Special Issue "Epidemiology of Acquired AmpC Type β-Lactamases in Enterobacteriaceae from a One Health Perspective"

A special issue of Antibiotics (ISSN 2079-6382).

Deadline for manuscript submissions: 30 November 2021.

Special Issue Editors

Dr. Ângela Novais
E-Mail Website
Guest Editor
UCIBIO-REQUIMTE. Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
Interests: clinical Bacteriology; enterobacteriaceae; molecular epidemiology; mechanisms of Resistance; mobile genetic elements; population structure; bacterial typing methods; virulence genetics; molecular spectroscopy
Dr. Teresa G Ribeiro
E-Mail Website
Guest Editor
UCIBIO-REQUIMTE. Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
Interests: bacteriology; surveillance; mechanisms of antibiotic resistance; molecular epidemiology of gram-negative bacteria; bacterial typing methods; bacterial taxonomy; food safety; female urinary microbiome

Special Issue Information

Dear Colleagues,

Resistance to third-generation cephalosporins amongst Enterobacteriaceae is endemic in many parts of the world, and molecular epidemiology in different settings is very well characterized in what concerns the production of extended-spectrum beta-lactamases (ESBLs). However, the contribution of acquired AmpC beta-lactamases is probably underestimated due to constraints in routine laboratory detection, and the absence of comprehensive studies at a wide inter- and intraspecies population levels addressing the interplay between different ecological niches (humans, animals, and the environment). The focus of this Special Issue is the occurrence and molecular epidemiology of bacterial species carrying acquired AmpC beta-lactamases within and between different hosts and environments. Review and research papers on the detection and treatment of infections in a clinical setting, whole-genome-based studies on population and mobile genetic elements encoding acquired AmpC beta-lactamases, or risk assessment of antibiotic resistance transmission are also encouraged.

Dr. Ângela Novais
Dr. Teresa G Ribeiro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antibiotic resistance
  • acquired AmpC beta-lactamases
  • surveillance
  • molecular epidemiology
  • One Health
  • population structure
  • mobile genetic elements typing
  • transmission of antibiotic resistance
  • genomics and bioinformatics
  • infection control

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Taxonomic Identification of Different Species of the Genus Aeromonas by Whole-Genome Sequencing and Use of Their Species-Specific β-Lactamases as Phylogenetic Markers
Antibiotics 2021, 10(4), 354; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10040354 - 28 Mar 2021
Viewed by 470
Abstract
Some Aeromonas species, potentially pathogenic for humans, are known to express up to three different classes of chromosomal β-lactamases, which may become hyperproduced and cause treatment failure. The aim of this study was to assess the utility of these species-specific β-lactamase genes as [...] Read more.
Some Aeromonas species, potentially pathogenic for humans, are known to express up to three different classes of chromosomal β-lactamases, which may become hyperproduced and cause treatment failure. The aim of this study was to assess the utility of these species-specific β-lactamase genes as phylogenetic markers using whole-genome sequencing data. Core-genome alignments were generated for 36 Aeromonas genomes from seven different species and scanned for antimicrobial resistance genes. Core-genome alignment confirmed the MALDI-TOF identification of most of the isolates and re-identified an A. hydrophila isolate as A. dhakensis. Three (B, C and D) of the four Ambler classes of β-lactamase genes were found in A. sobria, A. allosacharophila, A. hydrophila and A. dhakensis (blaCphA, blaAmpC and blaOXA). A. veronii only showed class-B- and class-D-like matches (blaCphA and blaOXA), whereas those for A. media, A. rivipollensis and A. caviae were class C and D (blaCMY, blaMOX and blaOXA427). The phylogenetic tree derived from concatenated sequences of β-lactamase genes successfully clustered each species. Some isolates also had resistance to sulfonamides, quinolones and aminoglycosides. Whole-genome sequencing proved to be a useful method to identify Aeromonas at the species level, which led to the unexpected identification of A. dhakensis and A.rivipollensis and revealed the resistome of each isolate. Full article
Show Figures

