Functional Foods: Bioactivity, Bioavailability, and Biological Characteristics

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Biochemistry and Molecular Biology".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 58971

Special Issue Editors


E-Mail Website
Guest Editor
Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
Interests: bioactive compounds; drug delivery system; nutrition; bioavailability; functional biomaterials

E-Mail Website
Guest Editor
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212001, China
Interests: food nutrition and toxicology; food bioactivity
Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, USA
Interests: food bioactives; functional foods; obesity; colorectal cancer; chronic disease pre-vention; aging; gut microbiota
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

This Special Issue aims to gather cutting-edge interdisciplinary research on the topic of the bioactive compounds from functional foods, with a focus on their bioactivity, bioavailability, and biological characteristics.

Dear Colleagues,

Functional foods are foods that provide physiological benefits beyond basic nutrition when consumed regularly, and they are related to the presence of bioactive agents with several health beneficial bioactivities, such as antioxidant, anticarcinogen, antibacterial, and/or anti-inflammatory activities. Consumption of functional foods has been widely reported to reduce the risk of lifestyle-related diseases and consequently promote health and wellbeing. In this Special Issue, we expect to gather the latest and interdisciplinary research on functional foods as well as their related bioactive compounds from multiple aspects, e.g., bioactivity, bioavailability, and biological characteristics. Efficacy studies on functional food extracts with identified major bioactive compounds can also be submitted to this Special Issue. Investigators are invited to contribute with original and unpublished works. Both research and review papers are welcome.

Dr. Zipei Zhang
Prof. Dr. Quancai Sun
Dr. Xian Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • bioaccessibility and bioavailability
  • biological characteristics
  • digestion
  • food delivery systems
  • absorption
  • metabolism

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 4932 KiB  
Article
Red Ginseng Attenuates the Hepatic Cellular Senescence in Aged Mice
by Da-Yeon Lee, Juliana Arndt, Jennifer F. O’Connell, Josephine M. Egan and Yoo Kim
Biology 2024, 13(1), 36; https://0-doi-org.brum.beds.ac.uk/10.3390/biology13010036 - 08 Jan 2024
Viewed by 1649
Abstract
Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine [...] Read more.
Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine showing antioxidant, anti-inflammatory, and anti-aging properties. The current study aimed to investigate the benefits of RG in alleviating hepatic cellular senescence and its adverse effects in 19-month-old aged mice. We applied two different intervention methods and durations to compare RG’s effects in a time-dependent manner: (1) oral gavage injection for 4 weeks and (2) ad libitum intervention for 14 weeks. We observed that 4-week RG administration was exerted to maintain insulin homeostasis against developing age-associated insulin insensitivity and suppressed cellular senescence pathway in the liver and primary hepatocytes. Moreover, with remarkable improvement of insulin homeostasis, 14-week RG supplementation downregulated the activation of c-Jun N-terminal kinase (JNK) and its downstream transcriptional factor nuclear factor-κB (NF-κB) in aged mice. Lastly, RG treatment significantly reduced the senescence-associated β-galactosidase (SA-β-gal)-positive cells in primary hepatocytes and ionizing radiation (IR)-exposed mouse embryonic fibroblasts (MEFs). Taken together, we suggest that RG can be a promising candidate for a senolytic substance by preventing hepatic cellular senescence. Full article
Show Figures

Figure 1

15 pages, 3066 KiB  
Article
Alleviation of Hyperuricemia by Strictinin in AML12 Mouse Hepatocytes Treated with Xanthine and in Mice Treated with Potassium Oxonate
by Kuo-Ching Huang, Yu-Ting Chang, Rosita Pranata, Yung-Hsuan Cheng, Yu-Chi Chen, Ping-Chung Kuo, Yi-Hsuan Huang, Jason T. C. Tzen and Rong-Jane Chen
Biology 2023, 12(2), 329; https://0-doi-org.brum.beds.ac.uk/10.3390/biology12020329 - 17 Feb 2023
Cited by 1 | Viewed by 2030
Abstract
Hyperuricemia, an abnormally high level of blood uric acid, is a major risk factor for gout. Although xanthine oxidase inhibitors were clinically used to lower blood uric acid level, the concerned side effects restricted their utilization. In this study, strictinin, an abundant polyphenol [...] Read more.
Hyperuricemia, an abnormally high level of blood uric acid, is a major risk factor for gout. Although xanthine oxidase inhibitors were clinically used to lower blood uric acid level, the concerned side effects restricted their utilization. In this study, strictinin, an abundant polyphenol in Pu’er tea, was evaluated for its preventive effects on hyperuricemia. The results showed that the xanthine oxidase activity, uric acid production, and inflammation in AML12 mouse hepatocytes treated with xanthine were significantly reduced by the supplementation of strictinin. Detailed analyses revealed that strictinin inhibited xanthine-induced NLRP3 inflammasome activation. Consistently, the elevated blood uric acid level and the enhanced xanthine oxidase activity in mice treated with potassium oxonate were effectively diminished by strictinin supplementation. Moreover, for the first time, strictinin was found to promote healthy gut microbiota. Overall, strictinin possesses a great potential to be utilized as a functional ingredient for the prevention of hyperuricemia. Full article
Show Figures

