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1 Solution of the eigenvalue problem for the RDSP

We start with the eigenvalue problem

[Hξ (k + Aξ) + VRD(r)] |Ψ(λ,ξ)
n,m 〉 = Eξλ,n|Ψ

(λ,ξ)
n,m 〉, (1)

and represent it in the cylindrical coordinate basis (r, φ, z). In this representation we have k = −i∇,

VRD(r) = V0δ(r−a), and we can choose the vector potential in the gauge Aξ = Aφ(r)φ̂, with Aφ(r) = Bξr/2

for r < a and Aφ(r) = 0 for r > a. Therefore, we obtain
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Ψ(λ,ξ)
n,m (r) = Eξλ,nΨ(λ,ξ)

n,m (r),

(2)

where the total angular momentum is Ĵ3 = L̂3 + ~
2σ3, the orbital angular momentum is L̂3 = −i∂φ, and we

have used that φ̂ · σ = i (r̂ · σ)σ3, with

r̂ · σ =

 0 e−iφ

eiφ 0

 . (3)
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1 Solution of the eigenvalue problem for the RDSP 2

Because of the cylindrical symmetry of the system, the Hamiltonian has no explicit dependence on the

variable z, and hence it is possible to decompose the total solution in angular momentum channels, such that

the pseudo-spinors can be written in the form

Ψ(λ,ξ)
n,m (r) = r−

1
2

 fm(r)eimφ

−i gm(r)ei(m+1)φ

 ekzz. (4)

It is straightforward to check that the pseudo-spinors in Eq.(4) are eigenstates of the total angular momentum,

i.e., Ĵ3Ψ
(λ,ξ)
n,m (r) = mj~Ψ

(λ,ξ)
n,m (r) with mj = ± 1

2 ,±
3
2 , · · · and the orbital angular momentum quantum number

is m = mj − 1/2. Insertion of the pseudo-spinor in Eq. (4) in the eigenvalue problem Eq. (2) leads to the

radial equation

 kz + ξV0

~vF δ(r − a) − d
dr −

(
m+1/2

r − e
~Aφ

)
d
dr −

(
m+1/2

r − e
~Aφ

)
−kz + ξV0

~vF δ(r − a)


fm(r)

gm(r)

 =
ξEξλ,n
~vF

fm(r)

gm(r)

 . (5)

Let us introduce the new quantities

α ≡ ξV0

~vF
, ε ≡

ξEξλ,n
~vF

, Φm(r) ≡

fm(r)

gm(r)

 . (6)

Then, it is direct to notice that Eq.(5) can be cast in the form

d

dr
Φm(r) + [M(r) + iαδ(r − a)σ2] Φm(r) = 0, (7)

where M(r) is a 2× 2 matrix given by

M(r) =

−
(
m+1/2

r − e
~Aφ

)
−kz − ε

−kz + ε
(
m+1/2

r − e
~Aφ

)
 . (8)

We notice that Eq. (7) can be expressed as a total derivative as follows

d

dr

{
e
∫ r
c
dρ[M(ρ)+iαδ(ρ−a)σ2]Φm(r)

}
= 0, (9)

where 0 < c < a is a constant. Integrating Eq. (9) from r = a− ε to r = a+ ε, with ε a positive infinitesimal,

we have

e
∫ a+ε
a−ε dρM(ρ)+iασ2 Φm(r)|r=a+ε = Φm(r)|r=a−ε . (10)



2 Scattering analysis 3

Now, taking the limit ε→ 0 we obtain the matching condition at the boundary of the cylinder

eiασ2 Φm(r)|r→a+ = Φm(r)|r→a− , (11)

provided that according to Eq. (8), the matrix M(r) is a regular function across of r = a. Using the well

known result for eiασ2 and the complete form of the pseudo-spinor in Eq. (4), the boundary condition can

be written in closed form as

Ψ(λ,ξ)
n,m (r)

∣∣∣
r→a+

=

cosα − sinα

sinα cosα

 Ψ(λ,ξ)
n,m (r)

∣∣∣
r→a−

, (12)

where Ψ
(λ,ξ)
n,m (r)

∣∣∣
r→a+

is the solution outside the cylinder and Ψ
(λ,ξ)
n,m (r)

∣∣∣
r→a−

is the solution inside the cylinder.

