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S1. The Architecture of INN 

 
Figure S1. Structure of 𝑠  and 𝑡  in the INN for designing a) metalens and b) holograms. 

Figure S1 depicts the neural network architectures of s  and t  within the InvBlock, 
utilized in the design of metalens and metasurface holograms respectively. For metalens 
design, the network consists of a simple 2-layer fully connected structure. In contrast, for 
hologram designs, the network incorporates two ResBlocks, each comprising an input 
mapping and an output mapping. We adopt residual rescaling1 with a rescaling factor set 
to 0.1 to ensure the stability of the training process. For metalens design, the geometry 
parameters (x) have a dimension of 2, the optical response (y) has a dimension of 1, and 
the latent variable (z) has a dimension of 2. To enhance the networkʹs capability to learn 
complex transformations, we follow previous recommendations2 and pad both the input 
and output with zeros, extending them to a length of 12. In this case, the INN comprises 
3 InvBlocks. Table 1 summarizes the network structures for both design tasks. In the base 
cases, the LeakyReLU activation function is utilized. The Adams optimizer is employed 
for optimization, initialized with a learning rate of 0.001. During training, the learning rate 
is exponentially decayed with a factor of 0.97. Specifically, the network used for metasur-
face design was trained for 100 epochs, while the network used for designing holograms 
underwent training for 200 epochs.  

Table S1. Network structures of InvBlock. 

Task Layers Input Dimension Output Dimension 

Metalens Design fc1 12 64 
fc2 64 12 

Holograms Design 

in 12 64 
fc3 64 64 
fc4 64 64 
out 64 12 
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The training times for the two models were as follows: the first model required 8 
minutes for training, while the second model took 18 minutes to complete training. Both 
of these models were trained on a single RTX 3090 GPU. Figure S2 provides an illustration 
of the training loss for the INN applied to both metalens and hologram designs. In the 
case of the INN used for designing metalenses, the values of 𝜆 , 𝜆  and 𝜆  in equation (1) 
from the main manuscript were set to 200, 50, and 100. For the INN used for designing 
holograms, the values of 𝜆 , 𝜆  and 𝜆  were adjusted to 250, 50 and 100. 

 
Figure S2. The training loss of INNs for designing a) metalens and b) holograms. 

S2. Maximum Mean Discrepancy 
Maximum mean discrepancy (MMD) is a kernel-based method employed to measure 

the dissimilarity or discrepancy between two probability distributions.3. It is based on the 
concept that if two distributions are identical, their expected values should be similar 
across all functions within a specific function class. MMD quantifies this discrepancy by 
comparing the expected values of functions evaluated on samples from the two distribu-
tions. Due to its ability to capture distributional differences, MMD is often utilized as a 
loss function in a variety of machine learning algorithms. 

Letʹs begin by introducing the definitions of a kernel and a reproducing kernel Hil-
bert space (RKHS). A kernel, denoted as 𝑘, is a positive definite function 𝜒 × 𝜒 → ℝ, satis-
fying the property that for any 𝑛 ∈ ℕ and real numbers 𝑐 , … , 𝑐 ∈ ℝ, and any elements 𝑥 , … , 𝑥 ∈ 𝜒. ∑ ∑ 𝑎 𝑎 𝑘 𝑥 , 𝑥 ≥ 0  

An RKHS, denoted as ℋ, associated with a kernel 𝑘, is a space of functions spanned 
by functions 𝑘(𝑥,⋅) for all 𝑥 ∈ χ. In this space, the inner product is defined by: 〈𝑘(𝑥 ,⋅), 𝑘(𝑥 ,⋅)〉 = 𝑘(𝑥 , 𝑥 ) 

This property is known as the kernel trick, which enables us to work with implicit 
feature spaces without explicitly evaluating the feature map. 

Now, let’s introduce the concept of mean embedding. Given a probability distribu-
tion 𝑃 for a random variable 𝛸, the mean embedding is another feature map that takes 𝜙(𝑋) and maps it to the means of every coordinate of 𝜙(𝑋): 𝜇 𝜙(𝑋) = 𝐸 𝜙(𝑋 ) , ⋯ , 𝐸 𝜙(𝑋 )   

Inner product of the mean embeddings of 𝑋~𝑃 and 𝑌~𝑄 can be written in terms of 
kernel function such that: 〈𝜇 𝜙(𝑋) , 𝜇 𝜙(𝑌) 〉 = 𝐸 , 〈𝜙(𝑋), 𝜙(𝑌)〉 = 𝐸 , 𝑘(𝑋, 𝑌)  
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Given two random variables 𝑋  and 𝑌 , the maximum mean discrepancy is the dis-
tance between feature means of 𝑋, 𝑌: MMD (P, Q) =  𝜇 − 𝜇 ℱ =  〈𝜇 − 𝜇 , 𝜇 − 𝜇 〉 =  〈𝜇 , 𝜇 〉 − 2〈𝜇 , 𝜇 〉 + 〈𝜇 , 𝜇 〉 =  𝐸 𝑘(𝑋, 𝑋) − 2𝐸 , 𝑘(𝑋, 𝑌) + 𝐸 𝑘(𝑌, 𝑌)  