Figure 1

Article
Antimicrobial Resistance Genes and Diversity of Clones among ESBL- and Acquired AmpC-Producing Escherichia coli Isolated from Fecal Samples of Healthy and Sick Cats in Portugal
Antibiotics 2021, 10(3), 262; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10030262 - 05 Mar 2021
Viewed by 722
Abstract
The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy [...] Read more.
The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy cats were processed for cefotaxime-resistant (CTXR) E. coli recovery (in MacConkey agar supplemented with 2 µg/mL cefotaxime). The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method was used for E. coli identification and antimicrobial susceptibility was performed by a disk diffusion test. The presence of resistance/virulence genes was tested by PCR sequencing. The phylogenetic typing and multilocus sequence typing (MLST) were determined by specific PCR sequencing. CTXRE. coli isolates were detected in seven sick and six healthy cats (7.1% and 13.9%, respectively). Based on the synergy tests, 11 of 13 CTXRE. coli isolates (one/sample) were ESBL-producers (ESBL total rate: 7.8%) carrying the following ESBL genes: blaCTX-M-1 (n = 3), blaCTX-M-15 (n = 3), blaCTX-M-55 (n = 2), blaCTX-M-27 (n = 2) and blaCTX-M-9 (n = 1). Six different sequence types were identified among ESBL-producers (sequence type/associated ESBLs): ST847/CTX-M-9, CTX-M-27, CTX-M-1; ST10/CTX-M-15, CTX-M-27; ST6448/CTX-M-15, CTX-M-55; ST429/CTX-M-15; ST101/CTX-M-1 and ST40/CTX-M-1. Three of the CTXR isolates were CMY-2-producers (qAmpC rate: 2.1%); two of them were ESBL-positive and one ESBL-negative. These isolates were typed as ST429 and ST6448 and were obtained in healthy or sick cats. The phylogenetic groups A/B1/D/clade 1 were detected among ESBL- and qAmpC-producing isolates. Cats are carriers of qAmpC (CMY-2)- and ESBL-producing E. coli isolates (mostly of variants of CTX-M group 1) of diverse clonal lineages, which might represent a public health problem due to the proximity of cats with humans regarding a One Health perspective. Full article
Show Figures

Figure 1

Article
Genome-Based Analyses of Fitness Effects and Compensatory Changes Associated with Acquisition of blaCMY-, blaCTX-M-, and blaOXA-48/VIM-1-Containing Plasmids in Escherichia coli
Antibiotics 2021, 10(1), 90; https://0-doi-org.brum.beds.ac.uk/10.3390/antibiotics10010090 - 19 Jan 2021
Cited by 2 | Viewed by 702
Abstract
(1) Background: Resistance plasmids are under selective conditions beneficial for the bacterial host, but in the absence of selective pressure, this carriage may cause fitness costs. Compensation of this fitness burden is important to obtain competitive ability under antibiotic-free conditions. In this study, [...] Read more.
(1) Background: Resistance plasmids are under selective conditions beneficial for the bacterial host, but in the absence of selective pressure, this carriage may cause fitness costs. Compensation of this fitness burden is important to obtain competitive ability under antibiotic-free conditions. In this study, we investigated fitness effects after a conjugative transfer of plasmids containing various beta-lactamase genes transferred into Escherichia coli. (2) Methods: Fourteen beta-lactamase-encoding plasmids were transferred from clinical donor strains to E. coli J53. Growth rates were compared for all transconjugants and the recipient. Selected transconjugants were challenged in long-term growth experiments. Growth rates were assessed at different time points during growth for 500 generations. Whole-genome sequencing (WGS) of initial and evolved transconjugants was determined. Results: Most plasmid acquisitions resulted in growth differences, ranging from −4.5% to 7.2%. Transfer of a single blaCMY-16-carrying plasmid resulted in a growth burden and a growth benefit in independent mating. Long-term growth led to a compensation of fitness burdens and benefits. Analyzing WGS revealed genomic changes caused by Single Nucleotide Polymorphisms (SNPs) and insertion sequences over time. Conclusions: Fitness effects associated with plasmid acquisitions were variable. Potential compensatory mutations identified in transconjugants’ genomes after 500 generations give interesting insights into aspects of plasmid–host adaptations. Full article
Show Figures

Graphical abstract

Back to TopTop