2 Scattering analysis

In this section we perform the standard scattering analysis using the method of partial waves[1]. We closely

follow the treatment of Refs. [2], [3] and consider the elastic scattering for an incident ‘free’ pseudo-spinor

with momentum ~k (where k = (k⊥, kz) and k⊥ = (kx, ky)) and energy Eλ,k = λ~vF |k|. The incident ‘free’

fermion is the solution of the eigenvalue equation Hξ(k)Ψ
(λ,ξ)
inc,k(r) = λ~vF |k|Ψ(λ,ξ)

inc,k(r), i.e.,

Ψ
(λ,ξ)
inc,k(r) =

1√
1 + β2

1

β

 eik⊥r cosφ+ikzz, (13)

where we have introduced the dimensionless constant

β ≡ λξ|k| − kz
k⊥

≡ k⊥
kz + ξλ|k|

. (14)

Outside the cylindrical strip the particles are free, so we make the substitution V0 = 0, Aφ = 0 and Eξλ,n =

λ~vF |k| in the radial equation Eq.(5) to obtain

kz D̂†0

D̂0 −kz


fm(r)

gm(r)

 = λξ|k|

fm(r)

gm(r)

 , (15)
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where D̂0 = d
dr −

m+1/2
r and D̂†0 = − d

dr −
m+1/2

r . The radial components of the spinor in the Eq.(15) are

obtained solving the diagonal system

D̂†0D̂0 + k2
z − |k|2 0

0 D̂0D̂
†
0 + k2

z − |k|2


fm(r)

gm(r)

 = 0, (16)

where

D̂†0D̂0 = − d2

dr2
+

(m+ 1/2)(m− 1/2)

r2
, (17)

D̂0D̂
†
0 = − d2

dr2
+

(m+ 1/2)(m+ 3/2)

r2
. (18)

We then have the pair of differential equations

[
− d2

dr2
+

(m+ 1/2)(m− 1/2)

r2
− k2
⊥

]
fmj (r) = 0,[

− d2

dr2
+

(m+ 1/2)(m+ 3/2)

r2
− k2
⊥

]
gmj (r) = 0. (19)

The general solution for the system of differential equations in Eq. (19) is given in terms of the Bessel

functions of the first and second kind

fm(r) = c1
√
k⊥rJm(k⊥r) + c2

√
k⊥rYm(k⊥r),

gm(r) = c3
√
k⊥rJm+1(k⊥r) + c4

√
k⊥rYm+1(k⊥r). (20)

However, the radial equation in Eq. (15) imposes a relation between the upper and lower components, i.e.,

gm(r) =
−k⊥

kz + ξλ|k|

[
c1
√
k⊥rJm+1(k⊥r) + c2

√
k⊥rYm+1(k⊥r)

]
, (21)

where we have applied the identity [4]

dZα
dx
− α

x
Zα(x) = −Zα+1(x). (22)

Equating Eq. (21) with the last of Eq. (20) we have that

c3 = −βc1, c4 = −βc2, (23)
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where β is given in Eq. (14).

Phase Shift

In order to find the phase shift δm for each angular momentum channel m, let us first consider the asymptotic

form of the Bessel functions for large[4] r

Jm(k⊥r) ∼
√

2

πk⊥r
cos

(
k⊥r −

(
m+

1

2

)
π

2

)
,

Ym(k⊥r) ∼
√

2

πk⊥r
sin

(
k⊥r −

(
m+

1

2

)
π

2

)
. (24)

Taking these forms into account, we have that the general ‘free’ spinor solution outside of the cylinder, for

large r, has the asymptotic form

Ψ
(λ,ξ)
out,k(r) ∼

√
2

πk⊥r
Cm

 eimφ cos
(
k⊥r −

(
m+ 1

2

)
π
2 + δm

)
iβ ei(m+1)φ cos

(
k⊥r −

(
m+ 3

2

)
π
2 + δm

)
 eikzz. (25)