This expression quantifies the dissimilarity or discrepancy between the feature 
means of the two random variables. By calculating the MMD, we can assess the divergence 
between the distributions represented by X and Y based on their feature means. In real 
life settings, we don’t have access to the underlying distribution of data. For this reason, 
it is possible to use an estimate for the equation: MMD (𝑋, 𝑌) = 1𝑚(𝑚 − 1) 𝑘 𝐱𝐢, 𝐱𝐣 − 2 1𝑚𝑚 𝑘 𝐱𝐢, 𝐲𝐣 + 1𝑚(𝑚 − 1) 𝑘 𝐲𝐢, 𝐲𝐣  

Figure S2 illustrates an example of Maximum Mean Discrepancy (MMD) analysis. In 
both scenarios, 100 samples are randomly drawn from each distribution, and the MMD is 
calculated using a Gaussian kernel. In Figure S2a), the set of samples denoted as 𝑋  is 
drawn from a two-dimensional normal distribution with mean vector 𝝁 = 0, 0  and 𝚺 =1 00 1 . The set of samples denoted as 𝑌 is drawn from another two-dimensional normal 

distribution with mean vector 𝝁 = 1, 1 and 𝚺 = 2 −1−1 2 . The calculated MMD for this 
scenario is 0.509.  In Figure S2b, both sets of samples, 𝑋 and 𝑌, are drawn from the same 
normal distribution with mean vector 𝝁 = 0, 0 and 𝚺 = 1 00 1 . The calculated MMD for 
this scenario is 0.063. In this work, we followed the suggestion to use the Inverse Multi-
quadratic kernel 𝑘(𝑥, 𝑦) = ‖ ‖  with multiple bandwidths 𝑎. Compared to the gauss-
ian kernel, the Inverse Multiquadratic kernels provide heavier tails than Gaussian that 
needed to get meaningful gradients for outliers. 
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Figure S3. Maximum Mean Discrepancy (MMD) analysis of two-dimensional normal distributions 
with different mean and standard variation. The MMD values for a) and b) are 0.509 and 0.063 re-
spectively. 
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S3. The Amplitude of the Transmission of Nanopost 

 
Figure S4. The amplitude of the complex transmission coefficient of the nanopost. 

Figure S4 displays the amplitude of the complex transmission coefficient for the na-
nopost. It is evident that the amplitude for all nanoposts within the sampled range exceeds 
0.94. 

S4. The Details about Inverse-Designed Meta-Atom 

Table S2. Prediction and re-simulation result for inverse-designed meta-atom. 𝒕𝒙: 𝟎. 𝟓, 𝒕𝒚: 𝟎. 𝟓 𝒕𝒙: 𝟎. 𝟓 − 𝟎. 𝟓𝒊, 𝒕𝒚: 𝟎. 𝟓 − 𝟎. 𝟓𝒊 
Prediction Simulation Error Prediction Simulation Error 𝑡 : 0.36 − 0.03𝑖 𝑡 : 0.54 − 0.003𝑖 

𝑡 : 0.37 − 0.11𝑖 𝑡 : 0.54 − 0.03𝑖 
𝑒 : 0.17 𝑒 : 0.05 

𝑡 : 0.52 − 0.44𝑖 𝑡 : 0.48 − 0.53𝑖 
𝑡 : 0.57 − 0.47𝑖 𝑡 : 0.51 − 0.53𝑖 

𝑒 : 0.08 𝑒 : 0.03 𝑡 : 0.42 − 0.03𝑖 𝑡 : 0.47 − 0.23𝑖 𝑡 : 0.41 − 0.06𝑖 𝑡 : 0.47 − 0.2𝑖 
𝑒 : 0.11 𝑒 : 0.2 

𝑡 : 0.50 − 0.46𝑖 𝑡 : 0.49 − 0.44𝑖 
𝑡 : 0.53 − 0.47𝑖 𝑡 : 0.54 − 0.46𝑖 

𝑒 : 0.04 𝑒 : 0.06 𝑡 : 0.46 − 0.18𝑖 𝑡 : 0.51 − 0.19𝑖 𝑡 : 0.45 − 0.16𝑖 𝑡 : 0.59 − 0.19𝑖 
𝑒 : 0.17 𝑒 : 0.21 

