Oxidative Stress in Aquatic Organisms

A special issue of Antioxidants (ISSN 2076-3921).

Deadline for manuscript submissions: closed (25 November 2022) | Viewed by 62954

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors

Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Interests: aquatic nutrition; nutriomics; oxidative stress; signal pathway; epigenetic regulation

E-Mail Website
Co-Guest Editor
Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Interests: aquatic animal nutrition; antioxidant regulation; immune response; lipid metabolism; muscle regeneration; intestinal health

E-Mail Website
Co-Guest Editor
Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Interests: aquaculture nutrition; fish and shellfish; molecular mechanism; antioxidants; stress factor; antioxidant approach
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Oxidative stress mainly refers to the imbalance between reactive oxygen species production and antioxidant defense systems in organisms. Excessive oxidative stress could induce cell and tissue damage, mainly manifested as DNA hydroxylation, protein denaturation, lipid peroxidation and cell apoptosis. In the past few decades, aquaculture has developed rapidly and has become the fastest growing food production sector for humans. Oxidative stress is ubiquitous in aquatic animals. In general, endogenous and exogenous factors are the main elements that induce oxidative stress, including temperature, oxygen, life history, nutrition, food deprivation, industrial and agricultural pollutants, etc. In accordance with other animals, aquatic organisms have evolved complex mechanisms to resist oxidative stress. Therefore, to uncover the causes of oxidative stress, elucidate the underlying physiological mechanisms, and develop antioxidant strategies are of great importance for the development of aquaculture.

This Special Issue aims to collect papers dealing with all aspects of oxidative stress response in aquatic animals, including the generation process, the response mechanism and the resistant approaches. In order to provide an updated overview of the advances in oxidative stress research in aquatic animals, papers describing recent developments with advanced molecular approaches in both living organisms and habitats will be especially welcome.

Please note: An article processing charge (APC) of 2000 CHF currently applies to each accepted paper. For papers submitted after 31 December 2021 an APC of 2200 CHF applies.

Dr. Bo Liu
Dr. Changyou Song
Dr. Cunxin Sun
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquatic animals
  • oxidative stress
  • regulatory mechanism
  • resistant approach
  • stress biomarker

Published Papers (29 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

5 pages, 236 KiB  
Editorial
Oxidative Stress in Aquatic Organisms
by Changyou Song, Cunxin Sun, Bo Liu and Pao Xu
Antioxidants 2023, 12(6), 1223; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12061223 - 06 Jun 2023
Cited by 2 | Viewed by 1480
Abstract
Oxidative stress mainly refers to the imbalance between reactive oxygen species production and antioxidant defense systems in organisms [...] Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)

Research

Jump to: Editorial

18 pages, 3827 KiB  
Article
Dietary Histamine Impairs the Digestive Physiology Function and Muscle Quality of Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂)
by Yumeng Zhang, Hang Zhou, Yu Liu, Lulu Zhu, Jiongting Fan, Huajing Huang, Wen Jiang, Junming Deng and Beiping Tan
Antioxidants 2023, 12(2), 502; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12020502 - 16 Feb 2023
Cited by 4 | Viewed by 1448
Abstract
An 8-week feeding experiment was conducted to investigate the effect of dietary histamine on growth performance, digestive physiology function and muscle quality in a hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven isoproteic (50%) and isolipidic (11%) diets were prepared [...] Read more.
An 8-week feeding experiment was conducted to investigate the effect of dietary histamine on growth performance, digestive physiology function and muscle quality in a hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven isoproteic (50%) and isolipidic (11%) diets were prepared with various histamine inclusion levels of 0, 30, 60, 120, 240, 480 and 960 mg/kg in diets (actual contents were 72.33, 99.56, 138.60, 225.35, 404.12, 662.12 and 1245.38 mg/kg), respectively. Each diet was randomly assigned to triplicates of 30 juveniles (average body weight 14.78 g) per tank in a flow-through mariculture system. The increase in the dietary histamine level up to 1245.38 mg/kg made no significant difference on the growth rate and feed utilization of the grouper. However, the increased histamine content linearly decreased the activities of digestive enzymes, while no differences were observed in groups with low levels of histamine (≤404.12 mg/kg). Similarly, high levels of histamine (≥404.12 mg/kg) significantly damaged the gastric and intestinal mucosa, disrupted the intestinal tight junction structure, and raised the serum diamine oxidase activity and endotoxin level. Meanwhile, high doses of histamine (≥662.12 mg/kg) significantly reduced the activities of antioxidant enzymes, upregulated the relative expression of Kelch-like ECH-associated protein 1, and hardened and yellowed the dorsal muscle of grouper. These results showed that dietary histamine was detrimental to the digestive physiology function and muscle quality of the grouper, although it did compromise its growth performance. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

15 pages, 3954 KiB  
Article
Aflatoxin B1 Induced Oxidative Stress and Gut Microbiota Disorder to Increase the Infection of Cyprinid Herpesvirus 2 in Gibel Carp (Carassius auratus gibelio)
by Mingyang Xue, Miao Fu, Mengwei Zhang, Chen Xu, Yan Meng, Nan Jiang, Yiqun Li, Wenzhi Liu, Yuding Fan and Yong Zhou
Antioxidants 2023, 12(2), 306; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12020306 - 28 Jan 2023
Cited by 3 | Viewed by 1609
Abstract
Aflatoxin contamination of food and water is a serious problem worldwide. This study investigated the defensive ability of gibel carp exposed to aflatoxin B1 (AFB1) by challenging it with cyprinid herpesvirus 2 (CyHV-2) infection. The data showed that AFB1 exposure significantly increased the [...] Read more.
Aflatoxin contamination of food and water is a serious problem worldwide. This study investigated the defensive ability of gibel carp exposed to aflatoxin B1 (AFB1) by challenging it with cyprinid herpesvirus 2 (CyHV-2) infection. The data showed that AFB1 exposure significantly increased the mortality of CyHV-2-infected gibel carp, and enhanced the viral load in the fish liver, kidney, and spleen. The oxidative-antioxidant balance suggested that AFB1 induced severe oxidative stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the AFB1 exposed group, and the reduced activity of superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in the AFB1 exposed group. Meanwhile, the related expression of nuclear factor erythroid 2-related factor 2 (Nrf2), interferon regulatory factor 3 (IRF3) and the type 1 interferon (IFN1) were noticeably down-regulated, but caspase-1 was up-regulated, after exposure to AFB1, demonstrating that fish are unable to avoid the virus infection. It should be noted that the intestinal microbiota diversity and richness were lower in the AFB1 exposed group, and the composition of intestinal microbiota was affected by AFB1, resulting in the higher abundance of bacteria (such as Aeromonas and Bacteroides) and the lower abundance of potentially beneficial bacteria (such as Cetobacterium and Clostridium) in the AFB1 exposed group. This research provides insight into the possibility that AFB1 may increase the susceptibility of C. gibelio to CyHV-2 infection, and thus amplify the viral outbreak to endanger ecological safety in aquatic environment. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

