Special Issue "Antibodies, B Cell Responses and Immune Responses to SARS-CoV-2 Infections"

A special issue of Antibodies (ISSN 2073-4468).

Deadline for manuscript submissions: 20 March 2022.

Special Issue Editors

Prof. Dr. Luis Martinez-Sobrido
E-Mail Website
Guest Editor
Texas Biomedical Research Institute, San Antonio, TX 78245, USA
Interests: virology; vaccines; antivirals; influenza viruses; arenaviruses; Zika virus; coronavirus; SARS-CoV-2; COVID-19; innate immunity; adaptive immunity; interferon; virus-host interactions
Special Issues and Collections in MDPI journals
Prof. James J. Kobie
E-Mail Website
Guest Editor
Infectious Diseases Division, University of Rochester, Rochester, NY, USA
Interests: B cells; antibodies; viruses

Special Issue Information

Dear Colleagues,

Coronaviruses (CoVs) are enveloped, single-stranded, positive-sense RNA viruses responsible for seasonal mild respiratory illness in humans. They include endemic human CoV NL63, 229E, OC43, and HKU1, which are associated with a small proportion of these mild respiratory illnesses. However, three CoVs are most notable as human respiratory pathogens that have caused significant morbidity and mortality. These are Severe Acute Respiratory Syndrome CoV-1 (SARS-CoV-1), which spread in 2003, Middle East Respiratory Syndrome CoV (MERS-CoV), appeared in 2012 and still present, and Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2), which is responsible for coronavirus disease 2019 (COVID-19). COVID-19 emerged in the city of Wuhan, China, in December 2019 and has now caused a world-wide pandemic, dramatically impacting public health and socioeconomic activities across the world. The explosive emergence of SARS-CoV-2 infection in humans has resulted in a pandemic of COVID-19 with an alarming case fatality, posing a threat to human health and economy of an unprecedent magnitude, rivaling the “Spanish flu” pandemic of 1918–1919. To date, no United States Food and Drug Administration (FDA)-approved vaccines and/or specific antivirals are available for the treatment of SARS-CoV-2 infection and COVID-19 in humans, which has triggered vast scientific efforts to develop countermeasures to deal with this infection.

Although experimental treatments for COVID-19 infection are being tested clinically, and the development of preventative vaccines is ongoing, there does not yet exist a highly specific, scalable, and sustainable approved therapeutic. Monoclonal antibodies (mAbs) are a growing class of drugs, in part due to their high degree of specificity, limited off-target effects, and superb safety profile. In addition to their use in the treatment of cancer and autoimmunity, several mAbs are already licensed or in clinical trials for the treatment and prevention of various infectious diseases (e.g., Palivizumab for Respiratory Syncytial Virus and Zmapp for Ebola virus). However, numerous fundamental aspects of the host B cells and antibody response to infection remain to be resolved. Foremost, does infection result in protective humoral immunity? If so, how long is it maintained, and will it be sufficiently broad to protect from emerging antigenic variations in SARS-CoV-2?

In this Special Issue “Antibodies, B Cell Responses and Immune Responses to SARS-CoV-2 Infections", we aim to cover all aspects related to vaccinology, such as traditional and new approaches for COVID-19 vaccine development, vaccine immunogenicity and protection efficacy, classical and new antigen targeting, conserved viral antigens and their epitopes, identification and characterization of SARS-CoV-2 cross-reactive and broadly neutralizing mAbs, including therapeutic and prophylactic mAbs, induction of efficient and protective adaptive B cell responses, correlation of mAb and B cell activation to protection against SARS-CoV-2, and currently available and new animal models of SARS-CoV-2 vaccine testing. This Special Issue will also aim to examine classical and new vaccine methodologies for the control of SARS-CoV-2 infections. We hope that the collection of novel research and review manuscripts in this Special Issue will provide researchers with information on the latest and newest discoveries to help them reach the goal of developing and implementing treatment options for the control of SARS-CoV-2 infection, which is a priority for the treatment of COVID-19.