Here, we have defined the global coefficients and phase shifts by

Cm =
√
k⊥

√
c21 + c22,

tan δm =− c2
c1
. (26)

If the only mechanism responsible for scattering is the RDSP, then we have free pseudo-spinors in both

regions, inside and outside the cylinder. The solution for the radial components of the spinor in the exterior

region (r > a) appears in Eq. (20), with the condition in Eq. (23). Then, on the one hand we have

fm(r)

gm(r)


r→a+

=
√
k⊥a

 c1Jm(k⊥a) + c2Ym(k⊥a)

−βc1Jm(k⊥a)− βc2Ym(k⊥a)

 . (27)

On the other hand, the well behaved solution inside the cylinder (r < a) is

fm(r)

gm(r)


r→a−

= C̃
√
k⊥a

 Jm(k⊥a)

−βJm(k⊥a)

 , (28)

where C̃ is an arbitrary constant. Now, applying the matching condition in Eq. (12) at the boundary of the

cylinder (r = a) to the solutions in Eq. (27) and Eq. (28), we have a system of equations that determines

the constants c1 and c2 in terms of the arbitrary constant C̃. Then, from the definition of the phase shift in
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Eq. (26) we obtain

tan δm(α) =
tanα

[
J2
m + β2J2

m+1

]
tanα [Jm · Ym + β2Jm+1 · Ym+1]− β [Jm+1 · Ym − Jm · Ym+1]

, (29)

where α is given in the Eq. (6), β is defined in the Eq. (14) and it is understood that all the Bessel functions,

Jm and Ym, have argument k⊥a. We can notice that when α = 0, i.e., there is no scattering mechanism, the

expression in Eq. (29) reduces to tan δm = 0. As expected, when there is no scattering, there is no phase shift.

Now, we consider the case in which, inside the cylinder, there is an external magnetic field, a torsion

pseudo-field, and the RDSP. The interior solution appears in the appendix of Ref.[2]. If we introduce the

dimensionless parameter za = |Bξ|a2/2φ̃0, the solution inside the cylinder (for n > 0) can be written as

Ψ(λ,ξ)
n,m (r)

∣∣∣
r→a−

= Cξ,λn,m

 z
|m|
2

a e−
1
2 zaL

|m|
nρ (za) eimφ

i %ξnz
|m+1|

2
a e−

1
2 zaL

|m+1|
n′ρ

(za) ei(m+1)φ

 eikzz, (30)

where the coefficients are defined by

nρ = n− θ(−Bξ)−
|m| −m signBξ

2
,

n′ρ = nρ − θ(Bξ) + θ(−m),

%ξn =

√
2|Bξ|/φ̃0 n

θ(−m)

λξ
√

2n|Bξ|/φ̃0 + k2
z + kz

. (31)

Here, θ(x) is the Heaviside step function and the value of m is restricted by the principal quantum number

n as follows: for signBξ = +1, we have −n ≤ m < +∞, and for signBξ = −1, we have −∞ < m ≤ n − 1.

Proceeding as before, we apply the matching condition in Eq. (12) (at r = a) to the exterior solution in

Eq. (27) and interior solution in Eq. (30), in order to find the constants c1 and c2 in terms of Cξ,λn,m. The

corresponding phase shift is computed using Eq.(26), and we finally get

tan δm(α,Bξ) =

βJm+1 − %ξnJm · z
|m+1|−|m|

2
a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

+ tanα

[
Jm + β%ξnJm+1 · z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

]

βYm+1 − %ξnYm · z
|m+1|−|m|

2
a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

+ tanα

[
Ym + β%ξnYm+1 · z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

] ,
(32)

where, as before, all the Bessel functions are evaluated at k⊥a. It is straightforward to show that for the case
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α = 0, the expression for the phase shift reduces to

tan δm(Bξ) =
βJm+1(k⊥a)− %ξnJm(k⊥a)z

|m+1|−|m|
2

a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

βYm+1(k⊥a)− %ξnYm(k⊥a)z
|m+1|−|m|

2
a

L
|m+1|
n′ρ

(za)

L
|m|
nρ (za)

, (33)

which is the phase shift for the case when the external magnetic field and the torsion field are present inside

the cylinder, but there is no RDSP at the boundary [2], [3].