17 pages, 8081 KiB  
Article
Transport Stress Induces Oxidative Stress and Immune Response in Juvenile Largemouth Bass (Micropterus salmoides): Analysis of Oxidative and Immunological Parameters and the Gut Microbiome
by Qingchun Wang, Wei Ye, Yifan Tao, Yan Li, Siqi Lu, Pao Xu and Jun Qiang
Antioxidants 2023, 12(1), 157; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12010157 - 09 Jan 2023
Cited by 6 | Viewed by 1607
Abstract
Transport is essential in cross-regional culturing of juvenile fish. Largemouth bass (Micropterus salmoides) often exhibit decreased vitality and are susceptible to disease after transportation. To study the effects of transport stress on juvenile largemouth bass, juveniles (average length: 8.42 ± 0.44 [...] Read more.
Transport is essential in cross-regional culturing of juvenile fish. Largemouth bass (Micropterus salmoides) often exhibit decreased vitality and are susceptible to disease after transportation. To study the effects of transport stress on juvenile largemouth bass, juveniles (average length: 8.42 ± 0.44 cm, average weight 10.26 ± 0.32 g) were subjected to a 12 h simulated transport, then subsequently, allowed to recover for 5 d. Liver and intestinal tissues were collected at 0, 6 and 12 h after transport stress and after 5 d of recovery. Oxidative and immunological parameters and the gut microbiome were analyzed. Hepatocytic vacuolization and shortened intestinal villi in the bass indicated liver and intestinal damage due to transport stress. Superoxide dismutase, lysozyme and complement C3 activities were significantly increased during transport stress (p < 0.05), indicating that transport stress resulted in oxidative stress and altered innate immune responses in the bass. With the transport stress, the malondialdehyde content first increased, then significantly decreased (p < 0.05) and showed an increasing trend in the recovery group. 16S rDNA analysis revealed that transport stress strongly affected the gut microbial compositions, mainly among Proteobacteria, Firmicutes, Cyanobacteria and Spirochaetes. The Proteobacteria abundance increased significantly after transport. The Kyoto Encyclopedia of Genes and Genomes functional analysis revealed that most gut microbes played roles in membrane transport, cell replication and repair. Correlation analyses demonstrated that the dominant genera varied significantly and participated in the measured physiological parameter changes. With 5 days of recovery after 12 h of transport stress, the physiological parameters and gut microbiome differed significantly between the experimental and control groups. These results provide a reference and basis for studying transport-stress-induced oxidative and immune mechanisms in juvenile largemouth bass to help optimize juvenile largemouth bass transportation. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

22 pages, 7502 KiB  
Article
Molecular Cloning and Functional Characterization of Catalase in Stress Physiology, Innate Immunity, Testicular Development, Metamorphosis, and Cryopreserved Sperm of Pacific Abalone
by Shaharior Hossen, Zahid Parvez Sukhan, Soo Cheol Kim, Md. Abu Hanif, Il-Keun Kong and Kang Hee Kho
Antioxidants 2023, 12(1), 109; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12010109 - 01 Jan 2023
Cited by 4 | Viewed by 2294
Abstract
Catalase is a crucial enzyme of the antioxidant defense system responsible for the maintenance of cellular redox homeostasis. The aim of the present study was to evaluate the molecular regulation of catalase (Hdh-CAT) in stress physiology, innate immunity, testicular development, metamorphosis, [...] Read more.
Catalase is a crucial enzyme of the antioxidant defense system responsible for the maintenance of cellular redox homeostasis. The aim of the present study was to evaluate the molecular regulation of catalase (Hdh-CAT) in stress physiology, innate immunity, testicular development, metamorphosis, and cryopreserved sperm of Pacific abalone. Hdh-CAT gene was cloned from the digestive gland (DG) of Pacific abalone. The 2894 bp sequence of Hdh-CAT had an open reading frame of 1506 bp encoding 501 deduced amino acids. Fluorescence in situ hybridization confirmed Hdh-CAT localization in the digestive tubules of the DG. Hdh-CAT was induced by different types of stress including thermal stress, H2O2 induction, and starvation. Immune challenges with Vibrio, lipopolysaccharides, and polyinosinic–polycytidylic acid sodium salt also upregulated Hdh-CAT mRNA expression and catalase activity. Hdh-CAT responded to cadmium induced-toxicity by increasing mRNA expression and catalase activity. Elevated seasonal temperature also altered Hdh-CAT mRNA expression. Hdh-CAT mRNA expression was relatively higher at the trochophore larvae stage of metamorphosis. Cryopreserved sperm showed significantly lower Hdh-CAT mRNA expression levels compared with fresh sperm. Hdh-CAT mRNA expression showed a relationship with the production of ROS. These results suggest that Hdh-CAT might play a role in stress physiology, innate immunity, testicular development, metamorphosis, and sperm cryo-tolerance of Pacific abalone. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

16 pages, 2497 KiB  
Article
Dietary Supplementation of Sophora flavescens Root Extract Improved the Growth Performance, Antioxidant Capacity, Innate Immunity, and Disease Resistance against Edwardsiella tarda Challenge in Turbot (Scophthalmus maximus)
by Yuqing Hou, Xuezheng Gao, Xueying Shi, Na Dong, Tongtong Yue, Peiyu Zhang and Haiyan Liu
Antioxidants 2023, 12(1), 69; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12010069 - 29 Dec 2022
Cited by 2 | Viewed by 1635
Abstract
The impacts of dietary supplementation with graded levels of Sophora flavescens root extract (SFE) on growth performance, antioxidant capacity, immune status, and resistance against Edwardsiella tarda challenge in Scophthalus maximus were investigated in this study. In all, 600 turbot (initial body weight: 8.38 [...] Read more.
The impacts of dietary supplementation with graded levels of Sophora flavescens root extract (SFE) on growth performance, antioxidant capacity, immune status, and resistance against Edwardsiella tarda challenge in Scophthalus maximus were investigated in this study. In all, 600 turbot (initial body weight: 8.38 ± 0.07 g) were randomly distributed in 12 tanks with 50 fish per tank and fed four experimental diets supplemented with 0, 0.05%, 0.1%, or 0.2% SFE (named as: SFE0, SFE0.05, SFE0.1, and SFE0.2, respectively), for 56 days. The results showed that 0.1% and 0.2% SFE supplementation have significantly increased the FBW, WGR, SGR, and PER of turbot, while decreased the FCR of turbot (p < 0.05). Dietary SFE supplementations have significantly increased the activities of plasma SOD, CAT, GPx, T-AOC, GST and LZM, decreased plasma MDA contents in turbot under normal or challenge condition (p < 0.05). Meanwhile, SFE addition dramatically enhanced the hepatic mRNA expression of antioxidant parameters (including Nrf2, Keap1, SOD, CAT, Trx2, GST and GR) during the normal condition. mRNA levels of NF-κB p65, IκBα, TNF-α, TGF-β, and IL-10 in the liver of fish were notably up-regulated by SFE treatment during normal condition (p < 0.05), while the transcription of IL-1β was down-regulated by SFE whenever under normal or challenge condition. 0.1% and 0.2% SFE administration have significantly increased the survival rate of turbot against E. tarda challenge (p < 0.05). In conclusion, dietary SFE supplementation improved the growth performance, antioxidant activity and disease resistance of turbot, and SFE could be a potential feed additive for turbot. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

21 pages, 6077 KiB  
Article
Transcriptome and 16S rRNA Analyses Reveal That Hypoxic Stress Affects the Antioxidant Capacity of Largemouth Bass (Micropterus salmoides), Resulting in Intestinal Tissue Damage and Structural Changes in Microflora
by Zhuo Song, Wei Ye, Yifan Tao, Tao Zheng, Jun Qiang, Yan Li, Wenting Liu and Pao Xu
Antioxidants 2023, 12(1), 1; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox12010001 - 20 Dec 2022
Cited by 5 | Viewed by 1635
Abstract
Dissolved oxygen (DO) is a key factor affecting the health of aquatic organisms in an intensive aquaculture environment. In this study, largemouth bass (Micropterus salmoides) were subjected to acute hypoxic stress for 96 h (DO: 1.00 mg/L) followed by recovery under [...] Read more.
Dissolved oxygen (DO) is a key factor affecting the health of aquatic organisms in an intensive aquaculture environment. In this study, largemouth bass (Micropterus salmoides) were subjected to acute hypoxic stress for 96 h (DO: 1.00 mg/L) followed by recovery under sufficient DO conditions (DO: 7.50 mg/L) for 96 h. Serum biochemical indices, intestinal histomorphology, the transcriptome, and intestinal microbiota were compared between hypoxia-treated fish and those in a control group. The results showed that hypoxia caused oxidative stress, exfoliation of the intestinal villus epithelium and villus rupture, and increased cell apoptosis. Transcriptome analyses revealed that antioxidant-, inflammation-, and apoptosis-related pathways were activated, and that the MAPK signaling pathway played an important role under hypoxic stress. In addition, 16S rRNA sequencing analyses revealed that hypoxic stress significantly decreased bacterial richness and identified the dominant phyla (Proteobacteria, Firmicutes) and genera (Mycoplasma, unclassified Enterobacterales, Cetobacterium) involved in the intestinal inflammatory response of largemouth bass. Pearson’s correlation analyses showed that differentially expressed genes in the MAPK signaling pathway were significantly correlated with some microflora. The results of this study will help to develop strategies to reduce damage caused by hypoxic stress in aquacultured fish. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