Prof. Luis Martinez-Sobrido
Prof. James J. Kobie
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibodies is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Antibodies
  • B Cell Responses
  • Immune Responses
  • COVID-19
  • SARS-CoV-2 Infections
  • mAbs
  • Monoclonal antibodies
  • vaccine development

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Article
Viroinformatics-Based Analysis of SARS-CoV-2 Core Proteins for Potential Therapeutic Targets
Antibodies 2021, 10(1), 3; https://0-doi-org.brum.beds.ac.uk/10.3390/antib10010003 - 11 Jan 2021
Cited by 2 | Viewed by 2808
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus for which no known effective antiviral drugs are available. In the present study, to accelerate the discovery of potential drug candidates, bioinformatics-based in silico drug discovery approaches are utilized. We performed multiple [...] Read more.
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus for which no known effective antiviral drugs are available. In the present study, to accelerate the discovery of potential drug candidates, bioinformatics-based in silico drug discovery approaches are utilized. We performed multiple sequence alignments of the Spike (S) protein with 75 sequences of different viruses from the Orthocoronavirinae subfamily. This provided us with insights into the evolutionarily conserved domains that can be targeted using drugs or specific antibodies. Further, we analyzed the mechanism of SARS-CoV-2 core proteins, i.e., S and RdRp (RNA-dependent RNA polymerase), to elucidate how the virus infection can utilize hemoglobin to decrease the blood oxygen level. Moreover, after a comprehensive literature survey, more than 60 antiviral drugs were chosen. The candidate drugs were then ranked based on their potential to interact with the Spike and RdRp proteins of SARS-CoV-2. The present multidimensional study further advances our understanding of the novel viral molecular targets and potential of computational approaches for therapeutic assessments. The present study can be a steppingstone in the selection of potential drug candidates to be used either as a treatment or as a reference point when designing a new drug/antibody/inhibitory peptide/vaccine against SARS-CoV-2. Full article
Show Figures

Graphical abstract

Article
From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry
Antibodies 2020, 9(3), 33; https://0-doi-org.brum.beds.ac.uk/10.3390/antib9030033 - 16 Jul 2020
Cited by 11 | Viewed by 4833
Abstract
Aim: To define the autoimmune potential of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Methods: Experimentally validated epitopes cataloged at the Immune Epitope DataBase (IEDB) and present in SARS-CoV-2 were analyzed for peptide sharing with the human proteome. Results: Immunoreactive epitopes present [...] Read more.
Aim: To define the autoimmune potential of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Methods: Experimentally validated epitopes cataloged at the Immune Epitope DataBase (IEDB) and present in SARS-CoV-2 were analyzed for peptide sharing with the human proteome. Results: Immunoreactive epitopes present in SARS-CoV-2 were mostly composed of peptide sequences present in human proteins that—when altered, mutated, deficient or, however, improperly functioning—may associate with a wide range of disorders, from respiratory distress to multiple organ failure. Conclusions: This study represents a starting point or hint for future scientific–clinical investigations and suggests a range of possible protein targets of autoimmunity in SARS-CoV-2 infection. From an experimental perspective, the results warrant the testing of patients’ sera for autoantibodies against these protein targets. Clinically, the results warrant a stringent surveillance on the future pathologic sequelae of the current SARS-CoV-2 pandemic. Full article
Show Figures