Figure 1

22 pages, 2182 KiB  
Article
Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin
by Ernesta Tolpeznikaite, Vadims Bartkevics, Anna Skrastina, Romans Pavlenko, Modestas Ruzauskas, Vytaute Starkute, Egle Zokaityte, Dovile Klupsaite, Romas Ruibys, João Miguel Rocha and Elena Bartkiene
Biology 2023, 12(2), 248; https://0-doi-org.brum.beds.ac.uk/10.3390/biology12020248 - 03 Feb 2023
Cited by 4 | Viewed by 2278
Abstract
The aim of this study was to investigate the changes in bioactive compounds (L-glutamic acid (L-Glu), gamma-aminobutyric acid (GABA) and biogenic amines (BAs)) during the submerged (SMF) and solid-state (SSF) fermentation of Spirulina with lactobacilli strains (Lacticaseibacillus paracasei No. 244; Levilactobacillus brevis [...] Read more.
The aim of this study was to investigate the changes in bioactive compounds (L-glutamic acid (L-Glu), gamma-aminobutyric acid (GABA) and biogenic amines (BAs)) during the submerged (SMF) and solid-state (SSF) fermentation of Spirulina with lactobacilli strains (Lacticaseibacillus paracasei No. 244; Levilactobacillus brevis No. 173; Leuconostoc mesenteroides No. 225; Liquorilactobacillus uvarum No. 245). The antimicrobial properties of the untreated and fermented Spirulina against a variety of pathogenic and opportunistic strains were tested. The highest concentrations of L-Glu (3841 mg/kg) and GABA (2396 mg/kg) were found after 48 h of SSF with No. 173 and No. 244 strains, respectively. The LAB strain used for biotreatment and the process conditions, as well as the interaction of these factors, had statistically significant effects on the GABA concentration in Spirulina (p ≤ 0.001, p = 0.019 and p = 0.011, respectively). In all cases, the SSF of Spirulina had a higher total BA content than SMF. Most of the fermented Spirulina showed exceptional antimicrobial activity against Staphylococcus aureus but not against the other pathogenic bacteria. The ratios of BA/GABA and BA/L-Glu ranged from 0.5 to 62 and from 0.31 to 10.7, respectively. The GABA content was correlated with putrescine, cadaverine, histamine, tyramine, spermidine and spermine contents. The L-glutamic acid concentration showed positive moderate correlations with tryptamine, putrescine, spermidine and spermine. To summarize, while high concentrations of desirable compounds are formed during fermentation, the formation of non-desirable compounds (BAs) must also be considered due to the similar mechanism of their synthesis as well as the possibility of obtaining high concentrations in the end products. Full article
Show Figures

Figure 1

12 pages, 2371 KiB  
Article
Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows
by Julia Hinterseher, Juliane Günther, Kristina Zlatina, Lisa Isernhagen, Torsten Viergutz, Elisa Wirthgen, Andreas Hoeflich, Andreas Vernunft and Sebastian Peter Galuska
Biology 2023, 12(1), 5; https://0-doi-org.brum.beds.ac.uk/10.3390/biology12010005 - 20 Dec 2022
Cited by 1 | Viewed by 1485
Abstract
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, [...] Read more.
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, N-acetylneuraminic acid (Neu5Ac), can be attached as monosialyl-residues or as polymers. To investigate the sialylation processes during lactation of German Holstein cows, we analyzed udder tissue in addition to milk at different time points of lactation. The analysis of the milk samples revealed that both the levels of Neu5Ac and its polymer, polysialic acid (polySia), rapidly decreased during the first three days of lactation, and a high interindividual variance was observed. In mature milk, however, the sialylation status remains relatively constant. The results indicate that mammary gland epithelial cells are one source for milk polySia, since immunohistochemistry of udder tissue exhibited strong polySia staining in these cells. Furthermore, both polysialyltransferases, ST8SiaII and ST8SiaIV, are expressed. Based on known functions of monosialyl residues and polySia, we discuss the potential impact of these biomolecules and the consequences of the heterogeneous sialylation status of milk in relation to udder health and offspring health. Full article
Show Figures

