Advances in Anticancer Drugs based on Phytocompounds with Antioxidant Properties

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 15878

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Biological Research Iasi, Branch of NIRDBS Bucharest, 700107 Iași, Romania
Interests: biocompatibility; cyto-and genotoxicity; antioxidants; antitumoral drugs
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
Interests: polyphenols; antioxidant activity; antitumor activity; antimicrobial activity; phytochemistry; phytotherapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants (from algae to vascular plants) are veritable biochemical factories that synthesize numerous metabolites. These metabolites, essential for plant adaptation and survival, exhibit various biological activities being used in the pharmaceutical industry as well as the food, cosmetics and agricultural industries. Among these phytochemicals, different classes (e.g., terpenoids, phenolic compounds, and alkaloids) have demonstrated remarkable therapeutic properties, including antitumor and antioxidant effects, making them useful in promoting human and animal health. Although there are numerous studies on the bioactivity of plant constituents, there are still many gaps related to the mechanisms involved in the response they induce in healthy organisms, but also in those affected by stress conditions or various disorders associated with the alteration of major physiological and metabolic parameters. For this reason, the identification of novel phytocompounds, their complex chemical and biological characterization, and the selection of those showing high biocompatibility, are of considerable interest for scientists. These plant constituents can be administered alone or in combination with synthetic drugs, or can be associated with specific transfer vectors for targeted therapy.

This Special Issue will focus on the isolation and complex characterization of phytochemicals with antioxidant and antitumor activity having a potential supportive role in anticancer therapies.

Dr. Gabriela V. Vochita
Prof. Dr. Anca Miron
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Plant extracts
  • Phytochemicals
  • Anticancer
  • Apoptosis
  • Antioxidants
  • Biocompatibility
  • Nanoformulation
  • Phytosomes

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 14093 KiB  
Article
Chemical Profile and Bioactivity Evaluation of Salvia Species from Eastern Europe
by Simon Vlad Luca, Krystyna Skalicka-Woźniak, Cosmin-Teodor Mihai, Adina Catinca Gradinaru, Alexandru Mandici, Nina Ciocarlan, Anca Miron and Ana Clara Aprotosoaie
Antioxidants 2023, 12(8), 1514; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12081514 - 28 Jul 2023
Cited by 3 | Viewed by 1253
Abstract
The Salvia genus comprises about 1000 species endowed with medicinal, aromatic, cosmetic, and ornamental applications. Even though the genus is one of the most-studied taxa of the Lamiaceae family, data on the chemical composition and biological properties of certain locally used Salvia species [...] Read more.
The Salvia genus comprises about 1000 species endowed with medicinal, aromatic, cosmetic, and ornamental applications. Even though the genus is one of the most-studied taxa of the Lamiaceae family, data on the chemical composition and biological properties of certain locally used Salvia species are still scarce. The present work aimed to evaluate the phytochemical profile and antimicrobial, antioxidant, and cytotoxic potential of ten Salvia species that grow in Eastern Europe (e.g., the Republic of Moldova). LC-HRMS/MS metabolite profiling allowed for the annotation of 15 phenolic and organic acids, 18 flavonoids, 19 diterpenes, 5 sesterpenes, and 2 triterpenes. Multivariate analysis (e.g., principal component analysis, hierarchical cluster analysis) revealed that S. austriaca, S. nutans, and S. officinalis formed individual clusters, whereas the remaining species had a similar composition. S. officinalis showed the highest activity against Staphylococcus aureus and Streptococcus pneumoniae (MIC = 0.625 mg/mL). As evaluated in DPPH, ABTS, and FRAP assays, S. officinalis was one of the most potent radical scavenging and metal-reducing agents (CE50 values of 25.33, 8.13, and 21.01 μg/mL, respectively), followed by S. verticillata, S. sclarea, S. kopetdaghensis, S. aethiopis, and S. tesquicola. Pearson correlation analysis revealed strong correlations with rosmarinic acid, luteolin-O-glucuronide, and hydroxybenzoic acid. When the cytotoxic activity was evaluated in human breast carcinoma MCF-7 and MDA-MB-231 cells, no significant reduction in cell viability was observed over the concentrations ranging from 25 and 100 μg/mL. The results confirm the potential use of understudied Salvia species as promising sources of antioxidant compounds for developing novel pharmaceutical, nutraceutical, or cosmeceutical products. Full article
Show Figures

