Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

15 pages, 4316 KiB  
Article
Time- and Sex-Dependent Effects of Fingolimod Treatment in a Mouse Model of Alzheimer’s Disease
by Pablo Bascuñana, Mirjam Brackhan, Luisa Möhle, Jingyun Wu, Thomas Brüning, Ivan Eiriz, Baiba Jansone and Jens Pahnke
Biomolecules 2023, 13(2), 331; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020331 - 09 Feb 2023
Cited by 5 | Viewed by 2033
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. Fingolimod has previously shown beneficial effects in different animal models of AD. However, it has shown contradictory effects when it has been applied at early disease stages. Our objective was to evaluate fingolimod [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia. Fingolimod has previously shown beneficial effects in different animal models of AD. However, it has shown contradictory effects when it has been applied at early disease stages. Our objective was to evaluate fingolimod in two different treatment paradigms. To address this aim, we treated male and female APP-transgenic mice for 50 days, starting either before plaque deposition at 50 days of age (early) or at 125 days of age (late). To evaluate the effects, we investigated the neuroinflammatory and glial markers, the Aβ load, and the concentration of the brain-derived neurotrophic factor (BDNF). We found a reduced Aβ load only in male animals in the late treatment paradigm. These animals also showed reduced microglia activation and reduced IL-1β. No other treatment group showed any difference in comparison to the controls. On the other hand, we detected a linear correlation between BDNF and the brain Aβ concentrations. The fingolimod treatment has shown beneficial effects in AD models, but the outcome depends on the neuroinflammatory state at the start of the treatment. Thus, according to our data, a fingolimod treatment would be effective after the onset of the first AD symptoms, mainly affecting the neuroinflammatory reaction to the ongoing Aβ deposition. Full article
Show Figures

Figure 1

19 pages, 2650 KiB  
Article
Do Amino Acid Antiporters Have Asymmetric Substrate Specificity?
by Gregory Gauthier-Coles, Stephen J. Fairweather, Angelika Bröer and Stefan Bröer
Biomolecules 2023, 13(2), 301; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020301 - 06 Feb 2023
Cited by 4 | Viewed by 1357
Abstract
Amino acid antiporters mediate the 1:1 exchange of groups of amino acids. Whether substrate specificity can be different for the inward and outward facing conformation has not been investigated systematically, although examples of asymmetric transport have been reported. Here we used LC–MS to [...] Read more.
Amino acid antiporters mediate the 1:1 exchange of groups of amino acids. Whether substrate specificity can be different for the inward and outward facing conformation has not been investigated systematically, although examples of asymmetric transport have been reported. Here we used LC–MS to detect the movement of 12C- and 13C-labelled amino acid mixtures across the plasma membrane of Xenopus laevis oocytes expressing a variety of amino acid antiporters. Differences of substrate specificity between transporter paralogs were readily observed using this method. Our results suggest that antiporters are largely symmetric, equalizing the pools of their substrate amino acids. Exceptions are the antiporters y+LAT1 and y+LAT2 where neutral amino acids are co-transported with Na+ ions, favouring their import. For the antiporters ASCT1 and ASCT2 glycine acted as a selective influx substrate, while proline was a selective influx substrate of ASCT1. These data show that antiporters can display non-canonical modes of transport. Full article
(This article belongs to the Special Issue Recent Advances in Amino Acid Transporters)
Show Figures

Figure 1

19 pages, 2829 KiB  
Article
Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment
by Chiara Bacchella, Francesca Camponeschi, Paulina Kolkowska, Arian Kola, Isabella Tessari, Maria Camilla Baratto, Marco Bisaglia, Enrico Monzani, Luigi Bubacco, Stefano Mangani, Luigi Casella, Simone Dell’Acqua and Daniela Valensin
Biomolecules 2023, 13(2), 287; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020287 - 03 Feb 2023
Cited by 4 | Viewed by 1839
Abstract
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson’s disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal [...] Read more.
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson’s disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation. Full article
(This article belongs to the Special Issue Synuclein Proteins II)
Show Figures

Figure 1

18 pages, 5401 KiB  
Article
Oxaliplatin-Induced Damage to the Gastric Innervation: Role in Nausea and Vomiting
by Ahmed A. Rahman, Philenkosini Masango, Rhian Stavely, Paul Bertrand, Amanda Page and Kulmira Nurgali
Biomolecules 2023, 13(2), 276; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020276 - 01 Feb 2023
Cited by 2 | Viewed by 1623
Abstract
Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of [...] Read more.
Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of oxaliplatin treatment on the stomach. In this study, the in vivo effects of oxaliplatin treatment on eating behaviour, stomach content, intrinsic gastric neuronal population, extrinsic innervation to the stomach, levels of mucosal serotonin (5-hydroxytryptamine, 5-HT), and parasympathetic vagal efferent nerve activity were analysed. Chronic systemic oxaliplatin treatment in mice resulted in pica, indicated by increased kaolin consumption and a reduction in body weight. Oxaliplatin treatment significantly increased the stomach weight and content. The total number of myenteric and nitric oxide synthase-immunoreactive neurons as well as the density of sympathetic, parasympathetic, and sensory fibres in the stomach were decreased significantly with oxaliplatin treatment. Oxaliplatin treatment significantly increased the levels in mucosal 5-HT and the number of enterochromaffin-like cells. Chronic oxaliplatin treatment also caused a significant increase in the vagal efferent nerve activity. The findings of this study indicate that oxaliplatin exposure has adverse effects on multiple components of gastric innervation, which could be responsible for pica and gastric dysmotility. Full article
(This article belongs to the Special Issue Enteric Nervous System: Normal Functions and Enteric Neuropathies)
Show Figures

Figure 1

17 pages, 5756 KiB  
Article
Oligodendrocytes Prune Axons Containing α-Synuclein Aggregates In Vivo: Lewy Neurites as Precursors of Glial Cytoplasmic Inclusions in Multiple System Atrophy?
by Francesco De Nuccio, Marianna Kashyrina, Francesca Serinelli, Florent Laferrière, Dario Domenico Lofrumento, Francesca De Giorgi and François Ichas
Biomolecules 2023, 13(2), 269; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020269 - 01 Feb 2023
Cited by 5 | Viewed by 6576
Abstract
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson’s disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites [...] Read more.
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson’s disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn. Full article
Show Figures

Figure 1

13 pages, 2560 KiB  
Article
Identification of Inhibitors of Tubulin Polymerization Using a CRISPR-Edited Cell Line with Endogenous Fluorescent Tagging of β-Tubulin and Histone H1
by Harutyun Khachatryan, Bartlomiej Olszowy, Carlos A. Barrero, John Gordon and Oscar Perez-Leal
Biomolecules 2023, 13(2), 249; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020249 - 29 Jan 2023
Cited by 6 | Viewed by 6550
Abstract
Tubulin is a protein that plays a critical role in maintaining cellular structure and facilitating cell division. Inhibiting tubulin polymerization has been shown to be an effective strategy for inhibiting the proliferation of cancer cells. In the past, identifying compounds that could inhibit [...] Read more.
Tubulin is a protein that plays a critical role in maintaining cellular structure and facilitating cell division. Inhibiting tubulin polymerization has been shown to be an effective strategy for inhibiting the proliferation of cancer cells. In the past, identifying compounds that could inhibit tubulin polymerization has required the use of in vitro assays utilizing purified tubulin or immunofluorescence of fixed cells. This study presents a novel approach for identifying tubulin polymerization inhibitors using a CRISPR-edited cell line that expresses fluorescently tagged β-tubulin and a nuclear protein, enabling the visualization of tubulin polymerization dynamics via high-content imaging analysis (HCI). The cells were treated with known tubulin polymerization inhibitors, colchicine, and vincristine, and the resulting phenotypic changes indicative of tubulin polymerization inhibition were confirmed using HCI. Furthermore, a library of 429 kinase inhibitors was screened, resulting in the identification of three compounds (ON-01910, HMN-214, and KX2-391) that inhibit tubulin polymerization. Live cell tracking analysis confirmed that compound treatment leads to rapid tubulin depolymerization. These findings suggest that CRISPR-edited cells with fluorescently tagged endogenous β-tubulin can be utilized to screen large compound libraries containing diverse chemical families for the identification of novel tubulin polymerization inhibitors. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 2704 KiB  
Article
Metabolic Pathway Analysis: Advantages and Pitfalls for the Functional Interpretation of Metabolomics and Lipidomics Data
by Sofia Tsouka and Mojgan Masoodi
Biomolecules 2023, 13(2), 244; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020244 - 27 Jan 2023
Cited by 5 | Viewed by 3916
Abstract
Over the past decades, pathway analysis has become one of the most commonly used approaches for the functional interpretation of metabolomics data. Although the approach is widely used, it is not well standardized and the impact of different methodologies on the functional outcome [...] Read more.
Over the past decades, pathway analysis has become one of the most commonly used approaches for the functional interpretation of metabolomics data. Although the approach is widely used, it is not well standardized and the impact of different methodologies on the functional outcome is not well understood. Using four publicly available datasets, we investigated two main aspects of topological pathway analysis, namely the consideration of non-human native enzymatic reactions (e.g., from microbiota) and the interconnectivity of individual pathways. The exclusion of non-human native reactions led to detached and poorly represented reaction networks and to loss of information. The consideration of connectivity between pathways led to better emphasis of certain central metabolites in the network; however, it occasionally overemphasized the hub compounds. We proposed and examined a penalization scheme to diminish the effect of such compounds in the pathway evaluation. In order to compare and assess the results between different methodologies, we also performed over-representation analysis of the same datasets. We believe that our findings will raise awareness on both the capabilities and shortcomings of the currently used pathway analysis practices in metabolomics. Additionally, it will provide insights on various methodologies and strategies that should be considered for the analysis and interpretation of metabolomics data. Full article
(This article belongs to the Collection Metabolomics and Integrated Multi-Omics in Health and Disease)
Show Figures

Figure 1

16 pages, 3321 KiB  
Article
The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase
by Federico Sebastiani, Chiara Baroni, Gaurav Patil, Andrea Dali, Maurizio Becucci, Stefan Hofbauer and Giulietta Smulevich
Biomolecules 2023, 13(2), 235; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020235 - 25 Jan 2023
Cited by 4 | Viewed by 3601
Abstract
Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by [...] Read more.
Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by coproheme decarboxylase (ChdC), in a stepwise process. Decarboxylation of propionate 2 produces an intermediate that rotates by 90° inside the protein pocket, bringing propionate 4 near the catalytic tyrosine, to allow the second decarboxylation step. The active site of ChdCs is stabilized by an extensive H-bond network involving water molecules, specific amino acid residues, and the propionate groups of the porphyrin. To evaluate the role of these H-bonds in the pocket stability and enzyme functionality, we characterized, via resonance Raman and electronic absorption spectroscopies, single and double mutants of the actinobacterial pathogen Corynebacterium diphtheriae ChdC complexed with coproheme and heme b. The selective elimination of the H-bond interactions between propionates 2, 4, 6, and 7 and the polar residues of the pocket allowed us to establish the role of each H-bond in the catalytic reaction and to follow the changes in the interactions from the substrate to the product. Full article
Show Figures