21 pages, 3748 KiB  
Article
Berberine Regulation of Cellular Oxidative Stress, Apoptosis and Autophagy by Modulation of m6A mRNA Methylation through Targeting the Camk1db/ERK Pathway in Zebrafish-Hepatocytes
by Meijuan Zhang, Jin Liu, Chengbing Yu, Shangshang Tang, Guangzhen Jiang, Jing Zhang, Hongcai Zhang, Jianxiong Xu and Weina Xu
Antioxidants 2022, 11(12), 2370; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11122370 - 30 Nov 2022
Cited by 4 | Viewed by 1729
Abstract
Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid [...] Read more.
Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

16 pages, 3439 KiB  
Article
Effects of Different Dietary β-Glucan Levels on Antioxidant Capacity and Immunity, Gut Microbiota and Transcriptome Responses of White Shrimp (Litopenaeus vannamei) under Low Salinity
by Yanbing Qiao, Li Zhou, Yayu Qu, Kunyu Lu, Fenglu Han and Erchao Li
Antioxidants 2022, 11(11), 2282; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11112282 - 18 Nov 2022
Cited by 14 | Viewed by 2328
Abstract
β-Glucan could significantly improve the antioxidant capacity of aquatic animals. The effects of different dietary levels (0 (control), 0.05, 0.1, 0.2 or 0.4%) of β-glucan on the growth, survival, antioxidant capacity, immunity, intestinal microbiota and transcriptional responses of Litopenaeus vannamei under low salinity [...] Read more.
β-Glucan could significantly improve the antioxidant capacity of aquatic animals. The effects of different dietary levels (0 (control), 0.05, 0.1, 0.2 or 0.4%) of β-glucan on the growth, survival, antioxidant capacity, immunity, intestinal microbiota and transcriptional responses of Litopenaeus vannamei under low salinity (≤3) were investigated. The dietary growth trial lasted 35 days (initial shrimp 0.26 ± 0.01 g). The results indicated that the growth performance of the 0.1% and 0.2% groups was significantly better than that of the control group. A second-order polynomial regression analysis of growth performance against dietary β-glucan indicated that the optimal dietary β-glucan level was 0.2% of dry matter. The digestive enzyme activity of the hepatopancreas was enhanced with increasing β-glucan levels. The antioxidant and nonspecific immunity capacities of the hepatopancreas were also enhanced in the 0.1% group. The α-diversity index analysis of the intestinal microbiota showed that the intestinal microbial richness of L. vannamei increased in the 0.1% group. The relative abundance of Proteobacteria decreased in the 0.1% group compared with the control group. The transcriptome results indicate that the prebiotic mechanisms of β-glucan include upregulating the expression of nonspecific immune genes and osmoregulation genes and activating KEGG pathways associated with carbohydrate metabolism under low-salinity stress. These results suggested that dietary supplementation with β-glucan markedly increased growth performance and alleviated the negative effects of low-salinity stress by contributing to the activity of biochemical enzymes and enriching carbohydrate metabolism in L. vannamei. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

15 pages, 1582 KiB  
Article
High Dietary Histamine Induces Digestive Tract Oxidative Damage in Juvenile Striped Catfish (Pangasianodon hypophthalmus)
by Yu Liu, Xinlangji Fu, Huajing Huang, Jiongting Fan, Hang Zhou, Junming Deng and Beiping Tan
Antioxidants 2022, 11(11), 2276; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11112276 - 17 Nov 2022
Cited by 4 | Viewed by 1424
Abstract
A 56-day feeding trial investigated the effects of dietary histamine on the antioxidant capacity, gastric and intestinal barrier functions, and growth performance of striped catfish (Pangasianodon hypophthalmus). Seven isonitrogenous (34.0% crude protein) and isolipidic (10.5% crude lipid) diets were formulated with [...] Read more.
A 56-day feeding trial investigated the effects of dietary histamine on the antioxidant capacity, gastric and intestinal barrier functions, and growth performance of striped catfish (Pangasianodon hypophthalmus). Seven isonitrogenous (34.0% crude protein) and isolipidic (10.5% crude lipid) diets were formulated with supplemental 0, 15, 30, 60, 120, 240, and 480 mg/kg of histamine, named H0, H15, H30, H60, H120, H240, and H480 group, respectively. Results showed that the weight gain rate, specific growth rate, relative intestinal length in the H240 and H480 groups, and the condition factors in the H480 group were significantly lower than those in the H0 group. Intestinal total antioxidant capacity, peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities in the H480 group were significantly lower than those in the H0 group, whereas intestinal malondialdehyde content exhibited the opposite trend. Intestinal complement 3, complement 4, immunoglobulin M, and Recombinant Mucin 2 in the H480 group were significantly lower than those in the H0 group, in contrast to intestinal lipopolysaccharide content. Intestinal IL-10 gene expression in the H480 group was significantly lower than that in the H0 group, whereas the TNF-α, IL-1, IL-6, and IL-8 gene expression exhibited opposite results. Scanning and transmission electron microscopic observation of the gastrointestinal tract revealed severe damage to the gastric mucosa and intestinal epithelium in the H480 group. The abundance of Treponema in the histamine groups was significantly higher than that in the H0 group. These results indicated that high dietary histamine decreases intestinal immunity and antioxidant capacity, inducing digestive tract oxidative damage and ultimately decreasing the growth of striped catfish. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