Scattering Amplitudes

Outside the cylindrical strip, in the limit r � a, the ‘free’ state is a linear combination of the incident and

the scattered spinors

Ψ
(λ,ξ)
out,k(r)) ∼ 1√

1 + β2

1

β

 eik⊥r cosφ+ikzz +

f1(φ)

f2(φ)

 eik⊥r+ikzz√
r

. (34)

Here, f1(φ) and f1(φ) are the scattering amplitudes for each component of the spinor. We want to study the

contribution of each partial wave of orbital angular momentum m~. For this purpose, we use the following

expansion of plane waves in terms of Bessel functions [4]

eikr cosφ =

∞∑
m=−∞

imeimφJm(kr) ∼
√

2

πkr

∞∑
m=−∞

imeimφ cos

(
kr − π

2

(
m+

1

2

))
. (35)

Expressing the spinors in Eq. (25) and in Eq. (34) in terms of incoming and outgoing waves, and equating the

pre-factors corresponding to e−ik⊥r, we obtain a system of equations from which we determine the coefficient

Cm. We obtain

Cm =
im√

1 + β2
eiδm . (36)

Applying the same procedure for the pre-factors of eik⊥r, we find that the scattering amplitude is

f1(φ)

f2(φ)

 =
e−

iπ
4√

2 (1 + β2)πk⊥

∞∑
m=−∞

 eimφ

βei(m+1)φ

(e2iδm − 1
)
. (37)

Note that from Eq. (37) we have a relation between f1(φ) and f2(φ), namely

f2(φ) = βeiφf1(φ). (38)
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Scattering Cross-Section

The differential cross-section (per unit of cylinder length) is given by the square modulus of the vector in Eq.

(37), i.e.,

d

dφ
(σ/L) = |f1(φ)|2 + |f2(φ)|2 =

2

πk⊥

∑
m,m′

ei(δm−δm′ ) sin δm sin δm′e
i(m−m′)φ, (39)

and the total cross-section (per unit of cylinder length) is calculated from Eq. (39) by integrating over the

scattering angle, 0 ≤ φ ≤ 2π. We get

σ/L =
4

k⊥

∞∑
m=−∞

sin2 δm. (40)

3 Transmission and Landauer formalism

In this section we will study the transport properties of a slab made of a WSM of height L (z-direction) and

width W (y-direction). We assume that L,W � 1/kF . The slab is connected to two semi-infinite WSM

contacts which are maintained at chemical potentials µL and µR, respectively. The particle flux (particles

per unit time per unit area) emitted by the left/right contact is defined as

dJL/R = vF cosφDL/R(E)fL/R(E)dE, (41)

where DL/R(E) is the density of states at the left/right contact and fL/R(E) is the equilibrium Fermi-

Dirac distribution. In order to calculate the density of states, we assume that both contacts are identical

semi-infinite regions of WSM, whose density of states are equal, and given by

DL(E) = DR(E) = D(E) = 4

∫
d3k

(2π)3
[δ (E − ~vF k) + δ (E + ~vF k)] , (42)

where the factor of 4 arises from the spin and node degeneracy at each of the WSM semi-infinite contacts.

Performing the integration we obtain

D(E) =
2|E|

π(~vF )2L
θ(|E|). (43)

From now on, we consider that the incident spinor has a wave vector k = (k⊥, 0, 0), i.e. a plane wave

propagating in the x−direction. The effect of the scattering center (the cylindrical strip) on the transport

properties can be expressed as an effective cross-section σeff(E). For this purpose we define the energy-
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dependent transmission coefficient as

T̄ (E) =

∫ π/2

−π/2
dφ cosφ

1

σ(E)

dσ

dφ
. (44)

Here, σ(E) is the total cross-section at energy E. In order to compute the angular average we need to use

the following result ∫ π/2

−π/2
dφ cosφ ei(m−m

′)φ = δm−m′,2p
2 (−1)p+1

4p2 − 1
, p ∈ Z. (45)