Figure 1

15 pages, 3130 KiB  
Article
Hazard Assessment of Polystyrene Nanoplastics in Primary Human Nasal Epithelial Cells, Focusing on the Autophagic Effects
by Balasubramanyam Annangi, Aliro Villacorta, Montserrat López-Mesas, Victor Fuentes-Cebrian, Ricard Marcos and Alba Hernández
Biomolecules 2023, 13(2), 220; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020220 - 23 Jan 2023
Cited by 9 | Viewed by 2434
Abstract
The human health risks posed by micro/nanoplastics (MNPLs), as emerging pollutants of environmental/health concern, need to be urgently addressed as part of a needed hazard assessment. The routes of MNPL exposure in humans could mainly come from oral, inhalation, or dermal means. Among [...] Read more.
The human health risks posed by micro/nanoplastics (MNPLs), as emerging pollutants of environmental/health concern, need to be urgently addressed as part of a needed hazard assessment. The routes of MNPL exposure in humans could mainly come from oral, inhalation, or dermal means. Among them, inhalation exposure to MNPLs is the least studied area, even though their widespread presence in the air is dramatically increasing. In this context, this study focused on the potential hazard of polystyrene nanoplastics (PSNPLs with sizes 50 and 500 nm) in human primary nasal epithelial cells (HNEpCs), with the first line of cells acting as a physical and immune barrier in the respiratory system. Primarily, cellular internalization was evaluated by utilizing laboratory-labeled fluorescence PSNPLs with iDye, a commercial, pink-colored dye, using confocal microscopy, and found PSNPLs to be significantly internalized by HNEpCs. After, various cellular effects, such as the induction of intracellular reactive oxygen species (iROS), the loss of mitochondrial membrane potential (MMP), and the modulation of the autophagy pathway in the form of the accumulation of autophagosomes (LC3-II) and p62 markers (a ubiquitin involved in the clearance of cell debris), were evaluated after cell exposure. The data demonstrated significant increases in iROS, a decrease in MMP, as well as a greater accumulation of LC3-II and p62 in the presence of PSNPLs. Notably, the autophagic effects did indicate the implications of PSNPLs in defective or insufficient autophagy. This is the first study showing the autophagy pathway as a possible target for PSNPL-induced adverse effects in HNEpCs. When taken together, this study proved the cellular effects of PSNPLs in HNEpCs and adds value to the existing studies as a part of the respiratory risk assessment of MNPLs. Full article
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
Aquaporin-1 and Aquaporin-4 Expression in Ependyma, Choroid Plexus and Surrounding Transition Zones in the Human Brain
by Ronja Bihlmaier, Felix Deffner, Ulrich Mattheus, Peter H. Neckel, Bernhard Hirt and Andreas F. Mack
Biomolecules 2023, 13(2), 212; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020212 - 22 Jan 2023
Cited by 3 | Viewed by 2102
Abstract
The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood–CSF barrier. These cells form a [...] Read more.
The choroid plexus (CP) is a structure in the brain ventricles that produces the main part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial characteristics and are the site of the blood–CSF barrier. These cells form a contiguous cell sheet with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast, CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin–dystroglycan complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan expression was associated with laminin staining in the glial plate and the CP epithelium. This suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and could possibly serve as a drainage and clearing pathway for metabolites. Full article
Show Figures

Figure 1

21 pages, 2060 KiB  
Article
Updated Virophage Taxonomy and Distinction from Polinton-like Viruses
by Simon Roux, Matthias G. Fischer, Thomas Hackl, Laura A. Katz, Frederik Schulz and Natalya Yutin
Biomolecules 2023, 13(2), 204; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020204 - 19 Jan 2023
Cited by 11 | Viewed by 4013
Abstract
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of “hyperparasitism” in the viral world. While only a handful of virophages have been isolated, a vast [...] Read more.
Virophages are small dsDNA viruses that hijack the machinery of giant viruses during the co-infection of a protist (i.e., microeukaryotic) host and represent an exceptional case of “hyperparasitism” in the viral world. While only a handful of virophages have been isolated, a vast diversity of virophage-like sequences have been uncovered from diverse metagenomes. Their wide ecological distribution, idiosyncratic infection and replication strategy, ability to integrate into protist and giant virus genomes and potential role in antiviral defense have made virophages a topic of broad interest. However, one limitation for further studies is the lack of clarity regarding the nomenclature and taxonomy of this group of viruses. Specifically, virophages have been linked in the literature to other “virophage-like” mobile genetic elements and viruses, including polinton-like viruses (PLVs), but there are no formal demarcation criteria and proper nomenclature for either group, i.e., virophage or PLVs. Here, as part of the ICTV Virophage Study Group, we leverage a large set of genomes gathered from published datasets as well as newly generated protist genomes to propose delineation criteria and classification methods at multiple taxonomic ranks for virophages ‘sensu stricto’, i.e., genomes related to the prototype isolates Sputnik and mavirus. Based on a combination of comparative genomics and phylogenetic analyses, we show that this group of virophages forms a cohesive taxon that we propose to establish at the class level and suggest a subdivision into four orders and seven families with distinctive ecogenomic features. Finally, to illustrate how the proposed delineation criteria and classification method would be used, we apply these to two recently published datasets, which we show include both virophages and other virophage-related elements. Overall, we see this proposed classification as a necessary first step to provide a robust taxonomic framework in this area of the virosphere, which will need to be expanded in the future to cover other virophage-related viruses such as PLVs. Full article
Show Figures

Figure 1

13 pages, 2656 KiB  
Article
Chronic Exposure to Low-Molecular-Weight Polycyclic Aromatic Hydrocarbons Promotes Lipid Accumulation and Metabolic Inflammation
by Asia Bright, Fenfen Li, Miranda Movahed, Hang Shi and Bingzhong Xue
Biomolecules 2023, 13(2), 196; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13020196 - 18 Jan 2023
Cited by 8 | Viewed by 1820
Abstract
2-naphthol is a low-molecular-weight (LMW) polycyclic aromatic hydrocarbon (PAH) and air pollutant associated with childhood obesity. There has been a recent emergence of studies on the consequences of PAHs on human health. Current epidemiological reports suggest LMW-PAHs may contribute to obesity incidences in [...] Read more.
2-naphthol is a low-molecular-weight (LMW) polycyclic aromatic hydrocarbon (PAH) and air pollutant associated with childhood obesity. There has been a recent emergence of studies on the consequences of PAHs on human health. Current epidemiological reports suggest LMW-PAHs may contribute to obesity incidences in children, yet most studies focus on high-molecular-weight PAHs. This study explores 2-naphthol’s impact on obesity and obesity-associated metabolic disorders. To investigate 2-naphthol’s effect on lipid metabolism and inflammation, we employed 3T3-L1 and BAT1 cell lines to model white and brown adipocytes, respectively, alongside a murine macrophage cell line (RAW264.7). We found that 2-naphthol increased the expression of key adipogenic and lipogenic genes while decreasing lipolytic gene expression in chronically treated 3T3-L1 and BAT1 adipocytes. In addition, chronic 2-naphthol treatment also suppressed adrenergic-stimulated thermogenic gene expression in BAT1 brown adipocytes. In consistence, an increase in lipid accumulation was demonstrated in BODIPY and Oil Red O-stained adipocytes. Additionally, 3T3-L1 adipocytes and RAW264.7 macrophages chronically exposed to 2-naphthol showed upregulated mRNA expression of major inflammatory cytokines (e.g., tumor necrosis factor α (Tnfα), interleukin-1β (Il-1β), and Il-6). In summary, chronic exposure to 2-naphthol stimulates lipid accumulation in adipocytes and inflammation in adipocytes and macrophages. These findings support previous research that demonstrates 2-naphthol has obesogenic potential. Full article
Show Figures

Figure 1

15 pages, 1926 KiB  
Article
Glycosylated Lipopeptides—Synthesis and Evaluation of Antimicrobial Activity and Cytotoxicity
by Karol Sikora, Marta Bauer, Sylwia Bartoszewska, Damian Neubauer and Wojciech Kamysz
Biomolecules 2023, 13(1), 172; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010172 - 13 Jan 2023
Cited by 1 | Viewed by 1822
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that may be used to combat pathogens such as bacteria and fungi. USCLs consist of a few basic amino acid residues and at least one lipid moiety, usually a fatty acid chain. Generally, USCLs are [...] Read more.
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that may be used to combat pathogens such as bacteria and fungi. USCLs consist of a few basic amino acid residues and at least one lipid moiety, usually a fatty acid chain. Generally, USCLs are potent antimicrobials but their major shortcoming is a relatively high cytotoxicity and hemolytic activity. Glycopeptide antibiotics (e.g. vancomycin) are essential in combating bacterial infections and are popular in medicinal practice. However, literature concerning the effect of glycosylation of peptides on their antimicrobial activity is rather scarce. For the first time, this study highlights the effect of USCLs glycosylation on in vitro biological activity. The aim of this study was to evaluate the impact of glycosylation of a series of USCLs on antimicrobial activity, cytotoxicity and hemolytic activity. Straight-chain fatty acids (C14, C16, C18) were attached to the N-terminal amino group of tripeptides—SRR-NH2, RSR-NH2 and RRS-NH2. Two groups of the lipopeptides were synthetized, the first with unmodified L-serine (USCLs) and the other with L-serine O-glycosylated by N-acetyl-β-d-glucosamine to produce new class of glycosylated ultrashort cationic lipopeptide (gUSCLs). Both USCLs and gUSCLs were tested against planktonic and biofilm cultures of ESKAPE strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Candida glabrata, and hemolytic activity on human erythrocytes and cytotoxicity against the HaCaT cell line was examined. Generally, USCLs and gUSCLs proved to be active against all the tested strains. The highest activity displayed was by lipopeptides containing the C18 fatty acid. Antimicrobial, hemolytic and cytotoxic activities were mainly correlated with amino acid sequence (position of serine/glycosylated serine) and hydrophobicity of molecule and were found to be highly strain-dependent. In general, glycosylation did not guarantee an increased antimicrobial activity or a decreased hemolytic and cytotoxic activities. However, in some cases, gUSCLs proved to be superior to their USCLs analogs. The most pronounced differences were found for peptides with C18 fatty acid and serine at the first and second position against both planktonic cells and biofilm of C. glabrata, as well as the second and third position against S. aureus. It is noteworthy that gUSCLs were also more active against biofilm than were USCLs. Full article
(This article belongs to the Special Issue Nature Inspired Peptides in Medical Sciences)
Show Figures

Graphical abstract

12 pages, 2632 KiB  
Article
Sub-Millisecond Photoinduced Dynamics of Free and EL222-Bound FMN by Stimulated Raman and Visible Absorption Spectroscopies
by Yingliang Liu, Aditya S. Chaudhari, Aditi Chatterjee, Prokopis C. Andrikopoulos, Alessandra Picchiotti, Mateusz Rebarz, Miroslav Kloz, Victor A. Lorenz-Fonfria, Bohdan Schneider and Gustavo Fuertes
Biomolecules 2023, 13(1), 161; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010161 - 12 Jan 2023
Cited by 1 | Viewed by 2229
Abstract
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm−1, which covers only part of the spectrum of biologically relevant time scales [...] Read more.
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm−1, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200–2200 cm−1) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump. The extended time scale and wavenumber range allowed us to monitor the complete excited-state dynamics of the biological chromophore flavin mononucleotide (FMN), both free in solution and embedded in two variants of the bacterial light-oxygen-voltage (LOV) photoreceptor EL222. The observed lifetimes and intermediate states (singlet, triplet, and adduct) are in agreement with previous time-resolved infrared spectroscopy experiments. Importantly, we found evidence for additional dynamical events, particularly upon analysis of the low-frequency Raman region below 1000 cm−1. We show that fs-to-sub-ms visTA/FSRS with a broad wavenumber range is a useful tool to characterize short-lived conformationally excited states in flavoproteins and potentially other light-responsive proteins. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics Section)
Show Figures