22 pages, 4391 KiB  
Article
Tea Tree Oil Mediates Antioxidant Factors Relish and Nrf2-Autophagy Axis Regulating the Lipid Metabolism of Macrobrachium rosenbergii
by Mingyang Liu, Xiaochuan Zheng, Cunxin Sun, Qunlan Zhou, Bo Liu and Pao Xu
Antioxidants 2022, 11(11), 2260; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11112260 - 16 Nov 2022
Cited by 5 | Viewed by 1725
Abstract
Both oxidative stress and autophagy refer to regulating fat metabolism, and the former affects autophagy, but the role and mechanism of the antioxidant–autophagy axis in regulating lipid metabolism remains unclear. As an antioxidant, tea tree oil (TTO) has little research on the regulatory [...] Read more.
Both oxidative stress and autophagy refer to regulating fat metabolism, and the former affects autophagy, but the role and mechanism of the antioxidant–autophagy axis in regulating lipid metabolism remains unclear. As an antioxidant, tea tree oil (TTO) has little research on the regulatory mechanism of lipid metabolism in crustaceans. This study investigated whether TTO could alter hepatopancreatic lipid metabolism by affecting the antioxidant–autophagy axis. Feed Macrobrachium rosenbergii with three different levels of TTO diets for 8 weeks: CT (0 mg/kg TTO), 100TTO (100 mg/kg TTO), and 1000TTO (1000 mg/kg TTO). The results showed that 100TTO treatment reduced the hemolymph lipids level and hepatopancreatic lipid deposition compared to CT. In contrast, 1000TTO treatment increased hepatopancreatic lipid deposition, damaging both morphology and function in the hepatopancreas. The 100TTO treatment promoted lipolysis and reduced liposynthesis at the transcriptional level compared to the CT group. Meanwhile, it improved the hepatopancreas antioxidant capacity and maintained mitochondrial structural and ROS homeostasis. In addition, it simultaneously activated the expression of transcription factors Keap1-Nrf2 and Imd-Relish. By contrast, the 1000TTO group significantly enhanced the ROS level, which considerably activated the Keap1-Nrf2 signaling expression but had no significant effects on the expression of Imd-Relish. The 100TTO group supplementation significantly enhanced lipid droplet breakdown and autophagy-related genes and protein expression. On the contrary, the 1000TTO group significantly inhibited the expression of genes and proteins related to autophagy. Pearson analysis revealed that Nrf2 has a positive correlation to lipid anabolism-related genes (Fasn, Srebp1, Pparγ) and autophagy regulators (mtor, akt, p62), and were negatively correlated with lipolysis-related genes (Cpt1, Hsl, Ampkα) and autophagy markers (Ulk1, Lc3). Relish was positively correlated with Atgl, Cpt1, Ampkα, Ulk1, and Lc3, and negatively correlated with Pparγ and p62. Moreover, Keap1 and Imd were negatively correlated with p62 and mtor, respectively. In sum, 100 mg/kg TTO enhanced antioxidant activity and increased autophagy intensity through the Relish-Imd pathway to enhance lipid droplet breakdown, while 1000 mg/kg TTO overexpressed Nrf2, thus inhibiting autophagy and ultimately causing excessive lipid deposition and peroxidation. Our study gives a fresh perspective for deciphering the bidirectional regulation mechanism of lipid metabolism by different doses of TTO based on the antioxidant–autophagy axis. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

20 pages, 2115 KiB  
Article
Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab (Eriocheir sinensis)
by Wenrong Feng, Shengyan Su, Changyou Song, Fan Yu, Jun Zhou, Jianlin Li, Rui Jia, Pao Xu and Yongkai Tang
Antioxidants 2022, 11(10), 2029; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11102029 - 14 Oct 2022
Cited by 13 | Viewed by 2222
Abstract
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese [...] Read more.
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

15 pages, 2539 KiB  
Article
Expression Analysis of a Novel Oxidoreductase Glutaredoxin 2 in Black Tiger Shrimp, Penaeus monodon
by Rui Fan, Yundong Li, Qibin Yang, Song Jiang, Jianhua Huang, Lishi Yang, Xu Chen, Falin Zhou and Shigui Jiang
Antioxidants 2022, 11(10), 1857; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11101857 - 20 Sep 2022
Cited by 3 | Viewed by 1426
Abstract
Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that is an important component of the redox system in organisms. However, there is a serious lack of sequence information and functional validation related to Grx in crustaceans. In this study, a novel Grx was identified in [...] Read more.
Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that is an important component of the redox system in organisms. However, there is a serious lack of sequence information and functional validation related to Grx in crustaceans. In this study, a novel Grx was identified in Penaeus monodon (PmGrx2). The full-length cDNA of PmGrx2 is 998 bp, with an open reading frame (ORF) of 441 bp, encoding 119 amino acids. Sequence alignment showed that PmGrx2 had the highest identity with Grx2 of Penaeus vannamei at 96.64% and clustered with Grx2 of other crustaceans. Quantitative real-time PCR (qRT-PCR) analysis showed that PmGrx2 was expressed in all examined tissues, with higher expression levels in the stomach and testis. PmGrx2 was continuously expressed during development and had the highest expression level in the zygote stage. Both ammonia-N stress and bacterial infection could differentially induce the expression of PmGrx2 in hepatopancreas and gills. When PmGrx2 was inhibited, the expression of antioxidant enzymes was suppressed, the degree of apoptosis increased, and the GSH content decreased with the prolongation of ammonia-N stress. Inhibition of PmGrx2 resulted in shrimp being exposed to a greater risk of oxidative damage. In addition, an SNP locus was screened on the exons of PmGrx2 that was significantly associated with an ammonia-N-stress-tolerance trait. This study suggests that PmGrx2 is involved in redox regulation and plays an important role in shrimps’ resistance to marine environmental stresses. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

13 pages, 3133 KiB  
Article
ROS Induced by Streptococcus agalactiae Activate Inflammatory Responses via the TNF-α/NF-κB Signaling Pathway in Golden Pompano Trachinotus ovatus (Linnaeus, 1758)
by Jie Gao, Mingjian Liu, Huayang Guo, Kecheng Zhu, Bo Liu, Baosuo Liu, Nan Zhang and Dianchang Zhang
Antioxidants 2022, 11(9), 1809; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11091809 - 14 Sep 2022
Cited by 14 | Viewed by 2083
Abstract
Streptococcus agalactiae is common pathogenic bacteria in aquaculture and can cause mass mortality after fish infection. This study aimed to investigate the effects of S. agalactiae infection on the immune and antioxidant regulatory mechanisms of golden pompano (Trachinotus ovatus). Serum and [...] Read more.
Streptococcus agalactiae is common pathogenic bacteria in aquaculture and can cause mass mortality after fish infection. This study aimed to investigate the effects of S. agalactiae infection on the immune and antioxidant regulatory mechanisms of golden pompano (Trachinotus ovatus). Serum and liver samples were obtained at 0, 6, 12, 24, 48, 96, and 120 h after golden pompano infection with S. agalactiae for enzyme activity and gene expression analyses. After infection with S. agalactiae, the content of reactive oxygen species (ROS) in serum was significantly increased (p < 0.05). Serum levels of glucose (GLU), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) increased and then decreased (p < 0.05), reaching a maximum at 6 h. Serum antioxidant enzyme (LZM) activity increased significantly (p < 0.05) and reached a maximum at 120 h. In addition, the mRNA expression levels of antioxidant genes (SOD, CAT, and GPx) in the liver increased and then decreased, reaching the maximum at 24 h, 48 h, and 24 h, respectively. During the experimental period, the mRNA expression levels of NF-κB-related genes of the inflammatory signaling pathway inhibitory κB (IκB) showed an overall decreasing trend (p < 0.05) and the lowest expression at 120 h, whereas the mRNA expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IκB kinase (IKK), and nuclear factor NF-κB increased significantly (p < 0.05) and the highest expression was at 120 h. In conclusion, these results showed that S. agalactiae could activate internal regulatory signaling in the liver of golden pompano to induce defense and immune responses. This study is expected to lay a foundation to develop the healthy aquaculture of golden pompano and promote a more comprehensive understanding of its disease resistance mechanisms. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

19 pages, 4124 KiB  
Article
Hypothermia-Mediated Apoptosis and Inflammation Contribute to Antioxidant and Immune Adaption in Freshwater Drum, Aplodinotus grunniens
by Jianxiang Chen, Hongxia Li, Pao Xu, Yongkai Tang, Shenyan Su, Guangxiang Liu, Ningyuan Wu, Miaomiao Xue, Fan Yu, Wenrong Feng, Changyou Song and Haibo Wen
Antioxidants 2022, 11(9), 1657; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11091657 - 26 Aug 2022
Cited by 7 | Viewed by 2437
Abstract
Hypothermia-exposure-induced oxidative stress dysregulates cell fate and perturbs cellular homeostasis and function, thereby disturbing fish health. To evaluate the impact of hypothermia on the freshwater drum (Aplodinotus grunniens), an 8-day experiment was conducted at 25 °C (control group, Con), 18 °C [...] Read more.
Hypothermia-exposure-induced oxidative stress dysregulates cell fate and perturbs cellular homeostasis and function, thereby disturbing fish health. To evaluate the impact of hypothermia on the freshwater drum (Aplodinotus grunniens), an 8-day experiment was conducted at 25 °C (control group, Con), 18 °C (LT18), and 10 °C (LT10) for 0 h, 8 h, 1 d, 2 d, and 8 d. Antioxidant and non-specific immune parameters reveal hypothermia induced oxidative stress and immunosuppression. Liver ultrastructure alterations indicate hypothermia induced mitochondrial enlargement, nucleoli aggregation, and lipid droplet accumulation under hypothermia exposure. With the analysis of the transcriptome, differentially expressed genes (DEGs) induced by hypothermia were mainly involved in metabolism, immunity and inflammation, programmed cell death, and disease. Furthermore, the inflammatory response and apoptosis were evoked by hypothermia exposure in different immune organs. Interactively, apoptosis and inflammation in immune organs were correlated with antioxidation and immunity suppression induced by hypothermia exposure. In conclusion, these results suggest hypothermia-induced inflammation and apoptosis, which might be the adaptive mechanism of antioxidation and immunity in the freshwater drum. These findings contribute to helping us better understand how freshwater drum adjust to hypothermia stress. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

