Special Issue "Antimicrobial Activity of Plant-Derived Products and Synthetic Derivatives"

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Plant-Derived Antibiotics".

Deadline for manuscript submissions: 31 May 2021.

Special Issue Editors

Prof. Dr. Constantinos Athanassopoulos
Website
Guest Editor
Department of Chemistry, University of Patras, GR-26504, Rion, Patras, Greece
Interests: discovery and development of small organic molecules and of natural product analogues or derivatives with anticancer, antibacterial and antiparasitic activity; synthesis of multitarget inhibitors and of hybrids or bioconjugates aiming at improvement of the pharmacological profile of one or more bioactive molecules
Special Issues and Collections in MDPI journals
Prof. Carlos L. Cespedes Acuña
Website
Guest Editor
Plant Biochemistry and Phytochemical Ecology Lab, University of Bio Bio, Chile
Interests: biopesticides; antioxidants; enzymes inhibition; neurotoxins; ecotoxicology; secondary metabolites; antifungal; antibacterial; nutraceuticals; natural anticancer
Prof. María Cecilia Carpinella
Website
Guest Editor
IRNASUS CONICET-Universidad Católica de Córdoba, Argentina
Interests: plant-derived products; antibacterial activity; anticancer activity; enzyme inhibitors; inhibitors of MDR efflux pumps; bioguided isolation

Special Issue Information

Dear Colleagues,

The management of bacterial infections is a great challenge for therapeutics, particularly because of the increasing emergence of microorganisms with multiresistance to antibiotics, a phenomenon with important implications for morbidity and mortality. Even though the number of drugs currently used in clinical practice of infectious diseases is high, the development of resistance necessitates the discovery of new effective agents. Natural products have been an endless source of compounds with great structural diversity, showing various modes of action against resistant microorganisms. The enormous potential of plant-derived products for providing new and active chemical entities encourages scientists to continue searching for them. These structures will enrich natural product libraries to be used for the discovery of lead compounds and the development of drug candidates for successful therapies against resistant organisms.

This Special Issue intends to collect cutting-edge research and review works illustrating the potential of extracts and active principles obtained from plants, as well as derivatives therefrom against microorganisms, with special attention to those with resistant phenotypes, and it also aims to bring together pharmacognosists, chemists, pharmacologists, toxicologists, biologists, computer-aided drug design scientists, and clinicians working as a multidisciplinary team in the area of natural products.

Dr. Constantinos M. Athanassopoulos
Prof. Carlos L. Cespedes Acuña
Prof. María Cecilia Carpinella
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant extracts
  • plant-derived compounds
  • antibacterial activity
  • antifungal activity
  • resistant strains
  • synthetic natural product derivatives
  • multidrug resistance

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Rhodomyrtone as a New Natural Antibiotic Isolated from Rhodomyrtus tomentosa Leaf Extract: A Clinical Application in the Management of Acne Vulgaris
Antibiotics 2021, 10(2), 108; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10020108 - 22 Jan 2021
Viewed by 338
Abstract
Rhodomyrtone, a plant-derived principal compound isolated from Rhodomyrtus tomentosa (Myrtaceae) leaf extract, was assessed as a potential natural alternative for the treatment of acne vulgaris. The clinical efficacy of a 1% liposomal encapsulated rhodomyrtone serum was compared with a marketed 1% clindamycin gel. [...] Read more.
Rhodomyrtone, a plant-derived principal compound isolated from Rhodomyrtus tomentosa (Myrtaceae) leaf extract, was assessed as a potential natural alternative for the treatment of acne vulgaris. The clinical efficacy of a 1% liposomal encapsulated rhodomyrtone serum was compared with a marketed 1% clindamycin gel. In a randomized and double-blind controlled clinical trial, 60 volunteers with mild to moderate acne severity were assigned to two groups: rhodomyrtone serum and clindamycin gel. The volunteers were instructed to apply the samples to acne lesions on their faces twice daily. A significant reduction in the total numbers of acne lesions was demonstrated in both treatment groups between week 2 and 8 (p < 0.05). Significant differences in acne numbers compared with the baseline were evidenced at week 2 onwards (p < 0.05). At the end of the clinical trial, the total inflamed acne counts in the 1% rhodomyrtone serum group were significantly reduced by 36.36%, comparable to 34.70% in the clindamycin-treated group (p < 0.05). Furthermore, a commercial prototype was developed, and a clinical assessment of 45 volunteers was performed. After application of the commercial prototype for 1 week, 68.89% and 28.89% of volunteers demonstrated complete and improved inflammatory acne, respectively. All of the subjects presented no signs of irritation or side effects during the treatment. Most of the volunteers (71.11%) indicated that they were very satisfied. Rhodomyrtone serum was demonstrated to be effective and safe for the treatment of inflammatory acne lesions. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of Citrus aurantium L. Essential Oil on Streptococcus mutans Growth, Biofilm Formation and Virulent Genes Expression
Antibiotics 2021, 10(1), 54; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10010054 - 08 Jan 2021
Viewed by 457
Abstract
In an oral cavity, dental caries, periodontal disease, and endodontic lesions are caused by well-known bacterial and fungal pathogens. Essential oils (EOs) have demonstrated antimicrobial activity suggesting their use for oral hygiene. The goal of this study was to evaluate the interaction of [...] Read more.
In an oral cavity, dental caries, periodontal disease, and endodontic lesions are caused by well-known bacterial and fungal pathogens. Essential oils (EOs) have demonstrated antimicrobial activity suggesting their use for oral hygiene. The goal of this study was to evaluate the interaction of bitter orange flower (Citrus aurantium L.) essential oil with cariogenic bacteria Streptococcus mutans and human gingival epithelial cells. After extraction, the chemical composition of the essential oil was analyzed by gas chromatography, and its antimicrobial activity was evaluated against the growth and the expression of virulent genes in S. mutans. Finally, the effects of this essential oil on human gingival epithelial cell adhesion and growth were assessed using cell adhesion and proliferation assays. We showed that the major constituents of the tested essential oil were limonene, linalool, and β-ocimene. The essential oil reduced the growth of S. mutans, and decreased expression of comC, comD, comE, gtfB, gtfC, and gbpB genes. It should, however, be noted that essential oil at high concentration was toxic to gingival epithelial cells. Overall, this study suggests that C. aurantium L. essential oil could be used to prevent/control oral infections. Full article
Show Figures