Figure 1

15 pages, 3374 KiB  
Article
Combining Semi-Targeted Metabolomics and Machine Learning to Identify Metabolic Alterations in the Serum and Urine of Hospitalized Patients with COVID-19
by Gerard Baiges-Gaya, Simona Iftimie, Helena Castañé, Elisabet Rodríguez-Tomàs, Andrea Jiménez-Franco, Ana F. López-Azcona, Antoni Castro, Jordi Camps and Jorge Joven
Biomolecules 2023, 13(1), 163; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010163 - 12 Jan 2023
Cited by 7 | Viewed by 2260
Abstract
Viral infections cause metabolic dysregulation in the infected organism. The present study used metabolomics techniques and machine learning algorithms to retrospectively analyze the alterations of a broad panel of metabolites in the serum and urine of a cohort of 126 patients hospitalized with [...] Read more.
Viral infections cause metabolic dysregulation in the infected organism. The present study used metabolomics techniques and machine learning algorithms to retrospectively analyze the alterations of a broad panel of metabolites in the serum and urine of a cohort of 126 patients hospitalized with COVID-19. Results were compared with those of 50 healthy subjects and 45 COVID-19-negative patients but with bacterial infectious diseases. Metabolites were analyzed by gas chromatography coupled to quadrupole time-of-flight mass spectrometry. The main metabolites altered in the sera of COVID-19 patients were those of pentose glucuronate interconversion, ascorbate and fructose metabolism, nucleotide sugars, and nucleotide and amino acid metabolism. Alterations in serum maltose, mannonic acid, xylitol, or glyceric acid metabolites segregated positive patients from the control group with high diagnostic accuracy, while succinic acid segregated positive patients from those with other disparate infectious diseases. Increased lauric acid concentrations were associated with the severity of infection and death. Urine analyses could not discriminate between groups. Targeted metabolomics and machine learning algorithms facilitated the exploration of the metabolic alterations underlying COVID-19 infection, and to identify the potential biomarkers for the diagnosis and prognosis of the disease. Full article
(This article belongs to the Special Issue Metabolic Pathways and COVID-19: Mechanisms and Clinical Implications)
Show Figures

Figure 1

17 pages, 26388 KiB  
Article
Improving Protein–Ligand Interaction Modeling with cryo-EM Data, Templates, and Deep Learning in 2021 Ligand Model Challenge
by Nabin Giri and Jianlin Cheng
Biomolecules 2023, 13(1), 132; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010132 - 09 Jan 2023
Cited by 9 | Viewed by 3145
Abstract
Elucidating protein–ligand interaction is crucial for studying the function of proteins and compounds in an organism and critical for drug discovery and design. The problem of protein–ligand interaction is traditionally tackled by molecular docking and simulation, which is based on physical forces and [...] Read more.
Elucidating protein–ligand interaction is crucial for studying the function of proteins and compounds in an organism and critical for drug discovery and design. The problem of protein–ligand interaction is traditionally tackled by molecular docking and simulation, which is based on physical forces and statistical potentials and cannot effectively leverage cryo-EM data and existing protein structural information in the protein–ligand modeling process. In this work, we developed a deep learning bioinformatics pipeline (DeepProLigand) to predict protein–ligand interactions from cryo-EM density maps of proteins and ligands. DeepProLigand first uses a deep learning method to predict the structure of proteins from cryo-EM maps, which is averaged with a reference (template) structure of the proteins to produce a combined structure to add ligands. The ligands are then identified and added into the structure to generate a protein–ligand complex structure, which is further refined. The method based on the deep learning prediction and template-based modeling was blindly tested in the 2021 EMDataResource Ligand Challenge and was ranked first in fitting ligands to cryo-EM density maps. These results demonstrate that the deep learning bioinformatics approach is a promising direction for modeling protein–ligand interactions on cryo-EM data using prior structural information. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics and Systems Biology Section)
Show Figures

Figure 1

20 pages, 3979 KiB  
Article
Selenium-Substituted Monomethine Cyanine Dyes as Selective G-Quadruplex Spectroscopic Probes with Theranostic Potential
by Ivana Fabijanić, Atanas Kurutos, Ana Tomašić Paić, Vanja Tadić, Fadhil S. Kamounah, Lucija Horvat, Anamaria Brozovic, Ivo Crnolatac and Marijana Radić Stojković
Biomolecules 2023, 13(1), 128; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010128 - 07 Jan 2023
Cited by 4 | Viewed by 2685
Abstract
The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the [...] Read more.
The binding interactions of six ligands, neutral and monocationic asymmetric monomethine cyanine dyes comprising benzoselenazolyl moiety with duplex DNA and RNA and G-quadruplex structures were evaluated using fluorescence, UV/Vis (thermal melting) and circular dichroism (CD) spectroscopy. The main objective was to assess the impact of different substituents (methyl vs. sulfopropyl vs. thiopropyl/thioethyl) on the nitrogen atom of the benzothiazolyl chromophore on various nucleic acid structures. The monomethine cyanine dyes with methyl substituents showed a 100-fold selectivity for G-quadruplex versus duplex DNA. Study results indicate that cyanines bind with G-quadruplex via end π-π stacking interactions and possible additional interactions with nucleobases/phosphate backbone of grooves or loop bases. Cyanine with thioethyl substituent distinguishes duplex DNA and RNA and G-quadruplex structures by distinctly varying ICD signals. Furthermore, cell viability assay reveals the submicromolar activity of cyanines with methyl substituents against all tested human cancer cell lines. Confocal microscopy analysis shows preferential accumulation of cyanines with sulfopropyl and thioethyl substituents in mitochondria and indicates localization of cyanines with methyl in nucleus, particularly nucleolus. This confirms the potential of examined cyanines as theranostic agents, possessing both fluorescent properties and cell viability inhibitory effect. Full article
(This article belongs to the Special Issue Polynucleotides)
Show Figures

Graphical abstract

15 pages, 3524 KiB  
Article
The Placentas of Women Who Suffer an Episode of Psychosis during Pregnancy Have Increased Lipid Peroxidation with Evidence of Ferroptosis
by Miguel A. Ortega, Oscar Fraile-Martinez, Cielo García-Montero, Rosa M. Funes Moñux, Sonia Rodriguez-Martín, Coral Bravo, Juan A. De Leon-Luis, Jose V. Saz, Miguel A. Saez, Luis G. Guijarro, Guillermo Lahera, Fernando Mora, Sonia Fernandez-Rojo, Javier Quintero, Jorge Monserrat, Natalio García-Honduvilla, Julia Bujan, Melchor Alvarez-Mon and Miguel Angel Alvarez-Mon
Biomolecules 2023, 13(1), 120; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010120 - 06 Jan 2023
Cited by 10 | Viewed by 2399
Abstract
Psychosis is a complex entity characterized by psychological, behavioral, and motor alterations resulting in a loss of contact with reality. Although it is not common, pregnancy can be a period in which a first episode of psychosis can manifest, entailing detrimental consequences for [...] Read more.
Psychosis is a complex entity characterized by psychological, behavioral, and motor alterations resulting in a loss of contact with reality. Although it is not common, pregnancy can be a period in which a first episode of psychosis can manifest, entailing detrimental consequences for both the fetus and the mother. The pathophysiological basis and study of maternofetal wellbeing need to be further elucidated. Lipid peroxidation and ferroptosis are two phenomena that are tightly linked to the placental dysfunction commonly observed in different complications of pregnancy. In the present study, we aim to explore the histopathological and gene expression of different markers of lipid peroxidation and ferroptosis in the placentas of women who underwent a first episode of psychosis during their pregnancy (n = 22). The aim is to then compare them with healthy pregnant women (n = 20). In order to achieve this goal, iron deposits were studied using Prussian Blue staining. In addition, the protein/gene expression of a transferrin receptor (TFRC), as well as an acyl-CoA synthetase long-chain family member 4 (ACSL-4), arachidonate lipoxygenase-5 (ALOX-5), malondialdehyde (MDA), and glutathione peroxidase 4 (GPX4) were all analyzed through gene expression (RT-qPCR) and immunohistochemical procedures. Our results demonstrate an increased presence of iron deposits that are accompanied by a further expression of TFRC, ACSL-4, ALOX-5, MDA, and GPX4—all of which are observed in the placenta tissue of women who have suffered from a first episode of psychosis. Therefore, in our study, a histopathological increase in lipid peroxidation and ferroptosis markers in the affected women is suggested. However, further studies are needed in order to validate our results and to establish possible consequences for the reported alterations. Full article
(This article belongs to the Special Issue Placental-Related Disorders of Pregnancy)
Show Figures

Figure 1

21 pages, 2757 KiB  
Article
Effects of Chronic Caffeine Consumption on Synaptic Function, Metabolism and Adenosine Modulation in Different Brain Areas
by Cátia R. Lopes, Andreia Oliveira, Ingride Gaspar, Matilde S. Rodrigues, Joana Santos, Eszter Szabó, Henrique B. Silva, Ângelo R. Tomé, Paula M. Canas, Paula Agostinho, Rui A. Carvalho, Rodrigo A. Cunha, Ana Patrícia Simões, João Pedro Lopes and Samira G. Ferreira
Biomolecules 2023, 13(1), 106; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010106 - 04 Jan 2023
Cited by 3 | Viewed by 4563
Abstract
Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity [...] Read more.
Adenosine receptors mainly control synaptic function, and excessive activation of adenosine receptors may worsen the onset of many neurological disorders. Accordingly, the regular intake of moderate doses of caffeine antagonizes adenosine receptors and affords robust neuroprotection. Although caffeine intake alters brain functional connectivity and multi-omics analyses indicate that caffeine intake modifies synaptic and metabolic processes, it is unclear how caffeine intake affects behavior, synaptic plasticity and its modulation by adenosine. We now report that male mice drinking caffeinated water (0.3 g/L) for 2 weeks were behaviorally indistinguishable (locomotion, mood, memory) from control mice (drinking water) and displayed superimposable synaptic plasticity (long-term potentiation) in different brain areas (hippocampus, prefrontal cortex, amygdala). Moreover, there was a general preservation of the efficiency of adenosine A1 and A2A receptors to control synaptic transmission and plasticity, although there was a tendency for lower levels of endogenous adenosine ensuring A1 receptor-mediated inhibition. In spite of similar behavioral and neurophysiological function, caffeine intake increased the energy charge and redox state of cortical synaptosomes. This increased metabolic competence likely involved a putative increase in the glycolytic rate in synapses and a prospective greater astrocyte–synapse lactate shuttling. It was concluded that caffeine intake does not trigger evident alterations of behavior or of synaptic plasticity but increases the metabolic competence of synapses, which might be related with the previously described better ability of animals consuming caffeine to cope with deleterious stimuli triggering brain dysfunction. Full article
Show Figures