16 pages, 5058 KiB  
Article
Tolerance Assessment of Atractylodes macrocephala Polysaccharide in the Diet of Largemouth Bass (Micropterus salmoides)
by Bo Dong, Liyun Wu, Qiaozhen Chen, Wenjie Xu, Dinggang Li, Dong Han, Xiaoming Zhu, Haokun Liu, Yunxia Yang, Shouqi Xie and Junyan Jin
Antioxidants 2022, 11(8), 1581; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11081581 - 15 Aug 2022
Cited by 6 | Viewed by 1811
Abstract
Atractylodes macrocephala polysaccharide (AMP) can enhance antioxidant defense and anti-inflammation, as the tolerance levels of AMP in aquaculture is important for additive utilization. However, the tolerance dose of AMP is unknown. We assess the tolerance levels of AMP in juvenile largemouth bass (3.38 [...] Read more.
Atractylodes macrocephala polysaccharide (AMP) can enhance antioxidant defense and anti-inflammation, as the tolerance levels of AMP in aquaculture is important for additive utilization. However, the tolerance dose of AMP is unknown. We assess the tolerance levels of AMP in juvenile largemouth bass (3.38 ± 0.11 g) by feeding them a 0, 400, 4000, or 8000 mg/kg AMP supplemented diet for 10 weeks. The 400 mg/kg AMP dose increased growth performance. The Nrf2/Keap1 signaling pathway was activated, as indicated by Keap1 and Nrf2 protein levels in the liver. Enhanced activity of antioxidant enzymes (SOD, GPx), together with increased mRNA levels of antioxidant genes (sod, gpx) and decreased accumulation of reactive oxygen species (ROS) and MDA, was found in the liver, implying the antioxidant effect of AMP. Nutrient absorption was enhanced by AMP, as reflected by the increased length of intestinal villi and microvilli. However, 4000 and 8000 mg/kg AMP induced oxidant stress, as indicated by increased plasma ALT and AST content and decreased mRNA levels of antioxidant genes (sod, gpx) in the liver and intestinal tissues. Inflammatory reactions were also induced by high doses of AMP, as reflected by enhanced levels of pro-inflammatory cytokines (tnfα, nfκb) in the liver, intestinal, and kidney tissues and inhibited levels of anti-inflammatory cytokines (tgfβ, iκb). Histological analysis reveals inflammatory cell infiltration and tissue damage. Thus, the safe tolerance margin of AMP supplement for largemouth bass was 400–4000 mg/kg. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

20 pages, 3319 KiB  
Article
The Assessment of Dietary Organic Zinc on Zinc Homeostasis, Antioxidant Capacity, Immune Response, Glycolysis and Intestinal Microbiota in White Shrimp (Litopenaeus vannamei Boone, 1931)
by Jinzhu Yang, Tiantian Wang, Gang Lin, Mingzhu Li, Yanjiao Zhang and Kangsen Mai
Antioxidants 2022, 11(8), 1492; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11081492 - 29 Jul 2022
Cited by 11 | Viewed by 2625
Abstract
This study aimed to assess dietary organic zinc on zinc homeostasis, antioxidant capacity, immune response, glycolysis and intestinal microbiota in white shrimp (Litopenaeus vannamei Boone, 1931). Six experimental diets were formulated: Control, zinc free; S120, 120 mg·kg−1 zinc from ZnSO4 [...] Read more.
This study aimed to assess dietary organic zinc on zinc homeostasis, antioxidant capacity, immune response, glycolysis and intestinal microbiota in white shrimp (Litopenaeus vannamei Boone, 1931). Six experimental diets were formulated: Control, zinc free; S120, 120 mg·kg−1 zinc from ZnSO4·7H2O added into control diet; O30, O60, O90 and O120, 30, 60, 90 and 120 mg·kg−1 zinc from Zn-proteinate added into control diet, respectively. The results showed that organic zinc significantly promoted zinc content and gene expression of ZnT1, ZIP11 and MT in the hepatopancreas and enhanced antioxidant capacity and immunity (in terms of increased activities of T-SOD, Cu/Zn SOD, PO, LZM, decreased content of MDA, upregulated expressions of GST, G6PDH, ProPO, LZM and Hemo, and increased resistance to Vibrio parahaemolyticus). Organic zinc significantly upregulated GluT1 expression in the intestine, increased glucose content of plasma and GCK, PFK and PDH activities of hepatopancreas, and decreased pyruvate content of hepatopancreas. Organic zinc improved intestinal microbiota communities, increased the abundance of potentially beneficial bacteria and decreased the abundance of potential pathogens. Inorganic zinc (S120) also had positive effects, but organic zinc (as low as O60) could achieve better effects. Overall, organic zinc had a higher bioavailability and was a more beneficial zinc resource than inorganic zinc in shrimp feeds. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

26 pages, 5409 KiB  
Article
A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses
by Caiyuan Zhao, Huagen Wen, Shengsheng Huang, Shaoping Weng and Jianguo He
Antioxidants 2022, 11(8), 1491; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11081491 - 29 Jul 2022
Cited by 10 | Viewed by 2851
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, “water bubble disease (WBD)”, has emerged and resulted in a large loss of M. rosenbergii cultured [...] Read more.
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, “water bubble disease (WBD)”, has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Graphical abstract

18 pages, 4993 KiB  
Article
Taurine Alleviates Cadmium-Induced Toxicity via Genetically Specific Strategies in Two Strains of Gibel Carp (Carassius gibelio)
by Wenjie Xu, Hongyan Li, Liyun Wu, Junyan Jin, Dong Han, Xiaoming Zhu, Yunxia Yang, Haokun Liu and Shouqi Xie
Antioxidants 2022, 11(7), 1381; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11071381 - 16 Jul 2022
Cited by 2 | Viewed by 1547
Abstract
Our previous studies in gibel carp (Carassius gibelio) have shown that cadmium (Cd) exposure elicits deleterious effects depending on the genetic background, and thus we hypothesized that mitigation via nutritional intervention may vary between strains. Therefore, two gibel carp strains (the [...] Read more.
Our previous studies in gibel carp (Carassius gibelio) have shown that cadmium (Cd) exposure elicits deleterious effects depending on the genetic background, and thus we hypothesized that mitigation via nutritional intervention may vary between strains. Therefore, two gibel carp strains (the A and F strains) were fed diets supplemented with 0% or 1% taurine for 8 weeks prior to 96 h Cd exposure, and the responses of antioxidant pathways, endoplasmic reticulum (ER) stress, autophagy, and apoptosis were investigated. The results showed that taurine supplementation had no effect on the growth performance of gibel carp. After Cd exposure, histological damage to mitochondria and ER, induction of oxidative stress and antioxidant responses, occurrence of ER stress, and apoptotic signals were observed in the livers. Upon the diet effects, taurine supplementation alleviated the ER-stress-induced autophagy and apoptosis after Cd exposure and stimulated antioxidant pathways. Regarding the difference between strains, taurine played a protective role in alleviating Cd toxicity through the antioxidant response, ER stress, and autophagy in the F strain, whereas such effects were achieved by the attenuation of apoptosis in the A strain. Taken together, our results demonstrate the potential use of taurine in the mitigation of heavy metal toxicity in aquatic organisms. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