Figure 1

12 pages, 2013 KiB  
Article
Anti-Inflammatory Property of 5-Demethylnobiletin (5-Hydroxy-6, 7, 8, 3′, 4′-pentamethoxyflavone) and Its Metabolites in Lipopolysaccharide (LPS)-Induced RAW 264.7 Cells
by Shanshan Guo, Xian Wu, Jinkai Zheng, Mingyue Song, Ping Dong and Hang Xiao
Biology 2022, 11(12), 1820; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11121820 - 14 Dec 2022
Cited by 2 | Viewed by 1174
Abstract
Hydroxylated polymethoxyflavones (PMFs) are a unique class of flavonoid compounds mainly found in citrus plants. We investigated the anti-inflammatory effects of one major 5-hydroxy PMF, namely 5-demethylnobiletin (5DN) and its metabolites 5, 3′-didemethylnobiletin (M1), 5, 4′-didemethylnobiletin (M2), and 5, 3′, 4′-tridemethylnobiletin (M3) in [...] Read more.
Hydroxylated polymethoxyflavones (PMFs) are a unique class of flavonoid compounds mainly found in citrus plants. We investigated the anti-inflammatory effects of one major 5-hydroxy PMF, namely 5-demethylnobiletin (5DN) and its metabolites 5, 3′-didemethylnobiletin (M1), 5, 4′-didemethylnobiletin (M2), and 5, 3′, 4′-tridemethylnobiletin (M3) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The results showed that M2 and M3 produced stronger inhibitory effects on the production of nitric oxide (NO) than their parent compound at non-cytotoxic concentrations. Western blotting and real-time PCR analyses demonstrated that M2 and M3 significantly decreased iNOS and COX-2 gene expression. The results also showed that M1 and M3 induced heme oxygenase-1(HO-1) gene expression. Overall, our results demonstrated that metabolites of 5DN significantly inhibited LPS-induced inflammation in RAW 264.7 macrophage cells and generally possessed more potent anti-inflammatory activity than the parent compound, 5DN. Full article
Show Figures

Figure 1

11 pages, 1653 KiB  
Article
Effects of Adding Blueberry Residue Powder and Extrusion Processing on Nutritional Components, Antioxidant Activity and Volatile Organic Compounds of Indica Rice Flour
by Xinzhen Zhang, Yang Gao, Ran Wang, Yue Sun, Xueling Li and Jin Liang
Biology 2022, 11(12), 1817; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11121817 - 14 Dec 2022
Viewed by 1548
Abstract
Using indica rice flour as the main raw material and adding blueberry residue powder, the indica rice expanded powder (REP) containing blueberry residue was prepared by extrusion and comminution. The effects of extrusion processing on the nutritional components, color difference, antioxidant performance and [...] Read more.
Using indica rice flour as the main raw material and adding blueberry residue powder, the indica rice expanded powder (REP) containing blueberry residue was prepared by extrusion and comminution. The effects of extrusion processing on the nutritional components, color difference, antioxidant performance and volatile organic compounds (VOCs) of indica rice expanded powder with or without blueberry residue were compared. The results showed that the contents of fat and total starch decreased significantly after extrusion, while the contents of total dietary fiber increased relatively. Especially, the effect of DPPH and ABTS+ free radical scavenging of the indica rice expanded flour was significantly improved by adding blueberry residue powder. A total of 104 volatile compounds were detected in the indica rice expanded powder with blueberry residue (REPBR) by Electronic Nose and GC—IMS analysis. Meanwhile, 86 volatile organic compounds were successfully identified. In addition, the contents of 16 aldehydes, 17 esters, 10 ketones and 8 alcohols increased significantly. Therefore, adding blueberry residue powder to indica rice flour for extrusion is an efficient and innovative processing method, which can significantly improve its nutritional value, antioxidant performance and flavor substances. Full article
Show Figures

Graphical abstract

13 pages, 1719 KiB  
Article
Iodine Intake and Related Cognitive Function Impairments in Elementary Schoolchildren
by Helga B. Bailote, Diana Linhares, Célia Carvalho, Susana Prazeres, Armindo S. Rodrigues and Patrícia Garcia
Biology 2022, 11(10), 1507; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11101507 - 14 Oct 2022
Cited by 2 | Viewed by 2581
Abstract
Iodine deficiency, the most common cause of preventable mental impairment worldwide, has been linked to poorer intellectual function in several studies. However, to our knowledge, no studies have been performed in moderate iodine-deficient schoolchildren using the complete form of Wechsler Intelligence Scale for [...] Read more.
Iodine deficiency, the most common cause of preventable mental impairment worldwide, has been linked to poorer intellectual function in several studies. However, to our knowledge, no studies have been performed in moderate iodine-deficient schoolchildren using the complete form of Wechsler Intelligence Scale for Children (WISC-III; Portuguese version). The main purpose of this study was to ascertain whether moderate iodine deficiency would affect the cognitive function of schoolchildren (7–11 years old; 3rd and 4th grades). Raven’s Colored Progressive Matrices (CPM; Portuguese version) were used for measuring the intelligence quotient (IQ) of the total population (n = 256; median UIC = 66.2 μg/L), and the WISC-III was used to study two selected subgroups: one moderately iodine-deficient (n = 30) and the other with adequate iodine intake (n = 30). WISC-III was shown to be the prime instrument for cognitive function assessment among moderate iodine-deficient schoolchildren; this subgroup had a Full-Scale IQ 15.13 points lower than the adequate iodine intake subgroup, with a magnitude effect of d = 0.7 (p = 0.013). Significant differences were also registered in 6 of the 13 Verbal-Performance IQ subtests. Moderate iodine deficiency has a substantial impact on mental development and cognitive functioning of schoolchildren, with significant impairment in both Performance IQ and Verbal IQ spectrum, adversely impacting their educational performance. Full article
Show Figures