Figure 1

12 pages, 1886 KiB  
Article
Lack of Epileptogenic Effects of the Creatine Precursor Guanidinoacetic Acid on Neuronal Cultures In Vitro
by Fabio Poggio, Martina Brofiga, Mariateresa Tedesco, Paolo Massobrio, Enrico Adriano and Maurizio Balestrino
Biomolecules 2023, 13(1), 74; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010074 - 30 Dec 2022
Cited by 1 | Viewed by 1821
Abstract
The creatine precursor Guanidinoacetic Acid (GAA) accumulates in the genetic deficiency of the GuanidinoAcetate Methyl Transferase (GAMT) enzyme and it is believed to cause the seizures that often occur in this condition. However, evidence that it is indeed epileptogenic is scarce and we [...] Read more.
The creatine precursor Guanidinoacetic Acid (GAA) accumulates in the genetic deficiency of the GuanidinoAcetate Methyl Transferase (GAMT) enzyme and it is believed to cause the seizures that often occur in this condition. However, evidence that it is indeed epileptogenic is scarce and we previously found that it does not cause neuronal hyperexcitation in in vitro brain slices. Here, we used Micro-Electrode Arrays (MEAs) to further investigate the electrophysiological effects of its acute and chronic administration in the networks of cultured neurons, either neocortical or hippocampal. We found that: (1) GAA at the 1 µM concentration, comparable to its concentration in normal cerebrospinal fluid, does not modify any of the parameters we investigated in either neuronal type; (2) at the 10 µM concentration, very similar to that found in the GAMT deficiency, it did not affect any of the parameters we tested except the bursting rate of neocortical networks and the burst duration of hippocampal networks, both of which were decreased, a change pointing in a direction opposite to epileptogenesis; (3) at the very high and unphysiological 100 µM concentration, it caused a decrease in all parameters, a change that again goes in the direction opposite to epileptogenesis. Our results confirm that GAA is not epileptogenic. Full article
(This article belongs to the Collection Feature Papers in Chemical Biology)
Show Figures

Figure 1

19 pages, 2948 KiB  
Article
Carrying Temoporfin with Human Serum Albumin: A New Perspective for Photodynamic Application in Head and Neck Cancer
by Edoardo Jun Mattioli, Luca Ulfo, Alessia Marconi, Valentina Pellicioni, Paolo Emidio Costantini, Tainah Dorina Marforio, Matteo Di Giosia, Alberto Danielli, Carmela Fimognari, Eleonora Turrini and Matteo Calvaresi
Biomolecules 2023, 13(1), 68; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010068 - 29 Dec 2022
Cited by 8 | Viewed by 2539
Abstract
Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced [...] Read more.
Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential. Full article
(This article belongs to the Special Issue Involvement of Oxidative Stress Signalling Pathways in Cell Death)
Show Figures

Figure 1

13 pages, 2222 KiB  
Article
Iron Deprivation by Oral Deferoxamine Application Alleviates Acute Campylobacteriosis in a Clinical Murine Campylobacter jejuni Infection Model
by Stefan Bereswill, Soraya Mousavi, Dennis Weschka, Agnes Buczkowski, Sebastian Schmidt and Markus M. Heimesaat
Biomolecules 2023, 13(1), 71; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010071 - 29 Dec 2022
Cited by 6 | Viewed by 1405
Abstract
The progressively rising food-borne Campylobacter jejuni infections pose serious health problems and socioeconomic burdens. Given that antibiotic therapy is not recommended for most campylobacteriosis patients, novel treatment options include strategies targeting iron homeostasis that impacts both C. jejuni virulence and inflammatory cell damage [...] Read more.
The progressively rising food-borne Campylobacter jejuni infections pose serious health problems and socioeconomic burdens. Given that antibiotic therapy is not recommended for most campylobacteriosis patients, novel treatment options include strategies targeting iron homeostasis that impacts both C. jejuni virulence and inflammatory cell damage caused by toxic oxygen species. In our preclinical intervention study, we tested potential disease-alleviating effects upon prophylactic oral application of the iron-chelating compound desferoxamine (DESF) in acute murine campylobacteriosis. Therefore, microbiota-depleted IL-10−/− mice received synthetic DESF via the drinking water starting seven days before oral infection with C. jejuni strain 81-176. Results revealed that the DESF application did not reduce gastrointestinal pathogen loads but significantly improved the clinical outcome of infected mice at day 6 post-infection. This was accompanied by less pronounced colonic epithelial cell apoptosis, attenuated accumulation of neutrophils in the infected large intestines and abolished intestinal IFN-γ and even systemic MCP-1 secretion. In conclusion, our study highlights the applied murine campylobacteriosis model as suitable for investigating the role of iron in C. jejuni infection in vivo as demonstrated by the disease-alleviating effects of specific iron binding by oral DESF application in acute C. jejuni induced enterocolitis. Full article
(This article belongs to the Special Issue Molecular Targets in Campylobacter Infections)
Show Figures

Figure 1

10 pages, 1616 KiB  
Article
Age- and Sex-Dependent Behavioral and Neurochemical Alterations in hLRRK2-G2019S BAC Mice
by Ning Yao, Olga Skiteva and Karima Chergui
Biomolecules 2023, 13(1), 51; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010051 - 27 Dec 2022
Cited by 1 | Viewed by 1407
Abstract
The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with late-onset Parkinson’s disease (PD). Although PD affects men and women differently, longitudinal studies examining sex- and age-dependent alterations in mice carrying the G2019S mutation are limited. We [...] Read more.
The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with late-onset Parkinson’s disease (PD). Although PD affects men and women differently, longitudinal studies examining sex- and age-dependent alterations in mice carrying the G2019S mutation are limited. We examined if behavioral and neurochemical dysfunctions, as well as neurodegeneration, occur in male and female BAC LRRK2-hG2019S (G2019S) mice, compared to their age-matched wild type littermates, at four age ranges. In the open field test, hyperlocomotion was observed in 10–12 month old male and 2–4.5 months old female G2019S mice. In the pole test, motor coordination was impaired in male G2019S mice from 15 months of age and in 20–21 months old female G2019S mice. In the striatum of G2019S male and female mice, the amounts of tyrosine hydroxylase (TH), measured with Western blotting, were unaltered. However, we found a decreased expression of the dopamine transporter in 20–21 month old male G2019S mice. The number of TH-positive neurons in the substantia nigra compacta was unaltered in 20–21 month old male and female G2019S mice. These results identify sex- and age-dependent differences in the occurrence of motor and neurochemical deficits in BAC LRRK2-hG2019S mice, and no degeneration of DA neurons. Full article
(This article belongs to the Special Issue Pathological Roles of LRRK2)
Show Figures

Figure 1

16 pages, 17434 KiB  
Article
Tuning Liposome Stability in Biological Environments and Intracellular Drug Release Kinetics
by Keni Yang, Karolina Tran and Anna Salvati
Biomolecules 2023, 13(1), 59; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010059 - 27 Dec 2022
Cited by 2 | Viewed by 3370
Abstract
Ideal drug carriers should be stable in biological environments but eventually release their drug load once inside the targeted cells. These two aspects can be in contrast with each other, thus they need to be carefully tuned in order to achieve the desired [...] Read more.
Ideal drug carriers should be stable in biological environments but eventually release their drug load once inside the targeted cells. These two aspects can be in contrast with each other, thus they need to be carefully tuned in order to achieve the desired properties for specific applications. Quantifying drug release profiles in biological environments or inside cells can be highly challenging, and standard methods to determine drug release kinetics in many cases cannot be applied to complex biological environments or cells. Within this context, the present work combined kinetic studies by flow cytometry with aging experiments in biological fluids and size-exclusion chromatography to determine drug release profiles in biological environments and inside cells. To this purpose, anionic and zwitterionic liposomes were used as model nanomedicines. By changing lipid composition, liposome stability in serum and intracellular release kinetics could be tuned and formulations with very different properties could be obtained. The methods presented can be used to characterize liposome release profiles in complex biological media, as well as inside cells. In this way, liposome composition can be tuned in order to achieve formulations with optimal balance between stability and release kinetics for specific applications. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Graphical abstract

16 pages, 3451 KiB  
Article
Thrombin-Mediated Formation of Globular Adiponectin Promotes an Increase in Adipose Tissue Mass
by Peter Zahradka, Carla G. Taylor, Leslee Tworek, Raissa Perrault, Sofia M’Seffar, Megha Murali, Tara Loader and Jeffrey T. Wigle
Biomolecules 2023, 13(1), 30; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010030 - 23 Dec 2022
Cited by 2 | Viewed by 1909
Abstract
A decrease in the circulating levels of adiponectin in obesity increases the risk of metabolic complications, but the role of globular adiponectin, a truncated form produced by proteolytic cleavage, has not been defined. The objective of this investigation was to determine how globular [...] Read more.
A decrease in the circulating levels of adiponectin in obesity increases the risk of metabolic complications, but the role of globular adiponectin, a truncated form produced by proteolytic cleavage, has not been defined. The objective of this investigation was to determine how globular adiponectin is generated and to determine whether this process impacts obesity. The cleavage of recombinant full-length adiponectin into globular adiponectin by plasma in vitro was used to identify Gly-93 as the N-terminal residue after proteolytic processing. The amino acid sequence of the cleavage site suggested thrombin was the protease responsible for cleavage, and inhibitors confirmed its likely involvement. The proteolytic site was modified, and this thrombin-resistant mutant protein was infused for 4 weeks into obese adiponectin-knockout mice that had been on a high-fat diet for 8 weeks. The mutation of the cleavage site ensured that globular adiponectin was not generated, and thus did not confound the actions of the full-length adiponectin. Mice infused with the mutant adiponectin accumulated less fat and had smaller adipocytes compared to mice treated with globular adiponectin, and concurrently had elevated fasting glucose. The data demonstrate that generation of globular adiponectin through the action of thrombin increases both adipose tissue mass and adipocyte size, but it has no effect on fasting glucose levels in the context of obesity. Full article
Show Figures

Graphical abstract

12 pages, 10293 KiB  
Article
Metabolomics and a Breath Sensor Identify Acetone as a Biomarker for Heart Failure
by Patrick A. Gladding, Maxine Cooper, Renee Young, Suzanne Loader, Kevin Smith, Erica Zarate, Saras Green, Silas G. Villas Boas, Phillip Shepherd, Purvi Kakadiya, Eric Thorstensen, Christine Keven, Margaret Coe, Mia Jüllig, Edmond Zhang and Todd T. Schlegel
Biomolecules 2023, 13(1), 13; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010013 - 21 Dec 2022
Cited by 4 | Viewed by 2675
Abstract
Background: Multi-omics delivers more biological insight than targeted investigations. We applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). Methods: 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME) [...] Read more.
Background: Multi-omics delivers more biological insight than targeted investigations. We applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). Methods: 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME) volatilomics in plasma and urine. HFrEF was defined using left ventricular global longitudinal strain, ejection fraction and NTproBNP. A consumer breath acetone (BrACE) sensor validated results in n = 73. Results: 28 metabolites were identified by GCMS, 35 by LCMS and 4 volatiles by SPME in plasma and urine. Alanine, aspartate and glutamate, citric acid cycle, arginine biosynthesis, glyoxylate and dicarboxylate metabolism were altered in HFrEF. Plasma acetone correlated with NT-proBNP (r = 0.59, 95% CI 0.4 to 0.7), 2-oxovaleric and cis-aconitic acid, involved with ketone metabolism and mitochondrial energetics. BrACE > 1.5 ppm discriminated HF from other cardiac pathology (AUC 0.8, 95% CI 0.61 to 0.92, p < 0.0001). Conclusion: Breath acetone discriminated HFrEF from other cardiac pathology using a consumer sensor, but was not cardiac specific. Full article
Show Figures