Figure 1

Open AccessArticle
Fractionation and Hydrolyzation of Avocado Peel Extract: Improvement of Antibacterial Activity
Antibiotics 2021, 10(1), 23; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10010023 - 30 Dec 2020
Viewed by 570
Abstract
Avocado Hass (Persea americana Mill) peel extract (APE) has the potential as a natural ingredient to substitute for chemical preservatives. The objectives of this study were to assess the phytochemical composition by high-performance liquid chromatography–quadrupole time-of-flight mass/mass spectrometry (HPLC-qTOF-MS/MS), total phenolic content [...] Read more.
Avocado Hass (Persea americana Mill) peel extract (APE) has the potential as a natural ingredient to substitute for chemical preservatives. The objectives of this study were to assess the phytochemical composition by high-performance liquid chromatography–quadrupole time-of-flight mass/mass spectrometry (HPLC-qTOF-MS/MS), total phenolic content (TPC), proanthocyanidin (PAC) content, and antioxidant activity of the APE, the organic fraction (OF), the aqueous fraction (AF), and the acid-microwave hydrolyzed APE (HAPE), on the antibacterial activity (ABA). The results indicated that APE and OF contained (p ˂ 0.05) a higher phenolic composition and antioxidant activity than AF and HAPE. The ABA specified that Pseudomonas aeruginosa and Bacillus cereus were inhibited by all the extracts (minimal inhibitory concentration—MIC ≥ 500 µg/mL), Staphylococcus aureus was only significantly inhibited by APE (≥750 µg/mL), the same MIC was observed for the OF on Salmonella spp. and Listeria monocytogenes. The HAPE increased the inhibitory efficiency up to 25% on Escherichia coli and Salmonella spp. (MIC ≥ 750 µg/mL), and 83.34% on L. monocytogenes (MIC ≥ 125 µg/mL) compared to APE (MIC ≥ 750 µg/mL). Also, HAPE inhibited the biofilm formation at the lowest concentration (125 µg/mL); meanwhile, the biofilm disruption showed to be concentration-time-dependent (p ˃ 0.05) compared to amoxicillin. In conclusion, the fractionation and hydrolyzation of APE improved the ABA; thus, those strategies are useful to design new antimicrobial compounds. Full article
Show Figures

Figure 1

Open AccessArticle
Sonochemical Synthesis of 2’-Hydroxy-Chalcone Derivatives with Potential Anti-Oomycete Activity
Antibiotics 2020, 9(9), 576; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics9090576 - 04 Sep 2020
Cited by 1 | Viewed by 825
Abstract
This work reports on the synthesis of eight new 2′-hydroxy-chalcones with potential anti-phytopathogenic applications in agroindustry, AMONG others, via Claisen–Schmidt condensation and ultrasound assisted reaction. Assays showed three chalcones with allyl moieties strongly inhibited growth of phytopathogenic oomycete Phytophthora infestans; moreover, compound [...] Read more.
This work reports on the synthesis of eight new 2′-hydroxy-chalcones with potential anti-phytopathogenic applications in agroindustry, AMONG others, via Claisen–Schmidt condensation and ultrasound assisted reaction. Assays showed three chalcones with allyl moieties strongly inhibited growth of phytopathogenic oomycete Phytophthora infestans; moreover, compound 8a had a half maximal effective concentration (EC50) value (32.5 µg/mL) similar to that of metalaxyl (28.6 µg/mL). A software-aided quantitative structure–activity relationship (QSAR) analysis of the whole series suggests that the structural features of these new chalcones—namely, the fluoride, hydroxyl, and amine groups over the carbon 3′ of the chalcone skeleton—increase anti-oomycete activity. Full article
Show Figures

