Selected Papers from the 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications (IeCAT)

A special issue of Actuators (ISSN 2076-0825).

Deadline for manuscript submissions: closed (30 September 2021) | Viewed by 25476

Special Issue Editors


E-Mail Website
Guest Editor
Microsystems, Actuators and Sensors Lab, INAMOL-Universidad de Castilla-La Mancha, 45071 Toledo, Spain
Interests: MEMS/NEMS; piezoelectric microsystems; integrated sensors and transducers; miniaturization of instrumentation for applications in chemistry; food technology; robotics; biotechnology and IoT
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
IHA-Innovative Hydraulics and Automation, Faculty of Engineering and Natural Sciences, Tampere University, FI-33720 Tampere, Finland
Interests: electro-hydraulics; electro-mechanical actuators; zonal hydraulics; direct-driven hydraulics; off-road machinery; efficiency; simulations; AI-based condition monitoring; reliability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We plan to publish a Special Issue, including high-quality papers presented during the 1st International Conference on Actuators Technologies: Materials, Devices and Applications (IeCAT), sponsored by the MDPI open access journal Actuators.

The primary aim of IeCAT is to promote scientific and technological exchanges among researchers and engineer around the world. Following the end of the conference, selected papers will be published in open access with the aim of providing a broad overview of the latest achievements of actuator technologies and their application in many fields of industry. Papers could be original research papers (extended from conference proceeding), as well as review papers focused on the current state-of-the-art in one of the areas covered by the journal’s aims and scopes. The main topics of this Special Issue include, but are not limited to:

  • Actuators for robotics and autonomous applications;
  • Actuators for biomedical applications;
  • Actuator materials;
  • Novel design and device concepts;
  • Miniaturized and micro-actuators ;
  • Actuators for aircraft, on- and off-road vehicles/machines;
  • Assessment and precision measurements;
  • Actuators for manufacturing.

Prof. Dr. Jose Luis Sanchez-Rojas
Prof. Dr. Tatiana Minav
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • materials
  • actuators
  • efficiency
  • dynamics
  • energy consuption

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 6264 KiB  
Article
Conceptual Design of Electromechanical Actuation Systems for Large-Sized Directional Control Valves
by Tobias Vonderbank and Katharina Schmitz
Actuators 2021, 10(6), 133; https://0-doi-org.brum.beds.ac.uk/10.3390/act10060133 - 16 Jun 2021
Cited by 1 | Viewed by 2804
Abstract
Increasing performance in modern hydraulics is achieved by a close investigation of possible enhancements of its components. Prior research has pointed out that electromechanical actuators can form suitable alternatives to hydraulically piloted control systems. Since the requirements at these actuation systems depend on [...] Read more.
Increasing performance in modern hydraulics is achieved by a close investigation of possible enhancements of its components. Prior research has pointed out that electromechanical actuators can form suitable alternatives to hydraulically piloted control systems. Since the requirements at these actuation systems depend on the operating conditions of the system, each actuator can be optimized to the respective hydraulic system. Considering that many different conceptual designs are suitable, the phase of conceptual design plays a decisive role during the design process. Therefore, this paper focuses on the process of developing new conceptual designs for electromechanical valve actuation systems using the method of function structures. Aiming to identify special design features, which need to be considered during the design process of electromechanical actuation systems, an exemplary actuator was designed based on the derived function structure. To highlight the potential of function structures for the development of new electromechanical valve actuation systems, two principal concepts, which allow the reduction of the necessary forces, have been developed by extending the function structure. These concepts have been experimentally investigated to identify their advantages and disadvantages. Full article
Show Figures

Figure 1

15 pages, 7502 KiB  
Article
Evaluation of Switching Power Amplifier Topology for Active Magnetic Bearings
by Kezhen Yang, Yefa Hu, Xinhua Guo, Jian Zhou and Huachun Wu
Actuators 2021, 10(6), 131; https://0-doi-org.brum.beds.ac.uk/10.3390/act10060131 - 13 Jun 2021
Cited by 8 | Viewed by 2502
Abstract
Active magnetic bearings (AMBs) have led to great progress in the field of rotating machinery due to their many advantages, such as their non-contact and non-lubrication properties. As the key component of an AMB actuator, the switching power amplifier has an important impact [...] Read more.
Active magnetic bearings (AMBs) have led to great progress in the field of rotating machinery due to their many advantages, such as their non-contact and non-lubrication properties. As the key component of an AMB actuator, the switching power amplifier has an important impact on the performance of magnetic bearings and rotating machinery. In this paper, the topologies of switching power amplifiers for AMBs are introduced. The traditional half-bridge topology and two newly proposed topologies—the three-phase-half-bridge and neutralized-sharing-bridge topology—are analyzed and discussed. The volume, current output performance and cost of the power amplifier with different topologies are comprehensively evaluated, providing a theoretical basis and guidance for the selection and design of the topology of switching power amplifiers for AMBs under different conditions. Full article
Show Figures