11 pages, 4066 KiB  
Article
Oxidative Stress Can Be Attenuated by 4-PBA Caused by High-Fat or Ammonia Nitrogen in Cultured Spotted Seabass: The Mechanism Is Related to Endoplasmic Reticulum Stress
by Yanzou Dong, Lei Li, Tian Xia, Lina Wang, Liping Xiao, Nengshui Ding, Youlin Wu and Kangle Lu
Antioxidants 2022, 11(7), 1276; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11071276 - 28 Jun 2022
Cited by 17 | Viewed by 2006
Abstract
Oxidative stress is a common phenomenon in aquaculture, which can be induced by nutritional or environmental factors. Generally, oxidative stress causes poor growth performance, metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional intervention strategy, high-fat diet (HFD) feeding [...] Read more.
Oxidative stress is a common phenomenon in aquaculture, which can be induced by nutritional or environmental factors. Generally, oxidative stress causes poor growth performance, metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional intervention strategy, high-fat diet (HFD) feeding (Experiment I) and acute ammonia nitrogen challenge (Experiment II) tests were carried out. In Experiment I, HFD feeding significantly decreased the growth performance concomitantly with excessive fat deposition in the liver and abdomen. The addition of 4-PBA in the diet improved the excessive fat accumulation. The activities of antioxidative enzymes were suppressed, and the levels of lipid and protein peroxidation were increased, indicating that HFD feeding induced oxidative stress. The endoplasmic reticulum stress (ERs) related genes were downregulated in the HFD group. Under a transmission electron microscope (TEM), more swollen and dilated ER lumen could be observed. These results indicated that the HFD induced ERs activation. Although 4-PBA acted as a potent ERs inhibitor, as evidenced by the alleviated alterations of ERs molecules and the ER ultrastructure, the oxidative stress was also attenuated by 4-PBA. In Experiment II, dietary 4-PBA improved the tolerance to the acute ammonia nitrogen challenge, as lower mortality and serum aminotransferase activity was found. Further results showed that 4-PBA decreased the peroxidation content and attenuated ERs, thus confirming the correlation between oxidative stress and ERs. Our findings showed that dietary 4-PBA supplementation can attenuate oxidative stress induced by a HFD or acute ammonia challenge; the mechanism is related to its potent inhibition effect for ERs. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

21 pages, 5244 KiB  
Article
Effects of Stocking Density on the Growth Performance, Physiological Parameters, Redox Status and Lipid Metabolism of Micropterus salmoides in Integrated Rice–Fish Farming Systems
by Rui Jia, Long Wang, Yiran Hou, Wenrong Feng, Bing Li and Jian Zhu
Antioxidants 2022, 11(7), 1215; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11071215 - 21 Jun 2022
Cited by 18 | Viewed by 3477
Abstract
Stocking density has been identified as one of the main factors affecting fish growth, welfare and behavior. However, few studies have focused on the effects of stocking density on fish health in integrated rice–fish farming systems. Thus, the aim of this study was [...] Read more.
Stocking density has been identified as one of the main factors affecting fish growth, welfare and behavior. However, few studies have focused on the effects of stocking density on fish health in integrated rice–fish farming systems. Thus, the aim of this study was to evaluate the effects of different stocking densities on the growth performance, physiological parameters, redox status and lipid metabolism of Micropterus salmoides in an integrated rice–fish farming system. The fish were reared at three densities: low density (LD, 40 g/m3), medium density (MD, 80 g/m3) and high density (HD, 120 g/m3) for 90 days. At the end of the experiment, fish reared in the MD and HD groups showed lower growth performance than those from the LD group. The HD treatment significantly altered the physiological parameters, including glucose and lactate. Meanwhile, the HD treatment induced oxidative stress and lipid peroxidation after 90 days of farming. Furthermore, transcriptomic analysis revealed that HD treatment led to abnormal lipid metabolism. Interestingly, we found the suppression of three key pathways related to lipid metabolism, including the PPAR, insulin and adipocytokine signaling pathways, in the HD group. Overall, our data indicated that the HD treatment inhibited growth and caused physiological responses, oxidative stress and abnormal hepatic lipid metabolism in M. salmoides in an integrated rice–fish farming system. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

18 pages, 3136 KiB  
Article
Protective Effects of Emodin on Oxidized Fish Oil-Induced Metabolic Disorder and Oxidative Stress through Notch-Nrf2 Crosstalk in the Liver of Teleost Megalobrama amblycephala
by Changyou Song, Bo Liu, Hongxia Li, Yongkai Tang, Xianping Ge, Bo Liu and Pao Xu
Antioxidants 2022, 11(6), 1179; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11061179 - 15 Jun 2022
Cited by 12 | Viewed by 2291
Abstract
Dietary oxidized lipids are key perpetrator to accumulate excessive reactive oxygen species (ROS) that induce oxidative stress for animals. Immoderate oxidative stress dysregulates cell fate, perturbs cellular homeostasis, thereby interrupts metabolism and normal growth. Therefore, a 12-week feeding trial with fish oil (FO, [...] Read more.
Dietary oxidized lipids are key perpetrator to accumulate excessive reactive oxygen species (ROS) that induce oxidative stress for animals. Immoderate oxidative stress dysregulates cell fate, perturbs cellular homeostasis, thereby interrupts metabolism and normal growth. Therefore, a 12-week feeding trial with fish oil (FO, control group), oxidized fish oil (OF), and emodin-supplemented (OF+E) diets was conducted to evaluate the therapeutic mechanism of emodin on metabolic and oxidative resistance in Megalobrama amblycephala liver. Morphologically, emodin remits oxidized fish oil-induced cellular constituents damage, evidenced by lipid droplets enlargement and accumulation, mitochondria rupture, and nucleus aggregation, which were functionally related to oxidative stress, metabolism, and cell fate determination. Consecutively, glucose, lipid, and amino acid metabolism were retained under emodin stimulation. Specifically, fatty acid metabolic genes optimized fatty acid utilization and metabolism, featured as total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) alternation. Physiologically, inflammation, autophagy, apoptosis, as well as antioxidant capacity were alleviated by emodin. Interactively, fatty acid metabolism was correlated with antioxidant capacity; while the crosstalk and dynamic equilibrium between apoptosis and autophagy determine the cell fate under oxidative stress amelioration. Synergistically, Nrf2 and Notch signaling were active to antioxidant defense. In particular, oxidative stress blocked the crosstalk between Notch and Nrf2 signaling, while emodin rescued Notch-Nrf2 interaction to ameliorate oxidative stress. In conclusion, these results suggest that elevated ROS levels by oxidative stress activates Notch and Nrf2 signaling but intercepts Notch-Nrf2 crosstalk to stimulate cell fate and antioxidant program; dietary emodin alleviates oxidative stress and returns overall ROS levels to a moderate state to maintain homeostatic balance. The crosstalk between Notch and Nrf2 signaling might be the potential therapeutic target for emodin to ameliorate oxidative stress and metabolic disorder in M. amblycephala liver. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