Figure 1

15 pages, 3805 KiB  
Article
Anthocyanins from Opuntia ficus-indica Modulate Gut Microbiota Composition and Improve Short-Chain Fatty Acid Production
by Yun Zhang, Huan Chang, Shuai Shao, Lin Zhao, Ruiying Zhang and Shouwen Zhang
Biology 2022, 11(10), 1505; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11101505 - 14 Oct 2022
Cited by 7 | Viewed by 1592
Abstract
Opuntia ficus-indica is rich in a variety of active substances, such as anthocyanins, flavonoids, and polysaccharides. Some studies have shown that anthocyanins extracted from natural plants can regulate intestinal flora. The fruit was used as raw material, and anthocyanins were extracted from it. [...] Read more.
Opuntia ficus-indica is rich in a variety of active substances, such as anthocyanins, flavonoids, and polysaccharides. Some studies have shown that anthocyanins extracted from natural plants can regulate intestinal flora. The fruit was used as raw material, and anthocyanins were extracted from it. In vivo experiments were used to study the effect of Opuntia ficus-indica anthocyanins on the mouse intestine by 16S rRNA high-throughput sequencing (NovaSeq 6000 platform) and gas chromatography (hydrogen flame ionization detector (FID)) methods. Microbiota and effects of short-chain fatty acids (SCFAs). The results showed that after feeding anthocyanins, the diversity of intestinal microorganisms in mice was significantly increased (p < 0.05), the ratio of Firmicutes/Bacteroidetes (F/B value) was significantly decreased (p < 0.05), the relative abundances of beneficial bacteria Lactobacillus, Bifidobacterium, Prevotella, and Akkermansia in the intestinal tract of mice were significantly increased (p < 0.05), and the relative abundance of pathogenic bacteria Escherichia-Shigella and Desulfovibrio decreased significantly (p < 0.05). Furthermore, anthocyanins significantly increased the content of short-chain fatty acids in the cecum of mice, among which the content of acetic acid, propionic acid, and butyric acid increased the most. Opuntia ficus-indica anthocyanins can change the microbial diversity and flora composition of the mouse gut and promote the production of short-chain fatty acids. The findings provide a theoretical basis for the use of Opuntia ficus-indica anthocyanins as dietary supplements to regulate human intestinal flora. Full article
Show Figures

Figure 1

15 pages, 2265 KiB  
Article
Gram-Scale Preparation of Cannflavin A from Hemp (Cannabis sativa L.) and Its Inhibitory Effect on Tryptophan Catabolism Enzyme Kynurenine-3-Monooxygenase
by Tess Puopolo, Tanran Chang, Chang Liu, Huifang Li, Xu Liu, Xian Wu, Hang Ma and Navindra P. Seeram
Biology 2022, 11(10), 1416; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11101416 - 28 Sep 2022
Cited by 5 | Viewed by 2115
Abstract
Inhibitors targeting kynurenine-3-monooxygenase (KMO), an enzyme in the neurotoxic kynurenine pathway (KP), are potential therapeutics for KP metabolites-mediated neuroinflammatory and neurodegenerative disorders. Although phytochemicals from Cannabis (C. sativa L.) have been reported to show modulating effects on enzymes involved in the KP [...] Read more.
Inhibitors targeting kynurenine-3-monooxygenase (KMO), an enzyme in the neurotoxic kynurenine pathway (KP), are potential therapeutics for KP metabolites-mediated neuroinflammatory and neurodegenerative disorders. Although phytochemicals from Cannabis (C. sativa L.) have been reported to show modulating effects on enzymes involved in the KP metabolism, the inhibitory effects of C. sativa compounds, including phytocannabinoids and non-phytocannabinoids (i.e., cannflavin A; CFA), on KMO remain unknown. Herein, CFA (purified from hemp aerial material at a gram-scale) and a series of phytocannabinoids were evaluated for their anti-KMO activity. CFA showed the most active inhibitory effect on KMO, which was comparable to the positive control Ro 61-8048 (IC50 = 29.4 vs. 5.1 μM, respectively). Furthermore, a molecular docking study depicted the molecular interactions between CFA and the KMO protein and a biophysical binding assay with surface plasmon resonance (SPR) technique revealed that CFA bound to the protein with a binding affinity of 4.1×105 M. A competitive SPR binding analysis suggested that CFA and Ro 61-8048 bind to the KMO protein in a competitive manner. Our findings show that C. sativa derived phytochemicals, including CFA, are potential KMO inhibitors, which provides insight into the development of therapeutics targeting the KP and its related pathological conditions. Full article
Show Figures