Figure 1

25 pages, 7583 KiB  
Article
Silver Nanoparticles Synthesized from Abies alba and Pinus sylvestris Bark Extracts: Characterization, Antioxidant, Cytotoxic, and Antibacterial Effects
by Irina Macovei, Simon Vlad Luca, Krystyna Skalicka-Woźniak, Cristina Elena Horhogea, Cristina Mihaela Rimbu, Liviu Sacarescu, Gabriela Vochita, Daniela Gherghel, Bianca Laura Ivanescu, Alina Diana Panainte, Constantin Nechita, Andreia Corciova and Anca Miron
Antioxidants 2023, 12(4), 797; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12040797 - 24 Mar 2023
Cited by 4 | Viewed by 1840
Abstract
In recent years, phytofunctionalized AgNPs have attracted great interest due to their remarkable biological activities. In the present study, AgNPs were synthesized using Abies alba and Pinus sylvestris bark extracts. The chemical profile of these bark extracts was analyzed by LC-HRMS/MS. As a [...] Read more.
In recent years, phytofunctionalized AgNPs have attracted great interest due to their remarkable biological activities. In the present study, AgNPs were synthesized using Abies alba and Pinus sylvestris bark extracts. The chemical profile of these bark extracts was analyzed by LC-HRMS/MS. As a first step, the synthesis parameters (pH, AgNO3 concentration, ratio of bark extract and AgNO3, temperature, and reaction time) were optimized. The synthesized AgNPs were characterized by ATR-FTIR spectroscopy, DLS, SEM, EDX, and TEM. Their antioxidant, cytotoxic, and antibacterial properties were evaluated by the DPPH, ABTS, MTT, and broth microdilution assays, respectively. Abies alba and Pinus sylvestris bark extract-derived AgNPs were well-dispersed, spherical, small (average particle size of 9.92 and 24.49 nm, respectively), stable (zeta potential values of −10.9 and −10.8 mV, respectively), and cytotoxic to A-375 human malignant melanoma cells (IC50 = 2.40 ± 0.21 and 6.02 ± 0.61 μg/mL, respectively). The phytosynthesized AgNPs also showed antioxidant and antibacterial effects. Full article
Show Figures

Figure 1

22 pages, 2405 KiB  
Article
Fractionation and Characterization of Triterpenoids from Vaccinium vitis-idaea L. Cuticular Waxes and Their Potential as Anticancer Agents
by Gabriele Vilkickyte, Vilma Petrikaite, Mindaugas Marksa, Liudas Ivanauskas, Valdas Jakstas and Lina Raudone
Antioxidants 2023, 12(2), 465; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12020465 - 12 Feb 2023
Cited by 6 | Viewed by 1654
Abstract
Fruit and leaf cuticular waxes are valuable source materials for the isolation of triterpenoids that can be applied as natural antioxidants and anticancer agents. The present study aimed at the semi-preparative fractionation of triterpenoids from cuticular wax extracts of Vaccinium vitis-idaea L. (lingonberry) [...] Read more.
Fruit and leaf cuticular waxes are valuable source materials for the isolation of triterpenoids that can be applied as natural antioxidants and anticancer agents. The present study aimed at the semi-preparative fractionation of triterpenoids from cuticular wax extracts of Vaccinium vitis-idaea L. (lingonberry) leaves and fruits and the evaluation of their cytotoxic potential. Qualitative and quantitative characterization of obtained extracts and triterpenoid fractions was performed using HPLC-PDA method, followed by complementary analysis by GC-MS. For each fraction, cytotoxic activities towards the human colon adenocarcinoma cell line (HT-29), malignant melanoma cell line (IGR39), clear renal carcinoma cell line (CaKi-1), and normal endothelial cells (EC) were determined using MTT assay. Furthermore, the effect of the most promising samples on cancer spheroid growth and viability was examined. This study allowed us to confirm that particular triterpenoid mixtures from lingonberry waxes may possess stronger cytotoxic activities than crude unpurified extracts. Fractions containing triterpenoid acids plus fernenol, complexes of oleanolic:ursolic acids, and erythrodiol:uvaol were found to be the most potent therapeutic candidates in the management of cancer diseases. The specificity of cuticular wax extracts of lingonberry leaves and fruits, leading to different purity and anticancer potential of obtained counterpart fractions, was also enclosed. These findings contribute to the profitable utilization of lingonberry cuticular waxes and provide considerable insights into the anticancer effects of particular triterpenoids and pharmacological interactions. Full article
Show Figures

Graphical abstract

14 pages, 2626 KiB  
Article
Anti-Tumor Potential of Gymnema sylvestre Saponin Rich Fraction on In Vitro Breast Cancer Cell Lines and In Vivo Tumor-Bearing Mouse Models
by Abhinav Raj Ghosh, Abdulrhman Alsayari, Alaa Hamed Habib, Shadma Wahab, Abhishek P. R. Nadig, Misbahuddin M. Rafeeq, Najat Binothman, Majidah Aljadani, Ibtesam S. Al-Dhuayan, Nouf K. Alaqeel, Mohammad Khalid and Kamsagara Linganna Krishna
Antioxidants 2023, 12(1), 134; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12010134 - 05 Jan 2023
Cited by 2 | Viewed by 2279
Abstract
Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential [...] Read more.
Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Dalton’s lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy. Full article
Show Figures