Figure 1

16 pages, 2554 KiB  
Article
1-(Arylsulfonyl-isoindol-2-yl)piperazines as 5-HT6R Antagonists: Mechanochemical Synthesis, In Vitro Pharmacological Properties and Glioprotective Activity
by Vittorio Canale, Wojciech Trybała, Séverine Chaumont-Dubel, Paulina Koczurkiewicz-Adamczyk, Grzegorz Satała, Ophélie Bento, Klaudia Blicharz-Futera, Xavier Bantreil, Elżbieta Pękala, Andrzej J. Bojarski, Frédéric Lamaty, Philippe Marin and Paweł Zajdel
Biomolecules 2023, 13(1), 12; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010012 - 21 Dec 2022
Cited by 3 | Viewed by 2019
Abstract
In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active [...] Read more.
In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor (5-HT6R) recruits additional signaling pathways that control cognitive function, brain development, and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant constitutive and agonist-induced active states are involved in various pathological mechanisms, the development of biased ligands with different functional profiles at specific 5-HT6R-elicited signaling pathways may provide a novel therapeutic perspective in the field of neurodegenerative and psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives and synthesized them using a sustainable mechanochemical method. We identified the safe and metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide bond combined with its incorporation into the isoindoline scaffold switched the functional profile of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxicity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Recent Advances on 5-HT6 Receptors)
Show Figures

Graphical abstract

14 pages, 2262 KiB  
Article
The Effect of Novel Selenopolysaccharide Isolated from Lentinula edodes Mycelium on Human T Lymphocytes Activation, Proliferation, and Cytokines Synthesis
by Aleksander Roszczyk, Michał Zych, Katarzyna Zielniok, Natalia Krata, Jadwiga Turło, Marzenna Klimaszewska, Radosław Zagożdżon and Beata Kaleta
Biomolecules 2022, 12(12), 1900; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121900 - 19 Dec 2022
Cited by 2 | Viewed by 1719
Abstract
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the [...] Read more.
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the effects of Se-Le-30 on the activation and proliferation of human T lymphocytes stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs) and on the production of cytokines by peripheral blood mononuclear cells (PBMCs). Se-Le-30 had effects on T cell proliferation induced by Abs against CD3 and CD28. It significantly inhibited the proliferation of CD3-stimulated CD4+ and CD8+ T cells and enhanced the proliferation of CD4+ T cells stimulated with anti-CD3/CD28 Ab. Moreover, Se-Le-30 downregulated the number of CD3-stimulated CD4+CD69+ cells, CD4+CD25+ cells, as well as CD8+CD25+ cells, and upregulated the expression of CD25 marker on CD4+ and CD8+ T cells activated with anti-CD3/CD28 Abs. Furthermore, Se-Le-30 enhanced the synthesis of IFN-γ by the unstimulated and anti-CD3/CD28-stimulated PBMCs, inhibited synthesis of IL-2 and IL-4 by CD3-stimulated cells, and augmented the synthesis of IL-6 and IL-10 by unstimulated, CD3-stimulated, and CD3/CD28-stimulated PBMCs. Together, we demonstrated that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes. These observations are of importance for the prospective use of Se-Le-30 in research or as a therapeutic compound. Full article
Show Figures

Figure 1

12 pages, 2742 KiB  
Article
Effects of the Myokine Irisin on Stromal Cells from Swine Adipose Tissue
by Giuseppina Basini, Simona Bussolati, Stefano Grolli, Priscilla Berni, Rosanna Di Lecce and Francesca Grasselli
Biomolecules 2022, 12(12), 1895; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121895 - 17 Dec 2022
Cited by 3 | Viewed by 1338
Abstract
Irisin is a hormone able to reproduce some of the positive effects of physical activity and diet. Recently, we demonstrated the presence of Irisin at the ovarian level as a potential physiological regulator of follicular function. Adipose tissue is crucial for reproductive function [...] Read more.
Irisin is a hormone able to reproduce some of the positive effects of physical activity and diet. Recently, we demonstrated the presence of Irisin at the ovarian level as a potential physiological regulator of follicular function. Adipose tissue is crucial for reproductive function through its metabolic activity and the production of adipokines. At present, the exact nature of adipocyte precursors is still under debate, but an important role has been assigned to the population of adipose tissue mesenchymal stromal cells (ASCs) of perivascular origin. It should be noted that, when appropriately stimulated, ASCs can differentiate into preadipocytes and, subsequently, adipocytes. Therefore, this present study was undertaken to explore the potential effect of Irisin on ASCs, known for their high differentiative potential. Since Irisin expression in ASCs was confirmed by PCR, we tested its potential effects on the main functional activities of these cells, including proliferation (BrdU uptake); metabolic activity (ATP production); redox status, evaluated as the generation of free molecules such as superoxide anion and nitric oxide; and scavenger activities, assessed as both enzymatic (superoxide dismutase) and non-enzymatic antioxidant power. Moreover, we tested the effect of Irisin on ASCs adipogenic differentiation. BrdU uptake was significantly (p < 0.001) inhibited by Irisin, while ATP production was significantly (p < 0.05) increased. Both superoxide anion and nitric oxide generation were significantly increased (p < 0.001) by Irisin, while scavenger activity was significantly reduced (p < 0.05). Irisin was found to significantly (p < 0.05) inhibit ASCs adipogenic differentiation. Taken together, the present results suggest a potential local role of Irisin in the regulation of adipose tissue function. Full article
Show Figures

Figure 1

18 pages, 3145 KiB  
Article
Palmitoylethanolamide Mitigates Paclitaxel Toxicity in Primary Dorsal Root Ganglion Neurons
by Amira Elfarnawany and Faramarz Dehghani
Biomolecules 2022, 12(12), 1873; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121873 - 14 Dec 2022
Cited by 4 | Viewed by 2487
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of several chemotherapeutic agents, such as Paclitaxel. The main symptoms of CIPN are pain and numbness in the hands and feet. Paclitaxel is believed to accumulate in the dorsal root ganglia and free nerve [...] Read more.
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of several chemotherapeutic agents, such as Paclitaxel. The main symptoms of CIPN are pain and numbness in the hands and feet. Paclitaxel is believed to accumulate in the dorsal root ganglia and free nerve endings. Novel therapeutic agents might help to mitigate or prevent Paclitaxel toxicity on dorsal root ganglion (DRG) neurons. Thus, we used primary DRG neurons as a model to investigate the potential neuroprotective effects of the endocannabinoid-like substance, palmitoylethanolamide (PEA). DRG neurons were isolated from cervical to sacral segments of spinal nerves of Wister rats (6–8 weeks old). After isolation and purification of neuronal cell populations, different concentrations of Paclitaxel (0.01–10 µM) or PEA (0.1–10 µM) or their combination were tested on cell viability by MTT assay at 24 h, 48, and 72 h post-treatment. Furthermore, morphometric analyses of neurite length and soma size for DRG neurons were performed. Adverse Paclitaxel effects on cell viability were apparent at 72 h post-treatment whereas Paclitaxel significantly reduced the neurite length in a concentration-dependent manner nearly at all investigated time points. However, Paclitaxel significantly increased the size of neuronal cell bodies at all time windows. These phenotypic effects were significantly reduced in neurons additionally treated with PEA, indicating the neuroprotective effect of PEA. PEA alone led to a significant increase in neuron viability regardless of PEA concentrations, apparent improvements in neurite outgrowth as well as a significant decrease in soma size of neurons at different investigated time points. Taken together, PEA showed promising protective effects against Paclitaxel-related toxicity on DRG neurons. Full article
Show Figures

Figure 1

22 pages, 8765 KiB  
Article
Oxidative Stress-Induced HMGB1 Translocation in Myenteric Neurons Contributes to Neuropathy in Colitis
by Rhian Stavely, Lauren Sahakian, Rhiannon T. Filippone, Vanesa Stojanovska, Joel C. Bornstein, Samy Sakkal and Kulmira Nurgali
Biomolecules 2022, 12(12), 1831; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121831 - 07 Dec 2022
Cited by 5 | Viewed by 1938
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the [...] Read more.
High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents. Full article
(This article belongs to the Special Issue Enteric Nervous System: Normal Functions and Enteric Neuropathies)
Show Figures

Graphical abstract

22 pages, 1999 KiB  
Article
Transcriptomics and Metabolomics of Reactive Oxygen Species Modulation in Near-Null Magnetic Field-Induced Arabidopsis thaliana
by Ambra S. Parmagnani, Giuseppe Mannino and Massimo E. Maffei
Biomolecules 2022, 12(12), 1824; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121824 - 06 Dec 2022
Cited by 7 | Viewed by 2169
Abstract
The geomagnetic field (GMF) is a natural component of Earth’s biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) [...] Read more.
The geomagnetic field (GMF) is a natural component of Earth’s biosphere. GMF reduction to near-null values (NNMF) induces gene expression modulation that generates biomolecular, morphological, and developmental changes. Here, we evaluate the effect of NNMF on gene expression and reactive oxygen species (ROS) production in time-course experiments on Arabidopsis thaliana. Plants exposed to NNMF in a triaxial Helmholtz coils system were sampled from 10 min to 96 h to evaluate differentially expressed genes (DEGs) of oxidative stress responses by gene microarray. In 24–96 h developing stages, H2O2 and polyphenols were also analyzed from roots and shoots. A total of 194 DEGs involved in oxidative reactions were selected, many of which showed a fold change ≥±2 in at least one timing point. Heatmap clustering showed DEGs both between roots/shoots and among the different time points. NNMF induced a lower H2O2 than GMF, in agreement with the expression of ROS-related genes. Forty-four polyphenols were identified, the content of which progressively decreased during NNMF exposition time. The comparison between polyphenols content and DEGs showed overlapping patterns. These results indicate that GMF reduction induces metabolomic and transcriptomic modulation of ROS-scavenging enzymes and H2O2 production in A. thaliana, which is paralleled by the regulation of antioxidant polyphenols. Full article
(This article belongs to the Special Issue Functional Plant Metabolism 2.0)
Show Figures

Figure 1

17 pages, 4030 KiB  
Article
Alteration of Cellular Energy Metabolism through LPAR2-Axin2 Axis in Gastric Cancer
by Hosne Ara, Utsab Subedi, Papori Sharma, Susmita Bhattarai, Sudha Sharma, Shrivats Manikandan, Xiuping Yu, Md. Shenuarin Bhuiyan, Hong Sun, Sumitra Miriyala and Manikandan Panchatcharam
Biomolecules 2022, 12(12), 1805; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121805 - 02 Dec 2022
Cited by 3 | Viewed by 2142
Abstract
Lysophosphatidic acid (LPA), a multifunctional endogenous phospholipid, plays a vital role in cellular homeostasis and the malignant behavior of cancer cells through G-protein-coupled receptors. However, the role of LPA in β-catenin-mediated gastric cancer is unknown. Here, we have noted the high expression of [...] Read more.
Lysophosphatidic acid (LPA), a multifunctional endogenous phospholipid, plays a vital role in cellular homeostasis and the malignant behavior of cancer cells through G-protein-coupled receptors. However, the role of LPA in β-catenin-mediated gastric cancer is unknown. Here, we have noted the high expression of LPAR2 in human gastric cancer tissues, and that LPA treatment significantly increased the proliferation, migration, and invasion of human gastric cancer cells. Results from our biochemical experiments showed that an LPA exposure increased the expression of β-catenin and its nuclear localization, increased the phosphorylation of glycogen synthase kinase 3β (GSK-3β), decreased the expression of Axin2, and increased the expression of the target genes of the β-catenin signaling pathway. The LPA2 receptor (LPAR2) antagonist significantly reduced the LPA-induced nuclear localization of β-catenin, the primary signaling event. The knockdown of LPAR2 in the gastric cancer cell lines robustly reduced the LPA-induced β-catenin activity. An LPA exposure increased the ATP production by both oxidative phosphorylation and glycolysis, and this effect was abrogated with the addition of an LPAR2 antagonist and XAV393, which stabilizes the Axin and inhibits the β-catenin signaling pathway. Based on our findings, the possibility that LPA contributes to gastric cancer initiation and progression through the β-catenin signaling pathway as well as by the dysregulation of the energy metabolism via the LPAR2 receptor and Axin2, respectively, provides a novel insight into the mechanism of and possible therapeutic targets of gastric cancer. Full article
(This article belongs to the Special Issue Targeting Tumor Metabolism: From Mechanisms to Therapies II)
Show Figures