Graphical abstract

12 pages, 1973 KiB  
Article
Black Ginseng Ameliorates Cellular Senescence via p53-p21/p16 Pathway in Aged Mice
by Su-Jeong Lee, Da-Yeon Lee, Jennifer F. O’Connell, Josephine M. Egan and Yoo Kim
Biology 2022, 11(8), 1108; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11081108 - 25 Jul 2022
Cited by 5 | Viewed by 2488
Abstract
Cellular senescence, one of the hallmarks of aging, refers to permanent cell cycle arrest and is accelerated during the aging process. Black ginseng (BG), prepared by a repeated steaming and drying process nine times from fresh ginseng (Panax ginseng C.A. Meyer), is [...] Read more.
Cellular senescence, one of the hallmarks of aging, refers to permanent cell cycle arrest and is accelerated during the aging process. Black ginseng (BG), prepared by a repeated steaming and drying process nine times from fresh ginseng (Panax ginseng C.A. Meyer), is garnering attention for herbal medicine due to its physiological benefits against reactive oxygen species (ROS), inflammation, and oncogenesis, which are common cues to induce aging. However, which key nodules in the cellular senescence process are regulated by BG supplementation has not been elucidated yet. In this study, we investigated the effects of BG on cellular senescence using in vitro and aged mouse models. BG-treated primary mouse embryonic fibroblasts (MEFs) in which senescence was triggered by ionizing radiation (IR) expressed less senescence-associated β-galactosidase (SA-β-gal)-positive stained cells. In our aged mice (18 months old) study, BG supplementation (300 mg/kg) for 4 weeks altered hepatic genes involved in the aging process. Furthermore, we found BG supplementation downregulated age-related inflammatory genes, especially in the complement system. Based on this observation, we demonstrated that BG supplementation led to less activation of the canonical senescence pathway, p53-dependent p21 and p16, in multiple metabolic organs such as liver, skeletal muscle and white adipose tissue. Thus, we suggest that BG is a potential senolytic candidate that retards cellular senescence. Full article
Show Figures

Figure 1

24 pages, 4315 KiB  
Article
Phenolics from Chrozophora oblongifolia Aerial Parts as Inhibitors of α-Glucosidases and Advanced Glycation End Products: In-Vitro Assessment, Molecular Docking and Dynamics Studies
by Hossam M. Abdallah, Albraa T. Kashegari, Akram A. Shalabi, Khaled M. Darwish, Ali M. El-Halawany, Mardi M. Algandaby, Sabrin R. M. Ibrahim, Gamal A. Mohamed, Ashraf B. Abdel-Naim, Abdulrahman E. Koshak, Peter Proksch and Sameh S. Elhady
Biology 2022, 11(5), 762; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11050762 - 17 May 2022
Cited by 6 | Viewed by 2264
Abstract
Modern life is associated with low physical activity that leads to the accumulation of fats, gaining more weight, and obesity. Accumulation of fat in the abdomen region contributes to diabetes via insulin resistance and hyperglycemia. Polyphenols are major plant constituents that exert antidiabetic [...] Read more.
Modern life is associated with low physical activity that leads to the accumulation of fats, gaining more weight, and obesity. Accumulation of fat in the abdomen region contributes to diabetes via insulin resistance and hyperglycemia. Polyphenols are major plant constituents that exert antidiabetic activity through different mechanisms, including radicle scavenging activity, regulation of glucose uptake, and inhibition of fat and polysaccharide hydrolysis in addition to their inhibitory role regarding the formation of advanced glycation end products (AGEs). Chemical investigation of C. oblongifolia aerial parts resulted in the isolation of five major compounds: apeginin-7-O-β-D-glucoside (1), quercetin-3-O-β-D-glucuronic acid (2), quercetin-3-O-β-D-galacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The isolated compounds were tested for their antioxidant and AGEs formation, α-glucosidase, and lipase inhibitory activities. Compound 5 revealed the highest antioxidant and AGEs inhibitory activity in bovine serum albumin (BSA)-methylglyoxal, BSA-fructose, and arginine-methylglyoxal models. Moreover, it exhibited a potent inhibitory profile on Saccharomyces cerevisiae α-glucosidases compared to the positive control, acarbose. Compound (5) further depicted promising binding affinity and stability towards the human intestinal maltase-glucoamylase α-glucosidases, which is a diabetes-related therapeutic target, through coupled molecular docking and dynamics studies. The obtained results encourage the usage of 1,3,6-trigalloyl glucose in the management of diabetes and its complications. However, detailed in-vivo studies for this compound should be performed. Full article
Show Figures