13 pages, 3296 KiB  
Article
Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide
by Lijuan Ma, Jie Lu, Tuo Yao, Lingtong Ye and Jiangyong Wang
Antioxidants 2022, 11(6), 1178; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11061178 - 15 Jun 2022
Cited by 5 | Viewed by 1542
Abstract
Gender differences in the hemocyte immune response of Hong Kong oyster Crassostrea hongkongensis to Vibrio harveyi and lipopolysaccharide (LPS) infection exist. To determine if a gender difference also exists, we use a 1H NMR-based metabolomics method to investigate responses in C. hongkongensis [...] Read more.
Gender differences in the hemocyte immune response of Hong Kong oyster Crassostrea hongkongensis to Vibrio harveyi and lipopolysaccharide (LPS) infection exist. To determine if a gender difference also exists, we use a 1H NMR-based metabolomics method to investigate responses in C. hongkongensis hepatopancreas tissues to V. harveyi and LPS infection. Both infections induced pronounced gender- and immune-specific metabolic responses in hepatopancreas tissues. Responses are mainly presented in changes in substances involved in energy metabolism (decreased glucose, ATP, and AMP in males and increased ATP and AMP in LPS-infected females), oxidative stress (decreased glutathione in males and decreased tryptophan and phenylalanine and increased choline and proline in LPS-infected females), tricarboxylic acid (TCA) cycle (decreased α-ketoglutarate acid and increased fumarate in LPS-infected males, and decreased fumarate in LPS-infected females), and osmotic regulation (decreased trigonelline and increased taurine in V. harveyi-infected males and decreased betaine in V. harveyi-infected females). Results suggest that post-spawning-phase male oysters have a more significant energy metabolic response and greater ability to cope with oxidative stress than female oysters. We propose that the impact of oyster gender should be taken into consideration in the aftermath of oyster farming or oyster disease in natural seas. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

19 pages, 4155 KiB  
Article
Growth, Health, and Gut Microbiota of Female Pacific White Shrimp, Litopenaeus vannamei Broodstock Fed Different Phospholipid Sources
by Xiaolong Liang, Xiaolong Luo, Hongxing Lin, Fenglu Han, Jian G. Qin, Liqiao Chen, Chang Xu and Erchao Li
Antioxidants 2022, 11(6), 1143; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11061143 - 10 Jun 2022
Cited by 8 | Viewed by 2541
Abstract
Phospholipids have an important antioxidant effect on animals. The effects of different dietary phospholipid sources on the growth, antioxidant activity, immunity, and gut microbiota of female broodstock of Pacific white shrimp Litopenaeus vannamei were investigated. Four isoproteic and isolipid semi-purified diets containing 4% [...] Read more.
Phospholipids have an important antioxidant effect on animals. The effects of different dietary phospholipid sources on the growth, antioxidant activity, immunity, and gut microbiota of female broodstock of Pacific white shrimp Litopenaeus vannamei were investigated. Four isoproteic and isolipid semi-purified diets containing 4% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) and a control diet without phospholipid supplementation were fed to female broodstock of L. vannamei (34.7 ± 4.2 g) for 28 days. The growth performance, antioxidative capacity, and innate immunity of the female broodstock fed phospholipid supplemented diets were improved regardless of sources compared with the control shrimp. The effects on growth and antioxidant capacity in female shrimp fed the KO diet were highest. The innate immunity of female shrimp fed the EL and KO diets were significantly higher than shrimp fed the SL diet. Dietary phospholipid supplementation increased gut microbiota diversity and richness, and the Chao1 and ACE values in the KO group were significantly higher than in the control group. The richness of Proteobacteria, Photobacterium, and Vibrio decreased, whereas the richness of Firmicutes and Bacteroidetes increased in the shrimp fed the KO diet compared with the shrimp fed the SL and EL diets. The interactions of gut microbiota in shrimp fed the KO diet were the most complex, and the positive interaction was the largest among all the treatments. The functional genes of gut microbiota in shrimp fed the KO diet were significantly enriched in lipid metabolism and terpenoid/polyketide metabolism pathways. Spearman correlation analysis showed that Fusibacter had significantly positive correlations with antioxidant activity (total antioxidant capacity, superoxide dismutase, glutathione peroxidase), immune enzyme activity (phenoloxidase and lysozyme), and immune gene expression (C-type lectin 3, Caspase-1). All findings suggest that dietary phospholipids supplementation can improve the growth and health status of female L. vananmei broodstock. Krill oil is more beneficial in improving the antioxidant capacity and innate immunity than other dietary phospholipid sources. Furthermore, krill oil can help establish the intestinal immune barrier by increasing the richness of Fusibacter and promote the growth of female shrimp. Fusibacter may be involved in iron metabolism to improve the antioxidant capacity of female shrimp. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

18 pages, 2525 KiB  
Article
Feed Restriction Alleviates Chronic Thermal Stress-Induced Liver Oxidation and Damages via Reducing Lipid Accumulation in Channel Catfish (Ictalurus punctatus)
by Qisheng Lu, Yulong Gong, Longwei Xi, Yulong Liu, Wenjie Xu, Haokun Liu, Junyan Jin, Zhimin Zhang, Yunxia Yang, Xiaoming Zhu, Shouqi Xie and Dong Han
Antioxidants 2022, 11(5), 980; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11050980 - 17 May 2022
Cited by 6 | Viewed by 2111
Abstract
Caloric restriction is known to suppress oxidative stress in organ systems. However, whether caloric/feed restriction alleviates chronic thermal stress in aquatic animals remains unknown. Here, we set up three feeding rations: 3% BW (3% body weight/day), 2.5% BW (restricted feeding, 2.5% body weight/day) [...] Read more.
Caloric restriction is known to suppress oxidative stress in organ systems. However, whether caloric/feed restriction alleviates chronic thermal stress in aquatic animals remains unknown. Here, we set up three feeding rations: 3% BW (3% body weight/day), 2.5% BW (restricted feeding, 2.5% body weight/day) and 2% BW (high restricted feeding, 2% body weight/day), to investigate the effects and mechanism of feed restriction on improving chronic heat-induced (27 to 31 °C) liver peroxidation and damages in channel catfish (Ictalurus punctatus). The results showed that, compared to 3% BW, both 2.5% BW and 2% BW significantly reduced the liver expressions of hsc70, hsp70 and hsp90, but only 2.5% BW did not reduce the growth performance of channel catfish. The 2.5% BW and 2% BW also reduced the lipid deposition (TG) and improved the antioxidant capacity (CAT, SOD, GSH and T-AOC) in the liver of channel catfish. The heat-induced stress response (plasma glucose, cortisol and NO) and peroxidation (ROS and MDA) were also suppressed by either 2.5% BW or 2% BW. Moreover, 2.5% BW or 2% BW overtly alleviated liver inflammation and damages by reducing endoplasmic reticulum (ER) stress (BIP and Calnexin) and cell apoptosis (BAX, Caspase 3 and Caspase 9) in the liver of channel catfish. In conclusion, 2.5% body weight/day is recommended to improve the antioxidant capacity and liver health of channel catfish during the summer season, as it alleviates liver peroxidation and damages via suppressing lipid accumulation under chronic thermal stress. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

