 

Method Accuracy Sensitivity Specificity NPV PPV AUC 

BitSeq 0.9395 0.4849 0.9988 0.9369 0.9821 0.7419 

EBSeq 0.9974 0.9986 0.9972 0.9998 0.9791 0.9979 

Hisat 0.9635 0.9827 0.961 0.9977 0.7667 0.9718 

XGBoost 0.9991 0.9996 0.9952 0.9971 0.9994 0.9997 

RF 0.9973 0.9976 0.9979 0.9981 0.9971 0.9973 

RSEM 0.9964 0.976 0.999 0.9969 0.9926 0.9875 

RTF 0.9972 0.9968 0.9977 0.998 0.9971 0.9967 

Sleuth 0.9524 0.9966 0.9467 0.9995 0.7093 0.9716 

SVM 0.9972 0.9972 0.9976 0.9981 0.9966 0.9972 

TopHat 0.9901 0.9923 0.9898 0.999 0.927 0.991 

Best XGBoost XGBoost RSEM EBSeq XGBoost XGBoost 

 

Table S4. For all six methods and four ML approaches on Homo sapiens (hg19) simulated data, the ranking 

of each method is presented for each metric. In the last column of the table, the ranking of each method 

is presented by aggregating the performance of all metrics as an average value, and ranking all methods 

based on this indicator. Based on this new metric, EBSeq outperforms RF and XGBoost, which are very 

close in second and third place respectively. 

Method Accuracy Sensitivity Specificity NPV PPV AUC Mean 

EBSeq 2 6 2 2 6 2 2 

RF 4 2 3 7 2 3 2.1 

XGBoost 1 1 8 10 1 1 2.2 

RSEM 3 9 1 5 5 6 2.9 

SVM 6 3 4 8 4 4 2.9 

RTF 5 5 5 9 3 5 3.2 

TopHat 7 8 6 4 7 7 3.9 

Sleuth 9 4 9 1 9 8 4 

BitSeq 8 10 7 6 8 9 4.8 

Hisat 10 7 10 3 10 10 5 

 

  



Table S5. For all six methods and four ML approaches on Drosophila melanogaster (dm6) simulated data, 

the ranking of each method is presented for each metric. In the last column of the table, the ranking of 

each method is presented by aggregating the performance of all metrics as an average value, and ranking 

all methods based on this indicator. Based on this new metric, RF outperforms XGBoost and EBSeq, which 

in second and third place respectively. 

Method Accuracy Sensitivity Specificity NPV PPV AUC Mean 

RF 4 2 4 6 2 2 2 

XGBoost 1 1 9 9 1 1 2.2 

EBSeq 3 6 3 2 6 5 2.5 

RSEM 2 7 2 3 5 6 2.5 

RTF 5 3 5 7 3 3 2.6 

SVM 6 4 6 8 4 4 3.2 

Sleuth 8 5 8 1 8 7 3.7 

TopHat 7 9 7 5 7 9 4.4 

Hisat 9 8 10 4 9 8 4.8 

BitSeq 10 10 1 10 10 10 5.1 

 

Table S6. For all six methods and four ML approaches on Arabidopsis thaliana (tair10) simulated data, the 

ranking of each method is presented for each metric. In the last column of the table, the ranking of each 

method is presented by aggregating the performance of all metrics as an average value, and ranking all 

methods based on this indicator. Based on this new metric, RF outperforms XGBoost and EBSeq, which 

in second and third place respectively. 

Method Accuracy Sensitivity Specificity NPV PPV AUC Mean 

RF 3 3 3 4 2 3 1.8 

XGBoost 1 1 7 8 1 1 1.9 

EBSeq 2 2 6 1 7 2 2 

RTF 4 5 4 6 3 5 2.7 

SVM 5 4 5 5 4 4 2.7 

RSEM 6 9 1 9 5 7 3.7 

TopHat 7 7 8 3 8 6 3.9 

Sleuth 9 6 10 2 10 9 4.6 

BitSeq 10 10 2 10 6 10 4.8 

Hisat 8 8 9 7 9 8 4.9 

 

 