For the case when the only scattering mechanism present is the RDSP, we can write the effective cross-section

as

σRDeff = πaLT̄ (Eλ,k⊥), (46)

where Eλ,k⊥ is the energy of the free pseudo-spinor with momentum k. The particle flow (particles per unit

time) along the x-direction emitted by the left/right contact, and arising from the Kξ node can be written

as dṄξ
L/R = σeff(E) dJL/R. The net electric current flowing across the region will be I = I+ + I−, with the

node component given by

Iξ = e

∫ (
dṄξ

x,L − dṄ
ξ
x,R

)
. (47)

Replacing Eq. (41) for the particle flux, the density of states Eq. (43), the effective cross-section Eq. (46),

the transmission coefficient Eq. (44) in terms of the differential cross section Eq. (39), and after explicit

angular integration using the result in Eq. (45) the total electric current is given by

I = 2evF
∑
λ

∫ ∞
0

dk⊥T (Eλ,k⊥) [fL (Eλ,k⊥)− fR (Eλ,k⊥)] , (48)

where the factor 2 arises from the symmetric contribution of the two chiral nodes, ξ = ±1. Here we use the

symbol T (E) as a convenient shorthand notation for the transmission function

T (Eλ,k⊥) =
8ξaL

π

∑
m,p

λ(−1)p+1

σ (Eλ,k⊥) (4p2 − 1)
ei(δm−δm−2p) sin(δm) sin(δm−2p). (49)

It is important to notice that the phase shifts appearing in this expression are those given in Eq. (29). Now,

we calculate the differential conductance G(T, V ) = ∂I/∂V |T . For simplicity, we assume that µL = µR + eV

and TL = TR = T ; we get finally

G(T, V ) = 2
e2vF
kBT

∑
λ

∫ ∞
0

dk⊥T (Eλ,k⊥)fL(Eλ,k⊥) [1− fL(Eλ,k⊥)] , (50)
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where we have used that

∂fL(E, V )

∂V
=

e

kBT
[1− fL(E, V )] fL(E, V ). (51)

On the other hand, when we have the combined effect of the external magnetic field and the torsion

pseudo-field inside the cylinder, in addition to the RDSP at the boundary, the effective cross-section can be

written in the form[3]

σeff = L
∑
n,λ

T̄ (Eξλ,n)δ

(
λk⊥ −

Eξλ,n
~vF

)
, (52)

where Eξλ,n is the pseudo-Landau energy spectrum inside the cylindrical region, and the Dirac delta function

enforces the energy conservation condition assumed for elastic scattering. Proceeding as before but with the

effective cross-section given in Eq. (52), the node component of the current is

Iξ = evF
∑
n,λ

T (Eξλ,n)
[
fL(Eξλ,n)− fR(Eξλ,n)

]
, (53)

where the effective transmission function, for this case, is

T (Eξλ,n) =
8L

π2

∑
m,p

(−1)p+1

σ(Eξλ,n)(4p2 − 1)
ei(δm−δm−2p) sin δm sin δm−2p, (54)

and the phase shifts here are those in Eq. (32). The differential conductance for this case is

G(T, V ) =
e2vF
kBT

∑
λ,n,ξ

T (Eξλ,n)fL(Eξλ,n)
[
1− fL(Eξλ,n)

]
. (55)

Finally, in the low temperature limit the Fermi distribution becomes a Heaviside function

fL(E, V ) = Θ

(
µR + eV − E

kBT

)
, (56)

and the derivative in Eq.(51) becomes a delta function

∂fL(E, V )

∂V
= eδ (E − µR − eV ) . (57)

Then, directly from Eq.(48) or Eq. (53), we have that the conductance at low temperatures can be approxi-

mated by

G(V ) = e2vFT (eV + µR)D (eV + µR) , (58)
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Fig. 1: (Color online) Differential conductance (in units of e2/~) for the RDSP, plotted as function of applied
bias eV (in units of ~vF /a) for α = 3π/4 and T = 0.2 ~vF /kBa. The Subfig. (a) is computed from
the analytical expression in Eq. (50) whereas the Subfig. (b) is computed from the low temperature
expression in Eq. (58).

where D(E) is the density of states; for the case of RDSP alone it is the free density of states in Eq. (43),

whereas for the case of magnetic and torsion pseudo-fields inside the cylinder and RDSP at the boundary, it

corresponds to the density of states for the pseudo-Landau energy spectrum. A comparison of the differential

conductance for the case when the only scattering mechanism is the RDSP is presented in Fig. 1.