Graphical abstract

Review

Jump to: Research, Other

Review
Structural Features and PF4 Functions that Occur in Heparin-Induced Thrombocytopenia (HIT) Complicated by COVID-19
Antibodies 2020, 9(4), 52; https://0-doi-org.brum.beds.ac.uk/10.3390/antib9040052 - 10 Oct 2020
Cited by 3 | Viewed by 2360
Abstract
Platelet factor 4 (PF4, CXCL4) is a small chemokine protein released by activated platelets. Although a major physiological function of PF4 is to promote blood coagulation, this cytokine is involved in innate and adaptive immunity in events when platelets are activated in response [...] Read more.
Platelet factor 4 (PF4, CXCL4) is a small chemokine protein released by activated platelets. Although a major physiological function of PF4 is to promote blood coagulation, this cytokine is involved in innate and adaptive immunity in events when platelets are activated in response to infections. Coronavirus disease 2019 (COVID-19) patients have abnormal coagulation activities, and severe patients develop higher D-dimer levels. D-dimers are small protein products present in the blood after blood clots are degraded by fibrinolysis. To prevent clotting, heparin is often clinically used in COVID-19 patients. Some clinical procedures for the management of COVID-19 patients may include extracorporeal membrane oxygenation (ECMO) and renal replacement therapy (CRRT), which also require the use of heparin. Anti-PF4 antibodies are frequently detected in severe patients and heparin-induced thrombocytopenia (HIT) can also be observed. PF4 and its role in HIT as well as in pathologies seen in COVID-19 patients define a potential therapeutic option of using blocking antibodies in the treatment of COVID-19. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

Case Report
The Course of SARS-COV2 Infection Was Not Severe in a Crohn’s Patient Who Administered Maintenance Anti-TNF Therapy Overlapping the Early Pre-Symptomatic Period of Infection
Antibodies 2020, 9(3), 42; https://0-doi-org.brum.beds.ac.uk/10.3390/antib9030042 - 15 Aug 2020
Cited by 4 | Viewed by 2275
Abstract
The Inflammatory Bowel Disease (IBD) population, which may require treatment with immunosuppressive medications, may be uniquely vulnerable to COVID-19 infection. In fact, there is some evidence these medications may inhibit the cytokine storm that is theorized to cause a rapid decline seen in [...] Read more.
The Inflammatory Bowel Disease (IBD) population, which may require treatment with immunosuppressive medications, may be uniquely vulnerable to COVID-19 infection. In fact, there is some evidence these medications may inhibit the cytokine storm that is theorized to cause a rapid decline seen in COVID-19. In addition, the digestive symptoms of COVID-19 can be difficult to distinguish from the activation of IBD. We present an interesting case of a Crohn’s patient inadvertently administering anti-cytokine therapy during the pre-symptomatic period of COVID-19 infection. Immune suppression during early infection with SARS-COV2 risks a poor immune response to the virus and could theoretically result in a more severe course of infection. Full article
Show Figures

Figure 1

Perspective
Is the Host Viral Response and the Immunogenicity of Vaccines Altered in Pregnancy?
Antibodies 2020, 9(3), 38; https://0-doi-org.brum.beds.ac.uk/10.3390/antib9030038 - 04 Aug 2020
Cited by 1 | Viewed by 2570
Abstract
The intricacy of the maternal immune system arises from its ability to prevent a maternal immune response against a semi-allogenic fetus, while protecting the mother against harmful pathogens. However, these immunological adaptations may also make pregnant women vulnerable to developing adverse complications from [...] Read more.
The intricacy of the maternal immune system arises from its ability to prevent a maternal immune response against a semi-allogenic fetus, while protecting the mother against harmful pathogens. However, these immunological adaptations may also make pregnant women vulnerable to developing adverse complications from respiratory viral infections. While the influenza and SARS pandemics support this theory, there is less certainty regarding the clinical impact of SARS-CoV-2 in pregnancy. In the current COVID-19 pandemic, vaccine development is key to public preventative strategies. Whilst most viral vaccines are able to induce a seroprotective antibody response, in some high-risk individuals this may not correlate with clinical protection. Some studies have shown that factors such as age, gender, and chronic illnesses can reduce their effectiveness and in this review, we discuss how pregnancy may affect the efficacy and immunogenicity of vaccines. We present literature to support the hypothesis that pregnant women are more susceptible to respiratory viral infections and may not respond to vaccines as effectively. In particular, we focus on the clinical implications of important respiratory viral infections such as influenza during pregnancy, and the pregnancy induced alterations in important leukocytes such as TFH, cTFH and B cells, which play an important role in generating long-lasting and high-affinity antibodies. Finally, we review how this may affect the efficacy of vaccines against influenza in pregnancy and highlight areas that require further research. Full article
Show Figures

Graphical abstract

Back to TopTop