Figure 1

20 pages, 14836 KiB  
Article
D-Carvone Attenuates CCl4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway
by Hanan A. Ogaly, Sharah A. A. Aldulmani, Fatimah A. M. Al-Zahrani and Reham M. Abd-Elsalam
Biology 2022, 11(5), 739; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11050739 - 12 May 2022
Cited by 10 | Viewed by 3573
Abstract
D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone [...] Read more.
D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone in a rat model of liver fibrosis and to clarify the possible underlying mechanisms. Liver fibrosis was induced in rats by carbon tetrachloride, CCl4 (2.5 mL/kg, interperitoneally every 72 h for 8 weeks). Oral treatment of rats with D-carvone (50 mg/kg, daily) started on the 3rd week of CCl4 administration. D-carvone significantly enhanced liver functions (ALT, AST), oxidant/antioxidant status (MDA, SOD, GSH, total antioxidant capacity; TAC), as well as histopathological changes. Moreover, D-carvone effectively attenuated the progression of liver fibrosis, evident by the decreased collagen deposition and fibrosis score by Masson trichrome staining (MT) and α-SMA protein expression. Moreover, D-carvone administration resulted in a significant downregulation of the pro-fibrogenic markers TGF-β1 and SMAD3 and upregulation of MMP9. These findings reveal the anti-fibrotic effect of D-carvone and suggest regulation of the TGF-β1/SMAD3 pathway, together with the antioxidant activity as a mechanistic cassette, underlines this effect. Therefore, D-carvone could be a viable candidate for inhibiting liver fibrosis and other oxidative stress-related hepatic diseases. Clinical studies to support our hypothesis are warranted. Full article
Show Figures

Graphical abstract

15 pages, 1114 KiB  
Article
Assessment of Physicochemical and Rheological Properties of Xylo-Oligosaccharides and Glucose-Enriched Doughs Fermented with BB-12
by Gabriela Precup, Bernadette-Emőke Teleky, Floricuța Ranga and Dan Cristian Vodnar
Biology 2022, 11(4), 553; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11040553 - 02 Apr 2022
Cited by 16 | Viewed by 2889
Abstract
Xylo-oligosaccharides (XOS) are considered non-digestible fibers produced mainly from agricultural biomass and are classified as “emerging prebiotic” compounds. Since XOS were shown to promote the growth of bifidobacteria in the gut with potential effects on one’s health, scientists used them as food ingredients. [...] Read more.
Xylo-oligosaccharides (XOS) are considered non-digestible fibers produced mainly from agricultural biomass and are classified as “emerging prebiotic” compounds. Since XOS were shown to promote the growth of bifidobacteria in the gut with potential effects on one’s health, scientists used them as food ingredients. For example, the addition of XOS in bakery products could improve their physicochemical characteristics. The current work aimed to investigate the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production. The effect on viscoelastic changes during frozen storage and after the thawing process was also studied. The results showed that the viability of BB-12 increased slightly with the increase in XOS and glucose concentrations, which determined dough acidification due to accumulation of organic acids, that positively influenced the dough’s rheological properties such as a higher elasticity before and after frozen storage. With 10% XOS-addition, the acetic acid quantity reached 0.87 ± 0.03 mg/L, and the highest lactic acid concentration was found in the 10% XOS-enriched doughs, the glucose-enriched doughs and in the control sample (100% wheat dough). The quantity of glucose, maltose, XOS, and xylose decreased until the end of fermentation. Full article
Show Figures

Graphical abstract

16 pages, 3555 KiB  
Article
Comparative Analysis and Structural Modeling of Elaeis oleifera FAD2, a Fatty Acid Desaturase Involved in Unsaturated Fatty Acid Composition of American Oil Palm
by Rayda Ben Ayed, Tejas Chirmade, Mohsen Hanana, Khalil Khamassi, Sezai Ercisli, Ravish Choudhary, Narendra Kadoo and Rohini Karunakaran
Biology 2022, 11(4), 529; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11040529 - 30 Mar 2022
Cited by 4 | Viewed by 1873
Abstract
American oil palm (Elaeis oleifera) is an important source of dietary oil that could fulfill the increasing worldwide demand for cooking oil. Therefore, improving its production is crucial and could be realized through breeding and genetic engineering approaches aiming to obtain [...] Read more.
American oil palm (Elaeis oleifera) is an important source of dietary oil that could fulfill the increasing worldwide demand for cooking oil. Therefore, improving its production is crucial and could be realized through breeding and genetic engineering approaches aiming to obtain high-yielding varieties with improved oil content and quality. The fatty acid composition and particularly the oleic/linoleic acid ratio are major factors influencing oil quality. Our work focused on a fatty acid desaturase (FAD) enzyme involved in the desaturation and conversion of oleic acid to linoleic acid. Following the in silico identification and annotation of Elaeis oleifera FAD2, its molecular and structural features characterization was performed to better understand the mechanistic bases of its enzymatic activity. EoFAD2 is 1173 nucleotides long and encodes a protein of 390 amino acids that shares similarities with other FADs. Interestingly, the phylogenetic study showed three distinguished groups where EoFAD2 clustered among monocotyledonous taxa. EoFAD2 is a membrane-bound protein with five transmembrane domains presumably located in the endoplasmic reticulum. The homodimer organization model of EoFAD2 enzyme and substrates and respective substrate-binding residues were predicted and described. Moreover, the comparison between 24 FAD2 sequences from different species generated two interesting single-nucleotide polymorphisms (SNPs) associated with the oleic/linoleic acid contents. Full article
Show Figures