4 Thermoelectric transport coefficients

We start with the expression given in the text for the energy current accross the junction arising from each

chiral node contribution ξ = ±

U̇ξ = vF
∑
n,λ

Eξλ,nT (Eξλ,n)
[
fL(Eξλ,n)− fR(Eξλ,n)

]
. (59)

and the net heat current transmitted across the junction

Q̇ξ = U̇ξ −
(
µLṄ

ξ
L − µRṄ

ξ
R

)
. (60)

For the thermal conductance we have, as usual, its definition under conditions where there is no net electric

current (I = 0)

κ(T, V ) = − ∂Q̇

∂∆T

∣∣∣∣∣
I=0

= − ∂U̇

∂∆T

∣∣∣∣∣
I=0

, (61)
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where ∆T = TR − TL. The condition of a vanishing electric current defines an implicit relation between the

voltage difference and the thermal gradient across the junction, by I(∆T, V, T ) = 0. At constant T , we have

dI(∆T, T, V ) =
∂I

∂∆T

∣∣∣∣
T,V

d∆T +
∂I

∂V

∣∣∣∣
∆T,T

dV = 0, (62)

then

∂I

∂∆T

∣∣∣∣
T,V

+
∂I

∂V

∣∣∣∣
∆T,T

∂V

∂∆T

∣∣∣∣
I=0,T

= 0. (63)

Finally, we have for the Seebeck coefficient

S(T, V ) = − ∂V

∂∆T

∣∣∣∣
I=0,T

=

∂I
∂∆T

∣∣
T,V

∂I
∂V

∣∣
T,∆T

, (64)

where ∆T (V, T ) is obtained as the solution of the equation I(T, V,∆T ) = 0. Following the argument above,

the thermal conductance defined in Eq. (61) is calculated by means of the chain rule in terms of the Seebeck

coefficient

κ(T, V ) = − ∂U̇

∂∆T

∣∣∣∣∣
T,V

+ S(T, V )
∂U̇

∂V

∣∣∣∣∣
T,∆T

. (65)

For simplicity, we assume that TL = T , TR = T + ∆T , µR = µ and µL = µ + eV . Then, we have for the

derivatives of the Fermi distributions

∂fR(E)

∂∆T
=

E − µ
kB (T + ∆T )

2 [1− fR(E)] fR(E), (66)

and the result in Eq. (51). Now, from Eq. (59) and Eq. (60), we obtain by explicit integration

Q̇ξ = vF
∑
n,λ

T (Eξλ,n)
[
(Eξλ,n − µL)fL(Eξλ,n)− (Eξλ,n − µR)fR(Eξλ,n)

]
, (67)

and

U̇ξ = vF
∑
n,λ

T (Eξλ,n)Eξλ,n

[
fL(Eξλ,n)− fR(Eξλ,n)

]
, (68)
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where the effective transmission function, T (Eξλ,n), is given in Eq.(54). Now, from Eq.(53) and using the

result in Eq.(66), we have

∂I

∂∆T

∣∣∣∣
T,V

=
∑
ξ

∂Iξ
∂∆T

∣∣∣∣
T,V

= − evF
kB(T + ∆T )2

∑
n,λ,ξ

T (Eξλ,n)
(
Eξλ,n − µ

)
fR(Eξλ,n)

[
1− fR(Eξλ,n)

]
, (69)

and from Eq.(55)

∂I

∂V

∣∣∣∣
T,∆T

=
e2vF
kBT

∑
λ,n,ξ

T (Eξλ,n)fL(Eξλ,n)
[
1− fL(Eξλ,n)

]
. (70)

Thus, we obtain the explicit analytical expression for the Seebeck coefficient in Eq.(64)

S(T, V ) = −
T
∑
λ,n,ξ T (Eξλ,n)