Figure 1

37 pages, 15540 KiB  
Article
In Vitro Anticancer Activity of Mucoadhesive Oral Films Loaded with Usnea barbata (L.) F. H. Wigg Dry Acetone Extract, with Potential Applications in Oral Squamous Cell Carcinoma Complementary Therapy
by Violeta Popovici, Elena Matei, Georgeta Camelia Cozaru, Laura Bucur, Cerasela Elena Gîrd, Verginica Schröder, Emma Adriana Ozon, Adina Magdalena Musuc, Mirela Adriana Mitu, Irina Atkinson, Adriana Rusu, Simona Petrescu, Raul-Augustin Mitran, Mihai Anastasescu, Aureliana Caraiane, Dumitru Lupuliasa, Mariana Aschie and Victoria Badea
Antioxidants 2022, 11(10), 1934; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11101934 - 28 Sep 2022
Cited by 8 | Viewed by 3116
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts’ properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, [...] Read more.
Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts’ properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, and characterize mucoadhesive oral films loaded with Usnea barbata (L.) dry acetone extract (F-UBA) and to investigate their anticancer potential for possible use in oral cancer therapy. U. barbata dry acetone extract (UBA) was solubilized in ethanol: isopropanol mixture and loaded in a formulation containing hydroxypropyl methylcellulose (HPMC) K100 and polyethylene glycol 400 (PEG 400). The UBA influence on the F-UBA pharmaceutical characteristics was evidenced compared with the references, i.e., mucoadhesive oral films containing suitable excipients but no active ingredient loaded. Both films were subjected to a complex analysis using standard methods to evaluate their suitability for topical administration on the oral mucosa. Physico-chemical and structural characterization was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Pharmacotechnical evaluation (consisting of the measurement of specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) proved that F-UBAs are suitable for oral mucosal administration. The brine shrimp lethality (BSL) assay was the F-UBA cytotoxicity prescreen. Cellular oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBA in blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line were investigated through complex flow cytometry analyses. Moreover, F-UBA influence on both cell type division and proliferation was determined. Finally, using the resazurin-based 96-well plate microdilution method, the F-UBA antimicrobial potential was explored against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019. The results revealed that each UBA-loaded film contains 175 µg dry extract with a usnic acid (UA) content of 42.32 µg. F-UBAs are very thin (0.060 ± 0.002 mm), report a neutral pH (7.01 ± 0.01), a disintegration time of 146 ± 5.09 s, and an ex vivo mucoadhesion time of 85 ± 2.33 min, and they show a swelling ratio after 6 h of 211 ± 4.31%. They are suitable for topical administration on the oral mucosa. Like UA, they act on CLS-354 tumor cells, considerably increasing cellular oxidative stress, nuclear condensation, and autophagy and inducing cell cycle arrest in G0/G1. The F-UBAs inhibited the bacterial and fungal strains in a dose-dependent manner; they showed similar effects on both Candida sp. and higher inhibitory activity against P. aeruginosa than S. aureus. All these properties lead to considering the UBA-loaded mucoadhesive oral films suitable for potential application as a complementary therapy in OSCC. Full article
Show Figures

Figure 1

19 pages, 5753 KiB  
Article
Sunflower-Assisted Bio-Derived ZnO-NPs as an Efficient Nanocatalyst for the Synthesis of Novel Quinazolines with Highly Antioxidant Activities
by Mahesh S., Boya Palajonnala Narasaiah, Himabindu B., Balaji G. L., Jangampalli Adi Pradeepkiran and Harihara Padhy
Antioxidants 2022, 11(4), 688; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11040688 - 31 Mar 2022
Cited by 3 | Viewed by 2320
Abstract
The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. [...] Read more.
The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. The synthesized ZnO nanoparticles were characterized using different techniques, such as UV-Visible spectroscopy. The surface plasmon resonance confirmed the formation of ZnO nanoparticles at 344 nm, using UV-Visible spectroscopy. The leaf extract acts as a source of phytochemicals and is primarily used for the reduction and then the formation of stable ZnO nanoparticles by the characteristic functional groups of the extract; the synthesized ZnO nanoparticles were identified using FTIR spectroscopy. The crystalline nature of ZnO-NPs was confirmed via powder X-ray diffraction (XRD). Size and morphology were measured via high resolution transmission electron microscopy (HR-TEM) analysis. The stability of the nanoparticles is established using dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The synthesized ZnO nanoparticles have been found to be a good and efficient catalyst for the synthesis of novel 1,2-dihydro quinazoline derivatives under the green method via a one-pot reaction of 2-amino benzophenone, 1,3-diphenyl-1H-pyrazole carbaldehydes, and ammonium acetate. The synthesized compounds (4ao) were characterized by the 1H NMR, 13C NMR, and HRMS spectra and were further validated for free-radical scavenging activity. The synthesized ZnO nanoparticles exhibited good antioxidant activity. Full article
Show Figures

Figure 1

Review

Jump to: Research

52 pages, 14908 KiB  
Review
Phytochemicals Target Multiple Metabolic Pathways in Cancer
by Oleg Shuvalov, Yulia Kirdeeva, Alexandra Daks, Olga Fedorova, Sergey Parfenyev, Hans-Uwe Simon and Nickolai A. Barlev
Antioxidants 2023, 12(11), 2012; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12112012 - 17 Nov 2023
Viewed by 1997
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer [...] Read more.
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the “Hallmarks of cancer”. Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy. Full article
Show Figures

Figure 1

Back to TopTop