Figure 1

18 pages, 2279 KiB  
Article
Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis
by Maria Hayes, Leticia Mora and Simona Lucakova
Biomolecules 2022, 12(12), 1806; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121806 - 02 Dec 2022
Cited by 5 | Viewed by 2029
Abstract
In vitro ACE-1 inhibitory peptides were characterised previously from a number of microalgal species including Spirulina platensis (peptide IAPG), Chlorella vulgaris (peptides FDL, AFL, VVPPA), Isochrysis galbana (peptide YMGLDLK), Chlorella sorokiniana (peptides IW and LW) and indeed Nannochloropsis oculata (peptides GMNNLTP and LEQ). [...] Read more.
In vitro ACE-1 inhibitory peptides were characterised previously from a number of microalgal species including Spirulina platensis (peptide IAPG), Chlorella vulgaris (peptides FDL, AFL, VVPPA), Isochrysis galbana (peptide YMGLDLK), Chlorella sorokiniana (peptides IW and LW) and indeed Nannochloropsis oculata (peptides GMNNLTP and LEQ). The isolation of protein from Nannochloropsis oculata using a combination of ammonium salt precipitation and xylanase treatment of resulting biomass combined with molecular weight cut off filtration to produce a permeate and characterisation of bioactive peptides is described. The Angiotensin-1-converting enzyme (ACE-1) IC50 value for the generated permeate fraction was 370 µg/mL. Ninety-five peptide sequences within the permeate fraction were determined using mass spectrometry and eight peptides were selected for chemical synthesis based on in silico analysis. Synthesized peptides were novel based on a search of the literature and relevant databases. In silico, simulated gastrointestinal digestion identified further peptides with bioactivities including ACE-1 inhibitory peptides and peptides with antithrombotic and calcium/calmodulin-dependent kinase II (CAMKII) inhibition. This work highlights the potential of Nannochloropsis oculata biomass as both a protein and bioactive peptide resource, which could be harnessed for use in the development of functional foods and feeds. Full article
Show Figures

Graphical abstract

20 pages, 3325 KiB  
Article
Structural Insights into the Dimeric Form of Bacillus subtilis RNase Y Using NMR and AlphaFold
by Nelly Morellet, Pierre Hardouin, Nadine Assrir, Carine van Heijenoort and Béatrice Golinelli-Pimpaneau
Biomolecules 2022, 12(12), 1798; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121798 - 01 Dec 2022
Cited by 3 | Viewed by 1989
Abstract
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics [...] Read more.
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure. Full article
(This article belongs to the Collection Feature Papers in Enzymology)
Show Figures

Graphical abstract

14 pages, 2831 KiB  
Article
A Large-Scale High-Throughput Screen for Modulators of SERCA Activity
by Philip A. Bidwell, Samantha L. Yuen, Ji Li, Kaja Berg, Robyn T. Rebbeck, Courtney C. Aldrich, Osha Roopnarine, Razvan L. Cornea and David D. Thomas
Biomolecules 2022, 12(12), 1789; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12121789 - 30 Nov 2022
Cited by 5 | Viewed by 2802
Abstract
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is a P-type ion pump that transports Ca2+ from the cytosol into the endoplasmic/sarcoplasmic reticulum (ER/SR) in most mammalian cells. It is critically important in muscle, facilitating relaxation and enabling subsequent contraction. Increasing SERCA expression or specific [...] Read more.
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is a P-type ion pump that transports Ca2+ from the cytosol into the endoplasmic/sarcoplasmic reticulum (ER/SR) in most mammalian cells. It is critically important in muscle, facilitating relaxation and enabling subsequent contraction. Increasing SERCA expression or specific activity can alleviate muscle dysfunction, most notably in the heart, and we seek to develop small-molecule drug candidates that activate SERCA. Therefore, we adapted an NADH-coupled assay, measuring Ca-dependent ATPase activity of SERCA, to high-throughput screening (HTS) format, and screened a 46,000-compound library of diverse chemical scaffolds. This HTS platform yielded numerous hits that reproducibly alter SERCA Ca-ATPase activity, with few false positives. The top 19 activating hits were further tested for effects on both Ca-ATPase and Ca2+ transport, in both cardiac and skeletal SR. Nearly all hits increased Ca2+ uptake in both cardiac and skeletal SR, with some showing isoform specificity. Furthermore, dual analysis of both activities identified compounds with a range of effects on Ca2+-uptake and ATPase, which fit into distinct classifications. Further study will be needed to identify which classifications are best suited for therapeutic use. These results reinforce the need for robust secondary assays and criteria for selection of lead compounds, before undergoing HTS on a larger scale. Full article
(This article belongs to the Special Issue Calcium Regulation in the Cardiac Cells)
Show Figures

Figure 1

19 pages, 4485 KiB  
Article
Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering
by Fiona Verisqa, Jae-Ryung Cha, Linh Nguyen, Hae-Won Kim and Jonathan C. Knowles
Biomolecules 2022, 12(11), 1692; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111692 - 15 Nov 2022
Cited by 7 | Viewed by 4120
Abstract
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods [...] Read more.
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods allow the fabrication of biomimetic scaffolds with high resolution and mechanical properties that exceed the result of commonly used extrusion-based printing. Digital light processing (DLP) is known for its faster and more accurate printing than other 3D printing approaches. However, the development of biocompatible resins for light-based 3D printing is not as rapid as that of bio-inks for extrusion-based printing. In this study, we developed CSMA-2, a photopolymer based on Isosorbide, a renewable sugar derivative monomer. The CSMA-2 showed suitable rheological properties for DLP printing. Gyroid scaffolds with high resolution were successfully printed. The 3D-printed scaffolds also had a compressive modulus within the range of a human cancellous bone modulus. Human adipose-derived stem cells remained viable for up to 21 days of incubation on the scaffolds. A calcium deposition from the cells was also found on the scaffolds. The stem cells expressed osteogenic markers such as RUNX2, OCN, and OPN. These results indicated that the scaffolds supported the osteogenic differentiation of the progenitor cells. In summary, CSMA-2 is a promising material for 3D printing techniques with high resolution that allow the fabrication of complex biomimetic scaffolds for bone regeneration. Full article
(This article belongs to the Special Issue 3D Printing Biological and Medical Application)
Show Figures

Figure 1

12 pages, 3013 KiB  
Article
Is Lymphedema a Systemic Disease? A Paired Molecular and Histological Analysis of the Affected and Unaffected Tissue in Lymphedema Patients
by Stefan Wolf, Julia von Atzigen, Bettina Kaiser, Lisanne Grünherz, Bong-Sung Kim, Pietro Giovanoli, Nicole Lindenblatt and Epameinondas Gousopoulos
Biomolecules 2022, 12(11), 1667; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111667 - 11 Nov 2022
Cited by 6 | Viewed by 2402
Abstract
Secondary lymphedema is a chronic, debilitating disease and one of the most common side effects of oncologic surgery, substantially decreasing quality of life. Despite the progress conducted in lymphedema research, the underlying pathomechanisms remain elusive. Lymphedema is considered to be a disease affecting [...] Read more.
Secondary lymphedema is a chronic, debilitating disease and one of the most common side effects of oncologic surgery, substantially decreasing quality of life. Despite the progress conducted in lymphedema research, the underlying pathomechanisms remain elusive. Lymphedema is considered to be a disease affecting an isolated extremity, yet imaging studies suggest systemic changes of the lymphatic system in the affected patients. To evaluate potential systemic manifestations in lymphedema, we collected matched fat and skin tissue from the edematous and non-edematous side of the same 10 lymphedema patients as well as anatomically matched probes from control patients to evaluate whether known lymphedema manifestations are present systemically and in comparison to health controls. The lymphedematous tissue displayed various known hallmarks of lymphedema compared to the healthy controls, such as increased epidermis thickness, collagen deposition in the periadipocyte space and the distinct infiltration of CD4+ cells. Furthermore, morphological changes in the lymphatic vasculature between the affected and unaffected limb in the same lymphedema patient were visible. Surprisingly, an increased collagen deposition as well as CD4 expression were also detectable in the non-lymphedematous tissue of lymphedema patients, suggesting that lymphedema may trigger systemic changes beyond the affected extremity. Full article
Show Figures

Figure 1

21 pages, 6199 KiB  
Article
Atypical Substrates of the Organic Cation Transporter 1
by Kyra-Elisa Maria Redeker, Ole Jensen, Lukas Gebauer, Marleen Julia Meyer-Tönnies and Jürgen Brockmöller
Biomolecules 2022, 12(11), 1664; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111664 - 09 Nov 2022
Cited by 8 | Viewed by 2031
Abstract
The human organic cation transporter 1 (OCT1) is expressed in the liver and mediates hepatocellular uptake of organic cations. However, some studies have indicated that OCT1 could transport neutral or even anionic substrates. This capability is interesting concerning protein-substrate interactions and the clinical [...] Read more.
The human organic cation transporter 1 (OCT1) is expressed in the liver and mediates hepatocellular uptake of organic cations. However, some studies have indicated that OCT1 could transport neutral or even anionic substrates. This capability is interesting concerning protein-substrate interactions and the clinical relevance of OCT1. To better understand the transport of neutral, anionic, or zwitterionic substrates, we used HEK293 cells overexpressing wild-type OCT1 and a variant in which we changed the putative substrate binding site (aspartate474) to a neutral amino acid. The uncharged drugs trimethoprim, lamivudine, and emtricitabine were good substrates of hOCT1. However, the uncharged drugs zalcitabine and lamotrigine, and the anionic levofloxacin, and prostaglandins E2 and F2α, were transported with lower activity. Finally, we could detect only extremely weak transport rates of acyclovir, ganciclovir, and stachydrine. Deleting aspartate474 had a similar transport-lowering effect on anionic substrates as on cationic substrates, indicating that aspartate474 might be relevant for intra-protein, rather than substrate-protein, interactions. Cellular uptake of the atypical substrates by the naturally occurring frequent variants OCT1*2 (methionine420del) and OCT1*3 (arginine61cysteine) was similarly reduced, as it is known for typical organic cations. Thus, to comprehensively understand the substrate spectrum and transport mechanisms of OCT1, one should also look at organic anions. Full article
(This article belongs to the Special Issue Organic Cation Transporters)
Show Figures