Figure 1

19 pages, 458 KiB  
Article
An Algorithm for the Broad Evaluation of Potential Matches between Actuator Concepts and Heavy-Duty Mobile Applications
by David Fassbender and Tatiana Minav
Actuators 2021, 10(6), 111; https://0-doi-org.brum.beds.ac.uk/10.3390/act10060111 - 25 May 2021
Cited by 1 | Viewed by 3079
Abstract
In recent years, a variety of novel actuator concepts for the implements of heavy-duty mobile machines (HDMMs) has been proposed by industry and academia. Mostly, novel concepts aim at improving the typically low energy efficiency of state-of-the-art hydraulic valve-controlled actuators. However, besides energy-efficiency, [...] Read more.
In recent years, a variety of novel actuator concepts for the implements of heavy-duty mobile machines (HDMMs) has been proposed by industry and academia. Mostly, novel concepts aim at improving the typically low energy efficiency of state-of-the-art hydraulic valve-controlled actuators. However, besides energy-efficiency, many aspects that are crucial for a successful concept integration are often neglected in studies. Furthermore, most of the time, a specific HDMM is focused as an application while other HDMM types can show very different properties that might make a novel concept less suitable. In order to take more aspects and HDMM types into account when evaluating actuator concepts, this paper proposes a novel evaluation algorithm, which calculates so-called mismatch values for each potential actuator-application match, based on different problem aspects that can indicate a potential mismatch between a certain actuator concept and an HDMM. The lower the mismatch value, which depends on actuator characteristics as well as HDMM attributes, the more potential is the match. At the same time, the modular nature of the algorithm allows to evaluate a large number of possible matches at once, with low effort. For the performance demonstration of the algorithm, 36 potential matches formed out of six actuator concepts and six HDMM types are exemplarily evaluated. The resulting actuator concept ratings for the six different HDMMs are in line with general reasoning and confirm that the evaluation algorithm is a powerful tool to get a first, quick overview of a large solution space of actuator-HDMM matches. However, analyzing the limitations of the algorithm also shows that it cannot replace conventional requirements engineering and simulation studies if detailed and reliable results are required. Full article
Show Figures

Figure 1

14 pages, 6939 KiB  
Article
Contactless Picking of Objects Using an Acoustic Gripper
by Marc Röthlisberger, Marcel Schuck, Laurenz Kulmer and Johann W. Kolar
Actuators 2021, 10(4), 70; https://0-doi-org.brum.beds.ac.uk/10.3390/act10040070 - 31 Mar 2021
Cited by 11 | Viewed by 4239
Abstract
Acoustic levitation forces can be used to manipulate small objects and liquids without mechanical contact or contamination. This work presents analytical models based on which concepts for the controlled insertion of objects into the acoustic field are developed. This is essential for the [...] Read more.
Acoustic levitation forces can be used to manipulate small objects and liquids without mechanical contact or contamination. This work presents analytical models based on which concepts for the controlled insertion of objects into the acoustic field are developed. This is essential for the use of acoustic levitators as contactless robotic grippers. Three prototypes of such grippers are implemented and used to experimentally verify the lifting of objects into an acoustic pressure field. Lifting of high-density objects (ρ > 7 g/cm3) from acoustically transparent surfaces is demonstrated using a double-sided acoustic gripper that generates standing acoustic waves with dynamically adjustable acoustic power. A combination of multiple acoustic traps is used to lift lower density objects (ρ0.25g/cm3) from acoustically reflective surfaces using a single-sided arrangement. Furthermore, a method that uses standing acoustic waves and thin reflectors to lift medium-density objects (ρ1g/cm3) from acoustically reflective surfaces is presented. The provided results open up new possibilities for using acoustic levitation in robotic grippers, which has the potential to be applied in a variety of industrial use cases. Full article
Show Figures