𝑡 : 0.53 − 0.43𝑖 𝑡 : 0.48 − 0.51𝑖 
𝑡 : 0.57 − 0.46𝑖 𝑡 : 0.53 − 0.52𝑖 

𝑒 : 0.08 𝑒 : 0.04 𝑡 : 0.43 − 0.02𝑖 𝑡 : 0.47 − 0.26𝑖 𝑡 : 0.43 − 0.02𝑖 𝑡 : 0.48 − 0.23𝑖 
𝑒 : 0.07 𝑒 : 0.23 

𝑡 : 0.53 − 0.43𝑖 𝑡 : 0.48 − 0.50𝑖 
𝑡 : 0.57 − 0.46𝑖 𝑡 : 0.53 − 0.52𝑖 

𝑒 : 0.08 𝑒 : 0.04 𝒕𝒙: 𝟎. 𝟓, 𝒕𝒚: 𝟎. 𝟓 − 𝟎. 𝟓𝒊 𝒕𝒙: 𝟎. 𝟓, 𝒕𝒚: −𝟎. 𝟓𝒊 
Prediction Simulation Error Prediction Simulation Error 𝑡 : 0.50 − 0.09𝑖 𝑡 : 0.49 − 0.46𝑖 𝑡 : 0.48 − 0.11𝑖 𝑡 : 0.48 − 0.43𝑖 𝑒 : 0.11 𝑒 : 0.07 𝑡 : 0.48 − 0.02𝑖 𝑡 : −0.01 − 0.42𝑖 𝑡 : 0.51 − 0.06𝑖 𝑡 : −0.02 − 0.49𝑖 𝑒 : 0.06 𝑒 : 0.02 𝑡 : 0.47 − 0.09𝑖 𝑡 : 0.48 − 0.46𝑖 

𝑡 : 0.46 − 0.06𝑖 𝑡 : 0.48 − 0.42𝑖 
𝑒 : 0.07 𝑒 : 0.08 

𝑡 : 0.48 − 0.01𝑖 𝑡 : 0.08 − 0.49𝑖 
𝑡 : 0.45 − 0.11𝑖 𝑡 : 0.03 − 0.49𝑖 

𝑒 : 0.12 𝑒 : 0.03 𝑡 : 0.44 − 0.06𝑖 𝑡 : 0.57 − 0.50𝑖 
𝑡 : 0.48 − 0.06𝑖 𝑡 : 0.54 − 0.50𝑖 

𝑒 : 0.06 𝑒 : 0.04 
𝑡 : 0.48 − 0.06𝑖 𝑡 : −0.06 − 0.54𝑖 

𝑡 : 0.45 − 0.15𝑖 𝑡 : −0.05 − 0.58𝑖 
𝑒 : 0.16 𝑒 : 0.09 𝑡 : 0.44 − 0.08𝑖 𝑡 : 0.46 − 0.45𝑖 

𝑡 : 0.44 − 0.09𝑖 𝑡 : 0.45 − 0.42𝑖 
𝑒 : 0.11 𝑒 : 0.09 

𝑡 : 0.45 − 0.09𝑖 𝑡 : −0.01 − 0.50𝑖 
𝑡 : 0.42 − 0.14𝑖 𝑡 : −0.06 − 0.51𝑖 

𝑒 : 0.16 𝑒 : 0.06 
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S5. Comparison with Phase-Only Metasurface 

 
Figure S5. Comparison between a) and c) complex amplitude and b) and d) phase-only metasurface 
holography. 

In this study, we have designed complex amplitude metasurfaces capable of gener-
ating high quality holographic images, in contrast to phase-only metasurfaces. Figure S3 
provides a comparison between these two metasurface types. Specifically, Figure S3a and 
c correspond to the two lower images in Figure 5d, which are holographic images created 
by the INN-retrieved complex amplitude metasurface. Figures S3b and d display the im-
ages produced by the phase-only hologram. For the phase-only hologram, we obtained 
the target phase distribution for both x- and y-polarization using the Gerchberg-Saxton 
(GS) algorithm. We then employed a brute-force method within the training dataset to 
identify an appropriate complex meta-atom for each pixel. To ensure a more equitable 
comparison between these two methods, we maintained the use of the complex meta-
atom as the fundamental building block for the metasurface obtained through the GS al-
gorithm. The goal was to minimize the mean square error (MSE) between the target phase 
delay at each pixel, as determined by the GS algorithm, and the complex transmission 
coefficient achievable through the meta-atom. It is evident that the holographic images 
created by the metasurface retrieved using the INN method exhibit superior quality and 
a higher signal-to-noise ratio when compared to the speckle images generated by the 
metasurface retrieved through the GS algorithm. 
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S6. Training INN with Fewer Samples 

 
Figure S6. The inverse designed metalens using INN trained with a) 9,000 data points and b) 7,000 
data points. 

The INN model can achieve effective training with a reduced number of samples 
while maintaining satisfactory performance. Figure S6 displays the inverse-designed 
metalens outcomes using INN trained with 9,000 data points and 7,000 data points, re-
spectively, and they demonstrate comparable performance. 
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