Figure 1

12 pages, 1945 KiB  
Article
Absorption and Transport Characteristics and Mechanisms of Carnosic Acid
by Xuexiang Chen, Meigui Huang, Dongmei Liu, Yongze Li, Qiu Luo, Katherine Pham, Minghong Wang, Jing Zhang, Runbin Zhang, Zhixi Peng and Xian Wu
Biology 2021, 10(12), 1278; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10121278 - 06 Dec 2021
Cited by 8 | Viewed by 2776
Abstract
Carnosic acid (CA) is a phenolic diterpenoid mainly found in rosemary and sage. CA has been reported to possess health-beneficial effects in various experimental settings. Herein, a mouse experiment and Caco-2 single-cell model were used to understand the absorption and transport characteristics of [...] Read more.
Carnosic acid (CA) is a phenolic diterpenoid mainly found in rosemary and sage. CA has been reported to possess health-beneficial effects in various experimental settings. Herein, a mouse experiment and Caco-2 single-cell model were used to understand the absorption and transport characteristics of CA. First, we determined the tissue distribution of CA in mice, following an oral gavage at a physiologically relevant dose. We found that CA was bioavailable systemically and present locally in the digestive tract, especially in the cecum and colon. Next, we thought to characterize the absorption and transport of CA in the Caco-2 cell monolayer model of the intestinal epithelial barrier. In the Caco-2 cell model, CA exhibited a moderate permeability and was subjected to a mild efflux. Moreover, the apparent permeability coefficient (Papp) of CA transported across Caco-2 cell monolayers was significantly changed when the inhibitors of specific active transporter and passive diffusion were added to cells, suggesting that the absorption and transport of CA involved both passive and active transportation. The present study is an important first step towards understanding the absorption, transport, and metabolic mechanisms of CA. This could provide the scientific basis for developing CA-containing functional foods or dietary supplements with improved bioavailability. Full article
Show Figures

Figure 1

15 pages, 1040 KiB  
Article
Bioactive and Physicochemical Characteristics of Natural Food: Palmyra Palm (Borassus flabellifer Linn.) Syrup
by Dung Huynh Thi Le, Chien-Shan Chiu, Yung-Jia Chan, Chiun-Chuan R. Wang, Zeng-Chin Liang, Chang-Wei Hsieh, Wen-Chien Lu, Amanda Tresiliana Mulio, Yin-Jun Wang and Po-Hsien Li
Biology 2021, 10(10), 1028; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10101028 - 11 Oct 2021
Cited by 5 | Viewed by 3110
Abstract
Palmyra palm syrup, produced from Borassus flabellifer flowers’ sap, is rich in nutrients and minerals and has unique flavors. This study evaluated the in vitro antioxidant activity, physicochemical characteristics, and Maillard reaction products of palmyra palm syrup prepared by thermal and ultrafiltration processes. [...] Read more.
Palmyra palm syrup, produced from Borassus flabellifer flowers’ sap, is rich in nutrients and minerals and has unique flavors. This study evaluated the in vitro antioxidant activity, physicochemical characteristics, and Maillard reaction products of palmyra palm syrup prepared by thermal and ultrafiltration processes. Palmyra palm syrup prepared by a thermal process had smaller L*, b* values, and larger a* values than that prepared by an ultrafiltration process. Palmyra palm syrup contained 10 vitamins, the most abundant being vitamin E. Overall, 38 volatile compounds were found and classified into six groups in the order of alcohols > acids > ketones > sulfurs > pyrazines > phenols and aldehyde. Volatile compounds depended on concentration, temperature, and ultrafiltration process. Protein content decreased because of participation in the Maillard reaction and increased 5-hydroxymethylfurfural (HMF) and total phenolic content. The HMF content was very low (0.02–14.95 mg/100 g). The radical scavenging activity of 2,2-diphenyl-1-1 picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) in palmyra palm syrup with thermal process was higher than with ultrafiltration. This study established that ultrafiltration pretreatment of palmyra palm syrup generated a good appearance and reduced the HMF content, however, it negatively affected the volatile compounds and physicochemical characteristics. Full article
Show Figures

