Special Issue "Antimicrobial Resistance and Virulence - 2nd Volume"

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Mechanism and Evolution of Antibiotic Resistance".

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editors

Dr. Manuela Oliveira
E-Mail Website1 Website2
Guest Editor
Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
Interests: antimicrobial resistance; bacterial virulence; biofilms; genomics; infections pathogenesis; food safety
Special Issues and Collections in MDPI journals
Dr. Elisabete Silva
E-Mail Website1 Website2
Guest Editor
CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine of Lisbon, Lisboa, Portugal
Interests: animal reproduction; bacterial infections; host–bacterial interactions; molecular biology; genomics

Special Issue Information

The worldwide dissemination of antimicrobial-resistant bacteria, particularly those resistant to last-resource antibiotics, is a common problem for which no immediate solution is foreseen. In 2017, the World Health Organization (WHO) published a list of antimicrobial-resistant “priority pathogens”, which include a group of microorganisms with high level resistance to multiple drugs, named ESKAPE pathogens, comprising vancomycin-resistant Enterococcus faecium (VRE), methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA), extended spectrum β-lactamase (ESBL) or carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, and extended spectrum β-lactamase (ESBL)- or carbapenem-resistant Enterobacter spp. These bacteria also have the ability to produce several virulence factors which have a major influence on the outcome of infectious diseases. Bacterial resistance and virulence are interrelated since antibiotic pressure may influence bacterial virulence gene expression and, consequently, infection pathogenesis. In addition, some virulence factors contribute to an increased resistance ability, as observed in biofilm-producing strains. Surveillance of important resistant and virulent clones and associated mobile genetic elements is essential to decision-making in terms of mitigation measures to be applied for the prevention of such infections in both human and veterinary medicine, being also relevant to address the role of natural environments as important components of the dissemination cycle of these strains.

This Special Issue represents the second volume of “Antimicrobial Resistance and Virulence” and aims to publish manuscripts that further clarify the impact of bacterial antimicrobial resistance and virulence in the three areas of the One Health triad, i.e., animal, human, and environmental health.

Dr. Manuela Oliveira
Dr. Elisabete Silva
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial resistance
  • bacterial virulence
  • biofilms
  • epidemiology
  • genomics
  • infection pathogenesis
  • One Health

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Antibiotic Susceptibility, Virulome, and Clinical Outcomes in European Infants with Bloodstream Infections Caused by Enterobacterales
Antibiotics 2021, 10(6), 706; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10060706 - 11 Jun 2021
Viewed by 474
Abstract
Mortality in neonates with Gram-negative bloodstream infections has remained unacceptably high. Very few data are available on the impact of resistance profiles, virulence factors, appropriateness of empirical treatment and clinical characteristics on patients’ mortality. A survival analysis to investigate 28-day mortality probability and [...] Read more.
Mortality in neonates with Gram-negative bloodstream infections has remained unacceptably high. Very few data are available on the impact of resistance profiles, virulence factors, appropriateness of empirical treatment and clinical characteristics on patients’ mortality. A survival analysis to investigate 28-day mortality probability and predictors was performed including (I) infants <90 days (II) with an available Enterobacterales blood isolate with (III) clinical, treatment and 28-day outcome data. Eighty-seven patients were included. Overall, 299 virulence genes were identified among all the pathogens. Escherichia coli had significantly more virulence genes identified compared with other species. A strong positive correlation between the number of resistance and virulence genes carried by each isolate was found. The cumulative probability of death obtained by the Kaplan-Meier survival analysis was 19.5%. In the descriptive analysis, early age at onset, gestational age at onset, culture positive for E. coli and number of classes of virulence genes carried by each isolate were significantly associated with mortality. By Cox multivariate regression, none of the investigated variables was significant. This pilot study has demonstrated the feasibility of investigating the association between neonatal sepsis mortality and the causative Enterobacterales isolates virulome. This relationship needs further exploration in larger studies, ideally including host immunopathological response, in order to develop a tailor-made therapeutic strategy. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Virulence - 2nd Volume)
Show Figures

Figure 1

Article
Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes
Antibiotics 2021, 10(6), 633; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10060633 - 25 May 2021
Viewed by 726
Abstract
Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence factors genes for biofilm production and antimicrobial resistance to β-lactams and tetracyclines in 137 staphylococcal isolates [...] Read more.
Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence factors genes for biofilm production and antimicrobial resistance to β-lactams and tetracyclines in 137 staphylococcal isolates from goats (86) and sheep (51). The presence of coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK, and tetM genes was investigated. The nuc gene was detected in all S. aureus isolates and in some coagulase-negative staphylococci (CNS). None of the S. aureus isolates carried the bap gene, while 8 out of 18 CNS harbored this gene. The icaA gene was detected in S. aureus and S. warneri, while icaD only in S. aureus. None of the isolates carrying the bap gene harbored the ica genes. None of the biofilm-associated genes were detected in 14 isolates (six S. aureus and eight CNS). An association was found between Staphylococcus species and resistance to some antibiotics and between antimicrobial resistance and animal species. Nine penicillin-susceptible isolates exhibited the blaZ gene, questioning the reliability of susceptibility testing. Most S. aureus isolates were susceptible to tetracycline, and no cefazolin or gentamycin resistance was detected. These should replace other currently used antimicrobials. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Virulence - 2nd Volume)
Show Figures

Figure 1

Article
Selection of a Gentamicin-Resistant Variant Following Polyhexamethylene Biguanide (PHMB) Exposure in Escherichia coli Biofilms
Antibiotics 2021, 10(5), 553; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10050553 - 10 May 2021
Viewed by 387
Abstract
Antibiotic resistance is one of the most important issues facing modern medicine. Some biocides have demonstrated the potential of selecting resistance to antibiotics in bacteria, but data are still very scarce and it is important to better identify the molecules concerned and the [...] Read more.
Antibiotic resistance is one of the most important issues facing modern medicine. Some biocides have demonstrated the potential of selecting resistance to antibiotics in bacteria, but data are still very scarce and it is important to better identify the molecules concerned and the underlying mechanisms. This study aimed to assess the potential of polyhexamethylene biguanide (PHMB), a widely used biocide in a variety of sectors, to select antibiotic resistance in Escherichia coli grown in biofilms. Biofilms were grown on inox coupons and then exposed daily to sublethal concentrations of PHMB over 10 days. Antibiotic-resistant variants were then isolated and characterized phenotypically and genotypically to identify the mechanisms of resistance. Repeated exposure to PHMB led to the selection of an E. coli variant (Ec04m1) with stable resistance to gentamycin (8-fold increase in minimum inhibitory concentration (MIC) compared to the parental strain. This was also associated with a significant decrease in the growth rate in the variant. Sequencing and comparison of the parental strain and Ec04m1 whole genomes revealed a nonsense mutation in the aceE gene in the variant. This gene encodes the pyruvate dehydrogenase E1 component of the pyruvate dehydrogenase (PDH) complex, which catalyzes the conversion of pyruvate to acetyl-CoA and CO2. A growth experiment in the presence of acetate confirmed the role of this mutation in a decreased susceptibility to both PHMB and gentamicin (GEN) in the variant. This work highlights the potential of PHMB to select resistance to antibiotics in bacteria, and that enzymes of central metabolic pathways should be considered as a potential target in adaptation strategies, leading to cross-resistance toward biocides and antibiotics in bacteria. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Virulence - 2nd Volume)
Show Figures

Figure 1

Back to TopTop