Figure 1

11 pages, 844 KiB  
Article
A PQS-Cleaving Quorum Quenching Enzyme Targets Extracellular Membrane Vesicles of Pseudomonas aeruginosa
by Alba Arranz San Martín, Steffen Lorenz Drees and Susanne Fetzner
Biomolecules 2022, 12(11), 1656; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111656 - 08 Nov 2022
Cited by 2 | Viewed by 2812
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses quorum sensing to control its virulence. One of its major signal molecules, the Pseudomonas quinolone signal PQS, has high affinity to membranes and is known to be trafficked mainly via outer membrane vesicles (OMVs). We previously reported [...] Read more.
The opportunistic pathogen Pseudomonas aeruginosa uses quorum sensing to control its virulence. One of its major signal molecules, the Pseudomonas quinolone signal PQS, has high affinity to membranes and is known to be trafficked mainly via outer membrane vesicles (OMVs). We previously reported that several 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQDs) catalyze the cleavage of PQS and thus act as quorum quenching enzymes. Further analysis showed that, in contrast to other HQDs, the activity of HQD from Streptomyces bingchenggensis (HQDS.b.) was unexpectedly stabilized by culture supernatants of P. aeruginosa. Interestingly, the stabilizing effect was higher with supernatants from the strain PA14 than with supernatants from the strain PAO1. Heat treatment and lyophilization hardly affected the stabilizing effect; however, fractionation of the supernatant excluded small molecules as stabilizing agents. In a pull-down assay, HQDS.b. appeared to interact with several P. aeruginosa proteins previously found in the OMV proteome. This prompted us to probe the physical interaction of HQDS.b. with prepared extracellular membrane vesicles. Homo-FRET of fluorescently labeled HQDS.b. indeed indicated a spatial clustering of the protein on the vesicles. Binding of a PQS-cleaving enzyme to the OMVs of P. aeruginosa may enhance PQS degradation and is highly reconcilable with its function as a quorum quenching enzyme. Full article
(This article belongs to the Section Biomacromolecules: Proteins)
Show Figures

Graphical abstract

22 pages, 2442 KiB  
Article
Structural Basis of Sequential and Concerted Cooperativity
by Veronica Morea, Francesco Angelucci, Jeremy R. H. Tame, Enrico Di Cera and Andrea Bellelli
Biomolecules 2022, 12(11), 1651; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111651 - 07 Nov 2022
Cited by 4 | Viewed by 2333
Abstract
Allostery is a property of biological macromolecules featuring cooperative ligand binding and regulation of ligand affinity by effectors. The definition was introduced by Monod and Jacob in 1963, and formally developed as the “concerted model” by Monod, Wyman, and Changeux in 1965. Since [...] Read more.
Allostery is a property of biological macromolecules featuring cooperative ligand binding and regulation of ligand affinity by effectors. The definition was introduced by Monod and Jacob in 1963, and formally developed as the “concerted model” by Monod, Wyman, and Changeux in 1965. Since its inception, this model of cooperativity was seen as distinct from and not reducible to the “sequential model” originally formulated by Pauling in 1935, which was developed further by Koshland, Nemethy, and Filmer in 1966. However, it is difficult to decide which model is more appropriate from equilibrium or kinetics measurements alone. In this paper, we examine several cooperative proteins whose functional behavior, whether sequential or concerted, is established, and offer a combined approach based on functional and structural analysis. We find that isologous, mostly helical interfaces are common in cooperative proteins regardless of their mechanism. On the other hand, the relative contribution of tertiary and quaternary structural changes, as well as the asymmetry in the liganded state, may help distinguish between the two mechanisms. Full article
Show Figures

Figure 1

21 pages, 1056 KiB  
Article
Repurposable Drugs That Interact with Steroid Responsive Gene Targets for Inner Ear Disease
by Alexander A. Missner, James Dixon Johns, Shoujun Gu and Michael Hoa
Biomolecules 2022, 12(11), 1641; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111641 - 05 Nov 2022
Cited by 3 | Viewed by 2183
Abstract
Corticosteroids, oral or transtympanic, remain the mainstay for inner ear diseases characterized by hearing fluctuation or sudden changes in hearing, including sudden sensorineural hearing loss (SSNHL), Meniere’s disease (MD), and autoimmune inner ear disease (AIED). Despite their use across these diseases, the rate [...] Read more.
Corticosteroids, oral or transtympanic, remain the mainstay for inner ear diseases characterized by hearing fluctuation or sudden changes in hearing, including sudden sensorineural hearing loss (SSNHL), Meniere’s disease (MD), and autoimmune inner ear disease (AIED). Despite their use across these diseases, the rate of complete recovery remains low, and results across the literature demonstrates significant heterogeneity with respect to the effect of corticosteroids, suggesting a need to identify more efficacious treatment options. Previously, our group has cross-referenced steroid-responsive genes in the cochlea with published single-cell and single-nucleus transcriptome datasets to demonstrate that steroid-responsive differentially regulated genes are expressed in spiral ganglion neurons (SGN) and stria vascularis (SV) cell types. These differentially regulated genes represent potential druggable gene targets. We utilized multiple gene target databases (DrugBank, Pharos, and LINCS) to identify orally administered, FDA approved medications that potentially target these genes. We identified 42 candidate drugs that have been shown to interact with these genes, with an emphasis on safety profile, and tolerability. This study utilizes multiple databases to identify drugs that can target a number of druggable genes in otologic disorders that are commonly treated with steroids, providing a basis for establishing novel repurposing treatment trials. Full article
(This article belongs to the Special Issue Inner Ear Therapeutics)
Show Figures

Figure 1

12 pages, 2544 KiB  
Article
Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids
by Bankala Krishnarjuna, Thirupathi Ravula, Edgar M. Faison, Marco Tonelli, Qi Zhang and Ayyalusamy Ramamoorthy
Biomolecules 2022, 12(11), 1628; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111628 - 03 Nov 2022
Cited by 6 | Viewed by 2798
Abstract
Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an [...] Read more.
Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic acids, and they can also be applicable to study various other biomolecules and small molecules in general. Full article
(This article belongs to the Collection Feature Papers in Molecular Structure and Dynamics)
Show Figures

Graphical abstract

24 pages, 2648 KiB  
Article
The Role of Ca2+ Sparks in Force Frequency Relationships in Guinea Pig Ventricular Myocytes
by Roshan Paudel, Mohsin Saleet Jafri and Aman Ullah
Biomolecules 2022, 12(11), 1577; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111577 - 27 Oct 2022
Cited by 1 | Viewed by 2144
Abstract
Calcium sparks are the elementary Ca2+ release events in excitation-contraction coupling that underlie the Ca2+ transient. The frequency-dependent contractile force generated by cardiac myocytes depends upon the characteristics of the Ca2+ transients. A stochastic computational local control model of a [...] Read more.
Calcium sparks are the elementary Ca2+ release events in excitation-contraction coupling that underlie the Ca2+ transient. The frequency-dependent contractile force generated by cardiac myocytes depends upon the characteristics of the Ca2+ transients. A stochastic computational local control model of a guinea pig ventricular cardiomyocyte was developed, to gain insight into mechanisms of force-frequency relationship (FFR). This required the creation of a new three-state RyR2 model that reproduced the adaptive behavior of RyR2, in which the RyR2 channels transition into a different state when exposed to prolonged elevated subspace [Ca2+]. The model simulations agree with previous experimental and modeling studies on interval-force relations. Unlike previous common pool models, this local control model displayed stable action potential trains at 7 Hz. The duration and the amplitude of the [Ca2+]myo transients increase in pacing rates consistent with the experiments. The [Ca2+]myo transient reaches its peak value at 4 Hz and decreases afterward, consistent with experimental force-frequency curves. The model predicts, in agreement with previous modeling studies of Jafri and co-workers, diastolic sarcoplasmic reticulum, [Ca2+]sr, and RyR2 adaptation increase with the increased stimulation frequency, producing rising, rather than falling, amplitude of the myoplasmic [Ca2+] transients. However, the local control model also suggests that the reduction of the L-type Ca2+ current, with an increase in pacing frequency due to Ca2+-dependent inactivation, also plays a role in the negative slope of the FFR. In the simulations, the peak Ca2+ transient in the FFR correlated with the highest numbers of SR Ca2+ sparks: the larger average amplitudes of those sparks, and the longer duration of the Ca2+ sparks. Full article
(This article belongs to the Special Issue Computational Insights into Calcium Signaling)
Show Figures

Figure 1

18 pages, 4211 KiB  
Article
Semicarbazide-Sensitive Amine Oxidase (SSAO) and Lysyl Oxidase (LOX) Association in Rat Aortic Vascular Smooth Muscle Cells
by Vesna Manasieva, Shori Thakur, Lisa A. Lione, Jessal Patel, Anwar Baydoun and John Skamarauskas
Biomolecules 2022, 12(11), 1563; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111563 - 26 Oct 2022
Cited by 2 | Viewed by 1770
Abstract
Vascular smooth muscle cells (VSMCs) are the main stromal cells in the medial layer of the vascular wall. These cells produce the extracellular matrix (ECM) and are involved in many pathological changes in the vascular wall. Semicarbazide-sensitive amine oxidase (SSAO) and lysyl oxidase [...] Read more.
Vascular smooth muscle cells (VSMCs) are the main stromal cells in the medial layer of the vascular wall. These cells produce the extracellular matrix (ECM) and are involved in many pathological changes in the vascular wall. Semicarbazide-sensitive amine oxidase (SSAO) and lysyl oxidase (LOX) are vascular enzymes associated with the development of atherosclerosis. In the vascular smooth muscle cells, increased SSAO activity elevates reactive oxygen species (ROS) and induces VSMCs death; increased LOX induces chemotaxis through hydrogen peroxide dependent mechanisms; and decreased LOX contributes to endothelial dysfunction. This study investigates the relationship between SSAO and LOX in VSMCs by studying their activity, protein, and mRNA levels during VSMCs passaging and after silencing the LOX gene, while using their respective substrates and inhibitors. At the basal level, LOX activity decreased with passage and its protein expression was maintained between passages. βAPN abolished LOX activity (** p < 0.01 for 8 vs. 3 and * p < 0.05 for 5 vs. 8) and had no effect on LOX protein and mRNA levels. MDL72527 reduced LOX activity at passage 3 and 5 (## p < 0.01) and had no effect on LOX protein, and mRNA expression. At the basal level, SSAO activity also decreased with passage, and its protein expression was maintained between passages. MDL72527 abolished SSAO activity (**** p < 0.0001 for 8 vs. 3 and * p < 0.05 for 5 vs. 8), VAP-1 expression at passage 5 (** p < 0.01) and 8 (**** p < 0.0001), and Aoc3 mRNA levels at passage 8 (* p < 0.05). βAPN inhibited SSAO activity (**** p < 0.0001 for 5 vs. 3 and 8 vs. 3 and * p < 0.05 for 5 vs. 8), VAP-1 expression at passage 3 (* p < 0.05), and Aoc3 mRNA levels at passage 3 (* p < 0.05). Knockdown of the LOX gene (**** p < 0.0001 for Si6 vs. Sictrl and *** p < 0.001 for Si8 vs. Sictrl) and LOX protein (** p < 0.01 for Si6 and Si8 vs. Sictrl) in VSMCs at passage 3 resulted in a reduction in Aoc3 mRNA (#### p < 0.0001 for Si6 vs. Sictrl and ### p < 0.001 for Si8 vs. Sictrl) and VAP-1 protein (# p < 0.05 for Si8 vs. Sictrl). These novel findings demonstrate a passage dependent decrease in LOX activity and increase in SSAO activity in rat aortic VSMCs and show an association between both enzymes in early passage rat aortic VSMCs, where LOX was identified as a regulator of SSAO activity, protein, and mRNA expression. Full article
Show Figures