Figure 1

19 pages, 1191 KiB  
Article
Nutritional Enhancement of Health Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in the Muscle, Liver, Kidney, and Heart of Tattykeel Australian White MARGRA Lambs Fed Pellets Fortified with Omega-3 Oil in a Feedlot System
by Shedrach Benjamin Pewan, John Roger Otto, Robert Tumwesigye Kinobe, Oyelola Abdulwasiu Adegboye and Aduli Enoch Othniel Malau-Aduli
Biology 2021, 10(9), 912; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10090912 - 14 Sep 2021
Cited by 11 | Viewed by 3077
Abstract
The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without [...] Read more.
The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without omega-3 oil fortified pellets. The hypothesis tested was that fortifying feedlot pellets with omega-3 oil will enhance the human health beneficial n-3 LC-PUFA composition of edible lamb muscle tissue and organs. Seventy-five Tattykeel Australian White lambs exclusive to the MARGRA brand, with an average body weight of 30 kg at six months of age, were randomly assigned to the following three dietary treatments of 25 lambs each, and lot-fed as a cohort for 47 days in a completely randomized experimental design: (1) Control grain pellets without oil plus hay; (2) Omega-3 oil fortified grain pellets plus hay; and (3) Commercial whole grain pellets plus hay. All lambs had ad libitum access to the basal hay diet and water. Post-slaughter fatty acid composition of the Longissimus thoracis et lumborum muscle, liver, kidney, and heart were determined using thee gas chromatography–mass spectrophotometry technique. Results indicated significant variations (p < 0.05) in fatty acid profiles between tissues and organs. Omega-3 oil fortified pellets significantly (p < 0.05) increased ≥C20 n-3 LC-PUFA (C20:5n-3 eicosapentaenoate, EPA + C22:5n3 docosapentaenoate, DPA + C22:6n3 docosahexanoate DHA); C18:3n-3 alpha-linolenate, ALA; C18:2 conjugated linoleic acid, CLA; total monounsaturated fatty acids, MUFA; polyunsaturated fatty acids, PUFA contents; and reduced the ratio of omega-6 to omega-3 fatty acids in all lamb organs and tissues without impacting shelf-life. The findings demonstrate that the inclusion of omega-3 oil in feedlot diets of lambs enhances the human health beneficial omega-3 long-chain polyunsaturated fatty acid profiles of edible muscle tissue and organs without compromising meat quality. Full article
Show Figures

Figure 1

14 pages, 2248 KiB  
Article
Comprehensive Utilization of Immature Honey Pomelo Fruit for the Production of Value-Added Compounds Using Novel Continuous Phase Transition Extraction Technology
by Guo Liu, Tao Hou, Shenglan Guo, Hongyu Lin, Meng Chen, Jianyin Miao, Xiaojuan Liu, Yahui Huang, Yong Cao, Yaqi Lan and Mingyue Song
Biology 2021, 10(8), 815; https://0-doi-org.brum.beds.ac.uk/10.3390/biology10080815 - 23 Aug 2021
Cited by 2 | Viewed by 3049
Abstract
The immature honey pomelo fruit (IPF) is a huge agro-industrial by-product generated during pomelo planting. Although IPF is rich in nutrients, more than 95% of IPF is discarded annually, which causes resource waste and a serious environmental problem. Here, we report a novel [...] Read more.
The immature honey pomelo fruit (IPF) is a huge agro-industrial by-product generated during pomelo planting. Although IPF is rich in nutrients, more than 95% of IPF is discarded annually, which causes resource waste and a serious environmental problem. Here, we report a novel continuous phase transition extraction technology (CPTE) to improve the comprehensive utilization of IPF by sequentially generating high value products and solve pollution problems related to their disposal. First, essential oil was successively extracted by CPTE at a yield of 1.12 ± 0.36%, in which 43 species were identified. Second, naringin extraction parameters were optimized using the response surface methodology (RSM), resulting in a maximum extraction rate of 99.47 ± 0.15%. Finally, pectin was extracted at a yield of 20.23 ± 0.66%, which is similar to the contents of commercial pectin. In conclusion, this study suggested that IPF was an excellent potential substrate for the production of value-added components by CPTE. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 1455 KiB  
Review
Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation
by Seba Alsawaf, Fatema Alnuaimi, Saba Afzal, Rinku Mariam Thomas, Ayshwarya Lakshmi Chelakkot, Wafaa S. Ramadan, Rawad Hodeify, Rachel Matar, Maxime Merheb, Shoib Sarwar Siddiqui and Cijo George Vazhappilly
Biology 2022, 11(12), 1717; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11121717 - 26 Nov 2022
Cited by 9 | Viewed by 3867
Abstract
The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of [...] Read more.
The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids’ role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy. Full article
Show Figures

Figure 1

17 pages, 1075 KiB  
Review
Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review
by Camren G. Heider, Sasha A. Itenberg, Jiajia Rao, Hang Ma and Xian Wu
Biology 2022, 11(6), 817; https://0-doi-org.brum.beds.ac.uk/10.3390/biology11060817 - 26 May 2022
Cited by 31 | Viewed by 10714
Abstract
Cannabis sativa L. (Cannabis) and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied for their biological effects in recent decades. Cannabidiol (CBD), a major non-intoxicating cannabinoid in Cannabis, has emerged as a promising intervention for cancer research. [...] Read more.
Cannabis sativa L. (Cannabis) and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied for their biological effects in recent decades. Cannabidiol (CBD), a major non-intoxicating cannabinoid in Cannabis, has emerged as a promising intervention for cancer research. The purpose of this review is to provide insights into the relationship between CBD and cancer based on recent research findings. The anticancer effects of CBD are mainly mediated via its interaction with the endocannabinoid system, resulting in the alleviation of pain and the promotion of immune regulation. Published reviews have focused on the applications of CBD in cancer pain management and the possible toxicological effects of its excessive consumption. In this review, we aim to summarize the mechanisms of action underlying the anticancer activities of CBD against several common cancers. Studies on the efficacy and mechanisms of CBD on cancer prevention and intervention in experimental models (i.e., cell culture- and animal-based assays) and human clinical studies are included in this review. Full article
Show Figures

Figure 1

Back to TopTop