Figure 1

Open AccessArticle
Synthesis of Novel Stilbene–Coumarin Derivatives and Antifungal Screening of Monotes kerstingii-Specialized Metabolites Against Fusarium oxysporum
Antibiotics 2020, 9(9), 537; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics9090537 - 25 Aug 2020
Cited by 2 | Viewed by 708
Abstract
Fusarium is one of the most toxigenic phytopathogens causing diseases and reduced agricultural productivity worldwide. Current chemical fungicides exhibit toxicity against non-target organisms, triggering negative environmental impact, and are a danger to consumers. In order to explore the chemical diversity of plants for [...] Read more.
Fusarium is one of the most toxigenic phytopathogens causing diseases and reduced agricultural productivity worldwide. Current chemical fungicides exhibit toxicity against non-target organisms, triggering negative environmental impact, and are a danger to consumers. In order to explore the chemical diversity of plants for potential antifungal applications, crude extract and fractions from Monotes kerstingii were screened for their activity against two multi-resistant Fusarium oxysporum strains: Fo32931 and Fo4287. Antifungal activity was evaluated by the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts using kinetic OD600 nm reading by a spectrophotometer. The n-butanol fraction showed the best activity against Fo4287. We screened eleven previously reported natural compounds isolated from different fractions, and a stilbene–coumarin 5-[(1E)-2-(4-hydroxyphenyl)ethenyl]-4,7-dimethoxy-3-methyl-2H-1-benzopyran-2-one (1) was the most active compound against both strains. Compound 1 was employed as a nucleophile with a selection of electrophilic derivatizing agents to synthesize five novel stilbene–coumarin analogues. These semisynthetic derivatives showed moderate activity against Fo32931 with only prenylated derivative exhibiting activity comparable to the natural stilbene–coumarin (1), demonstrating the key role of the phenolic group. Full article
Show Figures

Graphical abstract

Open AccessCommunication
Synthesis and Anti-Saprolegnia Activity of New 2’,4’-Dihydroxydihydrochalcone Derivatives
Antibiotics 2020, 9(6), 317; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics9060317 - 10 Jun 2020
Viewed by 648
Abstract
In the present study, seven 2’,4’-dihydroxydihydrochalcone derivatives (compounds 39) were synthesized and their capacity as anti-Saprolegnia agents were evaluated against Saprolegnia parasitica, S. australis, S. diclina. Derivative 9 showed the best activity against the different strains, [...] Read more.
In the present study, seven 2’,4’-dihydroxydihydrochalcone derivatives (compounds 39) were synthesized and their capacity as anti-Saprolegnia agents were evaluated against Saprolegnia parasitica, S. australis, S. diclina. Derivative 9 showed the best activity against the different strains, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values between 100–175 μg/mL and 100–200 μg/mL, respectively, compared with bronopol and fluconazole as positive controls. In addition, compound 9 caused damage and disintegration cell membrane of all Saprolegnia strains over the action of commercial controls. Full article
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics
Antibiotics 2020, 9(11), 830; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics9110830 - 19 Nov 2020
Viewed by 680
Abstract
The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties [...] Read more.
The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties against pathogenic bacteria, notably by disrupting mechanisms of bacterial virulence and/or biofilm formation which are both regulated by the cell-to-cell communication mechanism called ‘quorum sensing’ (QS). Certainly, targeting the virulence of bacteria and their capacity to form biofilms, without affecting their viability, may contribute to reduce their pathogenicity, allowing sufficient time for an immune response to infection and a reduction in the use of antibiotics. African plants, through their huge biodiversity, present a considerable reservoir of secondary metabolites with a very broad spectrum of biological activities, a potential source of natural products targeting such non-microbicidal mechanisms. The present paper aims to provide an overview on two main aspects: (i) succinct presentation of bacterial virulence and biofilm formation as well as their entanglement through QS mechanisms and (ii) detailed reports on African plant extracts and isolated compounds with antivirulence properties against particular pathogenic bacteria. Full article
Show Figures

Figure 1

Back to TopTop