Figure 1

15 pages, 1597 KiB  
Article
Gut Inflammation Induced by Finasteride Withdrawal: Therapeutic Effect of Allopregnanolone in Adult Male Rats
by Silvia Diviccaro, Silvia Giatti, Lucia Cioffi, Eva Falvo, Monika Herian, Donatella Caruso and Roberto Cosimo Melcangi
Biomolecules 2022, 12(11), 1567; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111567 - 26 Oct 2022
Cited by 5 | Viewed by 8350
Abstract
The treatment with finasteride (i.e., an inhibitor of 5α-reductase) may be associated with different side effects (i.e., depression, anxiety, cognitive impairment and sexual dysfunction) inducing the so-called post finasteride syndrome (PFS). Moreover, previous observations in PFS patients and an experimental model showed alterations [...] Read more.
The treatment with finasteride (i.e., an inhibitor of 5α-reductase) may be associated with different side effects (i.e., depression, anxiety, cognitive impairment and sexual dysfunction) inducing the so-called post finasteride syndrome (PFS). Moreover, previous observations in PFS patients and an experimental model showed alterations in gut microbiota populations, suggesting an inflammatory environment. To confirm this hypothesis, we have explored the effect of chronic treatment with finasteride (i.e., for 20 days) and its withdrawal (i.e., for 1 month) on the levels of steroids, neurotransmitters, pro-inflammatory cytokines and gut permeability markers in the colon of adult male rat. The obtained data demonstrate that the levels of allopregnanolone (ALLO) decreased after finasteride treatment and after its withdrawal. Following the drug suspension, the decrease in ALLO levels correlates with an increase in IL-1β and TNF-α, serotonin and a decrease in dopamine. Importantly, ALLO treatment is able to counteract some of these alterations. The relation between ALLO and GABA-A receptors and/or pregnenolone (ALLO precursor) could be crucial in their mode of action. These observations provide an important background to explore further the protective effect of ALLO in the PFS experimental model and the possibility of its translation into clinical therapy. Full article
(This article belongs to the Special Issue Recent Advances in Steroid Research and Nervous System Function)
Show Figures

Figure 1

22 pages, 2842 KiB  
Article
Replicative Instability Drives Cancer Progression
by Benjamin B. Morris, Jason P. Smith, Qi Zhang, Zhijie Jiang, Oliver A. Hampton, Michelle L. Churchman, Susanne M. Arnold, Dwight H. Owen, Jhanelle E. Gray, Patrick M. Dillon, Hatem H. Soliman, Daniel G. Stover, Howard Colman, Arnab Chakravarti, Kenneth H. Shain, Ariosto S. Silva, John L. Villano, Michael A. Vogelbaum, Virginia F. Borges, Wallace L. Akerley, Ryan D. Gentzler, Richard D. Hall, Cindy B. Matsen, C. M. Ulrich, Andrew R. Post, David A. Nix, Eric A. Singer, James M. Larner, Peter Todd Stukenberg, David R. Jones and Marty W. Mayoadd Show full author list remove Hide full author list
Biomolecules 2022, 12(11), 1570; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111570 - 26 Oct 2022
Cited by 3 | Viewed by 3184
Abstract
In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability [...] Read more.
In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability develops following inactivation of BRCA1, BRCA2, or BRCA-related genes. However, it is recognized that many tumors exhibit genomic instability but lack BRCA inactivation. We sought to identify a pan-cancer mechanism that underpins genomic instability and cancer progression in BRCA-wildtype tumors. Methods: Using multi-omics data from two independent consortia, we analyzed data from dozens of tumor types to identify patient cohorts characterized by poor outcomes, genomic instability, and wildtype BRCA genes. We developed several novel metrics to identify the genetic underpinnings of genomic instability in tumors with wildtype BRCA. Associated clinical data was mined to analyze patient responses to standard of care therapies and potential differences in metastatic dissemination. Results: Systematic analysis of the DNA repair landscape revealed that defective single-strand break repair, translesion synthesis, and non-homologous end-joining effectors drive genomic instability in tumors with wildtype BRCA and BRCA-related genes. Importantly, we find that loss of these effectors promotes replication stress, therapy resistance, and increased primary carcinoma to brain metastasis. Conclusions: Our results have defined a new pan-cancer class of tumors characterized by replicative instability (RIN). RIN is defined by the accumulation of intra-chromosomal, gene-level gain and loss events at replication stress sensitive (RSS) genome sites. We find that RIN accelerates cancer progression by driving copy number alterations and transcriptional program rewiring that promote tumor evolution. Clinically, we find that RIN drives therapy resistance and distant metastases across multiple tumor types. Full article
Show Figures

Figure 1

16 pages, 3782 KiB  
Article
The Epigenetic Dimension of Protein Structure Is an Intrinsic Weakness of the AlphaFold Program
by Fodil Azzaz, Nouara Yahi, Henri Chahinian and Jacques Fantini
Biomolecules 2022, 12(10), 1527; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12101527 - 20 Oct 2022
Cited by 17 | Viewed by 4992
Abstract
One of the most important lessons we have learned from sequencing the human genome is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made up of intrinsically disordered proteins (IDPs) which can adopt [...] Read more.
One of the most important lessons we have learned from sequencing the human genome is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made up of intrinsically disordered proteins (IDPs) which can adopt multiple structures, and therefore, multiple functions, depending on the ligands with which they interact. Under these conditions, one can wonder about the value of algorithms developed for predicting the structure of proteins, in particular AlphaFold, an AI which claims to have solved the problem of protein structure. In a recent study, we highlighted a particular weakness of AlphaFold for membrane proteins. Based on this observation, we have proposed a paradigm, referred to as “Epigenetic Dimension of Protein Structure” (EDPS), which takes into account all environmental parameters that control the structure of a protein beyond the amino acid sequence (hence “epigenetic”). In this new study, we compare the reliability of the AlphaFold and Robetta algorithms’ predictions for a new set of membrane proteins involved in human pathologies. We found that Robetta was generally more accurate than AlphaFold for ascribing a membrane-compatible topology. Raft lipids (e.g., gangliosides), which control the structural dynamics of membrane protein structure through chaperone effects, were identified as major actors of the EDPS paradigm. We conclude that the epigenetic dimension of a protein structure is an intrinsic weakness of AI-based protein structure prediction, especially AlphaFold, which warrants further development. Full article
(This article belongs to the Special Issue Protein Structure Prediction with AlphaFold)
Show Figures

Figure 1

27 pages, 7060 KiB  
Article
Combination of Antimalarial and CNS Drugs with Antineoplastic Agents in MCF-7 Breast and HT-29 Colon Cancer Cells: Biosafety Evaluation and Mechanism of Action
by Diana Duarte, Mariana Nunes, Sara Ricardo and Nuno Vale
Biomolecules 2022, 12(10), 1490; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12101490 - 16 Oct 2022
Cited by 10 | Viewed by 2837
Abstract
Drug combination and drug repurposing are two strategies that allow to find novel oncological therapies, in a faster and more economical process. In our previous studies, we developed a novel model of drug combination using antineoplastic and different repurposed drugs. We demonstrated the [...] Read more.
Drug combination and drug repurposing are two strategies that allow to find novel oncological therapies, in a faster and more economical process. In our previous studies, we developed a novel model of drug combination using antineoplastic and different repurposed drugs. We demonstrated the combinations of doxorubicin (DOX) + artesunate, DOX + chloroquine, paclitaxel (PTX) + fluoxetine, PTX + fluphenazine, and PTX + benztropine induce significant cytotoxicity in Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Furthermore, it was found that 5-FU + thioridazine and 5-fluorouracil (5-FU) + sertraline can synergistically induce a reduction in the viability of human colorectal adenocarcinoma cell line (HT-29). In this study, we aim to (1) evaluate the biosafety profile of these drug combinations for non-tumoral cells and (2) determine their mechanism of action in cancer cells. To do so, human fetal lung fibroblast cells (MRC-5) fibroblast cells were incubated for 48 h with all drugs, alone and in combination in concentrations of 0.25, 0.5, 1, 2, and 4 times their half-maximal inhibitory concentration (IC50). Cell morphology and viability were evaluated. Next, we designed and constructed a cell microarray to perform immunohistochemistry studies for the evaluation of palmitoyl-protein thioesterase 1 (PPT1), Ki67, cleaved-poly (ADP-ribose) polymerase (cleaved-PARP), multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp), and nuclear factor-kappa-B (NF-kB) p65 expression. We demonstrate that these combinations are cytotoxic for cancer cells and safe for non-tumoral cells at lower concentrations. Furthermore, it is also demonstrated that PPT1 may have an important role in the mechanism of action of these combinations, as demonstrated by their ability to decrease PPT1 expression. These results support the use of antimalarial and central nervous system (CNS) drugs in combination regimens with chemotherapeutic agents; nevertheless, additional studies are recommended to further explore their complete mechanisms of action. Full article
Show Figures

Figure 1

13 pages, 2137 KiB  
Article
Gene Delivery of Manf to Beta-Cells of the Pancreatic Islets Protects NOD Mice from Type 1 Diabetes Development
by Kailash Singh, Orian Bricard, Jeason Haughton, Mikaela Björkqvist, Moa Thorstensson, Zhengkang Luo, Loriana Mascali, Emanuela Pasciuto, Chantal Mathieu, James Dooley and Adrian Liston
Biomolecules 2022, 12(10), 1493; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12101493 - 16 Oct 2022
Cited by 4 | Viewed by 4289
Abstract
In type 1 diabetes, dysfunctional glucose regulation occurs due to the death of insulin-producing beta-cells in the pancreatic islets. Initiation of this process is caused by the inheritance of an adaptive immune system that is predisposed to responding to beta-cell antigens, most notably [...] Read more.
In type 1 diabetes, dysfunctional glucose regulation occurs due to the death of insulin-producing beta-cells in the pancreatic islets. Initiation of this process is caused by the inheritance of an adaptive immune system that is predisposed to responding to beta-cell antigens, most notably to insulin itself, coupled with unknown environmental insults priming the autoimmune reaction. While autoimmunity is a primary driver in beta-cell death, there is growing evidence that cellular stress participates in the loss of beta-cells. In the beta-cell fragility model, partial loss of islet mass requires compensatory upregulation of insulin production in the remaining islets, driving a cellular stress capable of triggering apoptosis in the remaining cells. The Glis3-Manf axis has been identified as being pivotal to the relative fragility or robustness of stressed islets, potentially operating in both type 1 and type 2 diabetes. Here, we have used an AAV-based gene delivery system to enhance the expression of the anti-apoptotic protein Manf in the beta-cells of NOD mice. Gene delivery substantially lowered the rate of diabetes development in treated mice. Manf-treated mice demonstrated minimal insulitis and superior preservation of insulin production. Our results demonstrating the therapeutic potential of Manf delivery to enhance beta-cell robustness and avert clinical diabetes. Full article
(This article belongs to the Special Issue The Pancreatic Beta Cell)
Show Figures

Figure 1

Back to TopTop