12 pages, 3226 KiB  
Article
Mechanism of Cadmium Exposure Induced Hepatotoxicity in the Mud Crab (Scylla paramamosain): Activation of Oxidative Stress and Nrf2 Signaling Pathway
by Changhong Cheng, Hongling Ma, Guangxin Liu, Sigang Fan and Zhixun Guo
Antioxidants 2022, 11(5), 978; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11050978 - 17 May 2022
Cited by 18 | Viewed by 2389
Abstract
Cadmium, one of the most toxic heavy metals, can cause severe oxidative damage to aquatic animals. However, the mechanism whereby the mud crabs respond to cadmium exposure remains unclear. This study investigated the effects of cadmium exposure on oxidative stress and histopathology changes [...] Read more.
Cadmium, one of the most toxic heavy metals, can cause severe oxidative damage to aquatic animals. However, the mechanism whereby the mud crabs respond to cadmium exposure remains unclear. This study investigated the effects of cadmium exposure on oxidative stress and histopathology changes and evaluated the role of the Nrf2 signaling pathway in regulating responses to cadmium-induced hepatotoxicity were investigated in mud crabs. Mud crabs were exposed to 0, 0.01, 0.05, and 0.125 mg/L cadmium for 21 d. The present results indicated that cadmium exposure increased hydrogen peroxide (H2O2) production, lipid peroxidation and tissue damage, but decreased the activity of superoxide dismutase (SOD) and catalase (CAT), and caused lipid peroxidation and tissue damage. The results of an integrated biomarker index analysis suggested that the toxicity of cadmium was positively related to cadmium concentration. The expression levels of the Nrf2 signaling pathway (Nrf2, metallothionein, and cytochrome P450 enzymes) were up-regulated after cadmium exposure. Silencing of Nrf2 in vivo decreased antioxidant gene (SOD, CAT, and glutathione S-transferase) expression, suggesting that Nrf2 can regulate antioxidant genes. Knocking down Nrf2 in vivo also significantly decreased the activity of SOD and CAT after cadmium exposure. Moreover, silencing of Nrf2 in vivo enhanced H2O2 production and the mortality rates of mud crabs after cadmium exposure. The present study indicated that cadmium exposure induced hepatotoxicity in the mud crab by increasing H2O2 content, which decreased the antioxidant capacity, leading to cell injury. In addition, the Nrf2 is activated to bound with antioxidant response element, initiating the expression of antioxidant enzyme genes during cadmium induced hepatotoxicity in the mud crabs. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

18 pages, 5725 KiB  
Article
The Protective Effect of Mulberry Leaf Flavonoids on High-Carbohydrate-Induced Liver Oxidative Stress, Inflammatory Response and Intestinal Microbiota Disturbance in Monopterus albus
by Yong Shi, Lei Zhong, Yuding Fan, Junzhi Zhang, Huan Zhong, Xiang Liu, Chuang Shao and Yi Hu
Antioxidants 2022, 11(5), 976; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11050976 - 16 May 2022
Cited by 12 | Viewed by 2360
Abstract
An 8-week feeding trial with high-carbohydrate- and 100, 200 and 300 mg/kg mulberry leaf flavonoids (MLF)-supplemented diets (HCF1, HCF2 and HCF3, respectively) was conducted to evaluate the protective effect of MLF on oxidized high-carbohydrate-induced glucose metabolism disorder, liver oxidative damage and intestinal microbiota [...] Read more.
An 8-week feeding trial with high-carbohydrate- and 100, 200 and 300 mg/kg mulberry leaf flavonoids (MLF)-supplemented diets (HCF1, HCF2 and HCF3, respectively) was conducted to evaluate the protective effect of MLF on oxidized high-carbohydrate-induced glucose metabolism disorder, liver oxidative damage and intestinal microbiota disturbance in Monopterus albus. The results showed that HC diets had significant negative effects on growth, glucose metabolism, liver antioxidant and immunity, as well as intestinal microbiota, in comparison to CON diets. However, WGR and SR in the HCF3 group dramatically increased compared to the HC group. With the increase of MLF in the HC diet, the activities of glycolysis and antioxidant enzymes in the liver tended to increase, while the changes of gluconeogenesis-related enzyme activities showed the opposite trend and significantly changed in the HCF3 group. Additionally, MLF supplementation dramatically increased the mRNA expression involved in glycolysis, antioxidative enzymes and anti-inflammatory cytokines in comparison with the HC group. Furthermore, gluconeogenesis and pro-inflammatory cytokine genes’ expression dramatically decreased. Furthermore, the proportion of Clostridium and Rhodobacter in the HC group dramatically declined, and the proportion of Lactococcus dramatically increased, compared to the HC group. In addition, 300 mg/kg MLF supplementation significantly improved the species composition and homeostasis of intestinal microbiota. These results indicate that MLF can alleviate the negative effects of low growth performance, glucose metabolism disorder, liver oxidative damage and intestinal microbiota disturbance caused by HC diets, and the relief of MLF is dose-related. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

14 pages, 4608 KiB  
Article
Water Hardness Can Reduce the Accumulation and Oxidative Stress of Zinc in Goldfish, Carassius auratus
by Cheol Young Choi, Zhongze Li, Jin Ah Song and Young-Su Park
Antioxidants 2022, 11(4), 715; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11040715 - 05 Apr 2022
Cited by 3 | Viewed by 2490
Abstract
We investigated the changes in toxicity stress in goldfish, Carassius auratus, under exposure to different concentrations of Zn and water hardness for 14 days. We analyzed the changes in water hardness and Zn accumulation after exposure. To investigate the stress levels, the [...] Read more.
We investigated the changes in toxicity stress in goldfish, Carassius auratus, under exposure to different concentrations of Zn and water hardness for 14 days. We analyzed the changes in water hardness and Zn accumulation after exposure. To investigate the stress levels, the expression of metallothionein, caspase-3 activity, NO activity, and total antioxidant capacity were detected. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were also performed to measure apoptosis in the liver. The results showed that compared to the control group, a more significant difference in the accumulation of Zn in body stress markers (metallothionein, caspase-3 activity, NO activity, and total antioxidant capacity) were observed with increasing Zn concentration and exposure time. Notably, at the same Zn concentration and exposure time, lower stress levels were discovered in the samples under harder water conditions. Finally, the TUNEL assay showed that Zn accumulation caused apoptosis and high water hardness could reduce the apoptosis. In conclusion, we found that high water hardness can influence the absorption of Zn, and alleviating the hardness levels can reduce the toxicity stress caused by Zn. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

19 pages, 4154 KiB  
Article
High-Fat-Diet-Induced Oxidative Stress in Giant Freshwater Prawn (Macrobrachium rosenbergii) via NF-κB/NO Signal Pathway and the Amelioration of Vitamin E
by Cunxin Sun, Fan Shan, Mingyang Liu, Bo Liu, Qunlan Zhou, Xiaochuan Zheng and Xiaodi Xu
Antioxidants 2022, 11(2), 228; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11020228 - 25 Jan 2022
Cited by 17 | Viewed by 2622
Abstract
Lipids work as essential energy sources for organisms. However, prawns fed on high-fat diets suffer from oxidative stress, whose potential mechanisms are poorly understood. The present study aimed to explore the regulation mechanism of oxidative stress induced by high fat and the amelioration [...] Read more.
Lipids work as essential energy sources for organisms. However, prawns fed on high-fat diets suffer from oxidative stress, whose potential mechanisms are poorly understood. The present study aimed to explore the regulation mechanism of oxidative stress induced by high fat and the amelioration by vitamin E (VE) of oxidative stress. Macrobrachium rosenbergii were fed with two dietary fat levels (LF 9% and HF 13%) and two VE levels (200 mg/kg and 600 mg/kg) for 8 weeks. The results showed that the HF diet decreased the growth performance, survival rate and antioxidant capacity of M. rosenbergii, as well as inducing hypertrophied lipid droplets, lipophagy and apoptosis. A total of 600 mg/kg of VE in the HF diet alleviated the negative effects induced by HF. In addition, the HF diet suppressed the expression of toll-dorsal and imd-relish signal pathways. After the relish and dorsal pathways were knocked down, the downstream iNOS and NO levels decreased and the MDA level increased. The results indicated that M. rosenbergii fed with a high-fat diet could cause oxidative damage. Its molecular mechanism may be attributed to the fact that high fat suppresses the NF-κB/NO signaling pathway mediating pro-oxidant and antioxidant targets for regulation of oxidative stress. Dietary VE in an HF diet alleviated hepatopancreas oxidative stress and apoptosis. Full article
(This article belongs to the Special Issue Oxidative Stress in Aquatic Organisms)
Show Figures

Figure 1

Back to TopTop