(
Eξλ,n − µ

)
fR(Eξλ,n)

[
1− fR(Eξλ,n)

]
e(T + ∆T )2

∑
λ,n,ξ T (Eξλ,n)fL(Eξλ,n)

[
1− fL(Eξλ,n)

] . (71)

In order to compute the thermal conductance, we have from Eq.(68) and the result in Eq.(66)

∂U̇

∂∆T

∣∣∣∣∣
T,V

=
∑
ξ

∂U̇ξ
∂∆T

∣∣∣∣∣
T,V

= − vF
kB(T + ∆T )2

∑
λ,n,ξ

T (Eξλ,n)Eξλ,n

[
Eξλ,n − µ

]
fR(Eξλ,n)

[
1− fR(Eξλ,n)

]
, (72)

and using the result in Eq.(51)

∂U̇

∂V

∣∣∣∣∣
T,∆T

=
∑
ξ

∂U̇ξ
∂V

∣∣∣∣∣
T,∆T

=
evF
kBT

∑
λ,n,ξ

T (Eξλ,n)Eξλ,nfL(Eξλ,n)
[
1− fL(Eξλ,n)

]
. (73)

Finally, the explicit analytical expression for the thermal conductance obtained from Eq.(65) is

κ(T, V ) =
vF

kB(T + ∆T )2

∑
ξ,λ,n

T (Eξλ,n)Eξλ,n

[
Eξλ,n − µ

]
fR(Eξλ,n)

[
1− fR(Eξλ,n)

]
+ S(T, V )

evF
kBT

∑
λ,n,ξ

T (Eξλ,n)Eξλ,nfL(Eξλ,n))
[
1− fL(Eξλ,n)

]
. (74)

5 Estimation of the parameter V0

Assuming a WSM wire of length L, with the axis along the z direction, the displacement vector in cylindrical

coordinates is [5]

u = θ
z

L
(r× ẑ), (75)
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where θ is the torsion angle in radians, and r is the radial distance vector (in the x− y plane) measured from

the axis of the cylinder. The maximum displacement vector occurs at the radius of the cylinder r = a, and

for z = L. Then, the magnitude of this vector is approximately (small angles)

|u|max ≈ aθ. (76)

The energy per unit length is relatively insensitive to the character of the dislocation (screw, edge, etc). This

energy per unit length can be roughly written as [6]

Ē ≈ γGu2
max = γGa2θ2, (77)

where G is the ‘shear modulus’ (in units of pressure) and γ is a dimensionless factor between 0.5 and 1. This

result is known as Frank’s rule. In our case, the total energy of dislocation for a cylinder of radius a and

axial length L is (we assume here that γ = 1)

E = GHa
2θ2L. (78)

Here GH = 91.88 GPa for TaAs [7]. Because of the presence of δ(r − a), we have to multiply the energy in

the Eq. (78) by the radial distance a. Then, a crude estimation of the value of V0 would be

V0 ≈ GHa2θ2L× a = a3θ2GHL. (79)

We use the following reference values[8]: a = 50 nm, L = 100 nm, θ = 15◦ = (15/180)π. Then V0 =

4.91 GeV Å. We know that ~ = 6.58 × 10−16 eV s and the Fermi velocity for TaAs is 1.3 × 105 m s−1, so

that ~vF = 0.855 eV Å. The value of α is

α =
V0

~vF
=

4.91× 109 eV Å

0.855 eV Å
= 5.74× 109. (80)

Now, since tan δm is a periodic function of α with period π, i.e. tan δm(α) = tan δm(α + π), we define the

effective value of α(modπ) by

α(modπ) = 5.74× 109 − π · b5.74× 109/πc = 2.183

≈ 0.695π. (81)
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There are another estimations of GH . For example, G = 54 GPa [9] gives a value V0 = 2.89 GeV Å, and

hence an effective value of α(modπ)

α(modπ) = 2.89× 109/0.855− π · b2.89× 109/0.855/πc = 2.023

≈ 0.644π. (82)

Therefore, for the sake of the examples presented in this work, we choose α = 3π/4 as a representative value.
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