Figure 1

18 pages, 5919 KiB  
Article
A High-Order Load Model and the Control Algorithm for an Aerospace Electro-Hydraulic Actuator
by Shoujun Zhao, Keqin Chen, Xiaosha Zhang, Yingxin Zhao, Guanghui Jing, Chuanwei Yin and Xue Xiao
Actuators 2021, 10(3), 53; https://0-doi-org.brum.beds.ac.uk/10.3390/act10030053 - 07 Mar 2021
Cited by 3 | Viewed by 3013
Abstract
It is difficult to describe precisely, and thus control satisfactorily, the dynamics of an electro-hydraulic actuator to drive a high thrust liquid launcher engine, whose structural resonant frequency is usually low due to its heavy inertia and complicated mass distribution, let alone one [...] Read more.
It is difficult to describe precisely, and thus control satisfactorily, the dynamics of an electro-hydraulic actuator to drive a high thrust liquid launcher engine, whose structural resonant frequency is usually low due to its heavy inertia and complicated mass distribution, let alone one to drive a heavy kerolox engine with high-order dynamics. By transforming classic control block diagrams, a baseline two-mass-two-spring load model and a normalized actuator-engine system model were developed for understanding the basic physics and methodology, where a fourth-order transfer function is used to model the multi-resonance-frequency engine body outside of the rod position loop, another fourth-order transfer function with two pairs of conjugated zeros and poles to represent the composite hydro-mechanical resonance effect in the closed rod position loop. A sixth-order model was thereafter proposed for even higher dynamics. The model parameters were identified and optimized by a full factor search approach. To meet the stringent specification of static and dynamic performances, it was demonstrated that a notch filter network combined with other controllers is needed since the traditional dynamic pressure feedback (DPF) is difficult to handle the high-order dynamics. The approach has been validated by simulation, experiments and successful flights. The models, analysis, data and insights were elaborated. Full article
Show Figures

Figure 1

11 pages, 2694 KiB  
Article
Piezoelectric MEMS Linear Motor for Nanopositioning Applications
by Víctor Ruiz-Díez, Jorge Hernando-García, Javier Toledo, Abdallah Ababneh, Helmut Seidel and José Luis Sánchez-Rojas
Actuators 2021, 10(2), 36; https://0-doi-org.brum.beds.ac.uk/10.3390/act10020036 - 18 Feb 2021
Cited by 12 | Viewed by 4547
Abstract
This paper reports the design, fabrication, and performance of piezoelectric bidirectional conveyors based on microelectromechanical systems (MEMS) and featuring 3D-printed legs in bridge resonators. The structures consisted of aluminum-nitride (AlN) piezoelectric film on top of millimeter-sized rectangular thin silicon bridges and two electrode [...] Read more.
This paper reports the design, fabrication, and performance of piezoelectric bidirectional conveyors based on microelectromechanical systems (MEMS) and featuring 3D-printed legs in bridge resonators. The structures consisted of aluminum-nitride (AlN) piezoelectric film on top of millimeter-sized rectangular thin silicon bridges and two electrode patches. The position and size of the patches were analytically optimized for travelling or standing wave generation, while the addition of 3D-printed legs allowed for a controlled contact and amplified displacement, a further step into the manufacturing of efficient linear motors. Such hybrid devices have recently demonstrated the conveyance of sliders of several times the motor weight, with speeds of 1.7 mm/s by travelling waves generated at 6 V and 19.3 kHz. In this paper both travelling and standing wave motors are compared. By the optimization of various aspects of the device such as the vibrational modes, leg collocation and excitation signals, speeds as high as 35 mm/s, and payloads above 10 times the motor weight were demonstrated. The devices exhibited a promising positional resolution while actuated with only a few sinusoidal cycles in an open-loop configuration. Discrete steps as low as 70 nm were measured in the conveyance of 2-mg sliders. Full article
Show Figures

Figure 1

15 pages, 5821 KiB  
Article
Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption
by Milan Shrestha, Gih-Keong Lau, Anand Asundi and Zhenbo Lu
Actuators 2021, 10(1), 16; https://0-doi-org.brum.beds.ac.uk/10.3390/act10010016 - 15 Jan 2021
Cited by 4 | Viewed by 3759
Abstract
Soft actuators are compliant material-based devices capable of producing large deformation upon external stimuli. Dielectric elastomer actuators (DEA) are a type of soft actuator that operates on voltage stimuli. Apart from soft robotics, these actuators can serve many novel applications, for example, tunable [...] Read more.
Soft actuators are compliant material-based devices capable of producing large deformation upon external stimuli. Dielectric elastomer actuators (DEA) are a type of soft actuator that operates on voltage stimuli. Apart from soft robotics, these actuators can serve many novel applications, for example, tunable optical gratings, lenses, diffusers, smart windows and so on. This article presents our current work on tunable smart windows which can regulate the light transmittance and the sound absorption. This smart window can promote daylighting while maintaining privacy by electrically switching between transparent and opaque. As a tunable optical surface scatters, it turns transparent with smooth surfaces like a flat glass; but it turns ‘opaque’ (translucent) with the micro-rough surface. The surface roughness is varied employing surface micro-wrinkling or unfolding using dielectric elastomer actuation. Moreover, this smart window is equipped with another layer of transparent micro-perforated dielectric elastomer actuator (DEA), which acts like Helmholtz resonators serving as a tunable and broader sound absorber. It can electrically tune its absorption spectrum to match the noise frequency for maximum acoustic absorption. The membrane tension and perforation size are tuned using DEA activation to tune its acoustic resonant frequency. Such a novel smart window can be made as cheap as glass due to its simple all-solid-state construction. In future, they might be used in smart green buildings and could potentially enhance urban livability. Full article
Show Figures

Graphical abstract

Back to TopTop