Tissue Engineering Approaches for Reconstructing Biological Environment

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Biological and Bio- Materials".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 5820

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Ecole Normale Supérieure, PSL University, Paris, France
Interests: self-assembly; extra cellular matrix; collagen; tissue engineering; bio-microfluidics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advances in biological and biomedical research rely on our ability to provide biologically relevant models. This requires recapitulating the key features of tissues in controlling cell fate. Tissue engineering and biomaterials are crucial tools to be diverted to reconstruct the multidimensionality of the biological environment for the development of in vitro models. Recent advances have shown their contribution and potential to achieve an integrated understanding of the biological and physical mechanisms underlying different physiological contexts, including pathological ones. This Special Issue on “Tissue Engineering Approaches for Reconstructing Biological Environment” discusses the progress made in this direction.

Dr. Carole Aimé
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tissue engineering
  • biomaterials
  • extracellular matrix
  • bioengineering and biotechnology
  • three-dimensional in vitro models
  • microenvironment

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 2224 KiB  
Article
Combinational Growth Factor and Gas Delivery for Thrombosis Prevention
by Huan Cao, Xuejuan Xu, Fuyu Zhu and Yanhui Sheng
Biomolecules 2022, 12(11), 1715; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111715 - 19 Nov 2022
Viewed by 1401
Abstract
Cardiovascular stents enable the rapid re-endothelialization of endothelial cells (ECs), and the constant suppression of smooth muscle cell (SMC) proliferation has been proved to effectively prevent thrombosis. However, the development and application of such stents are still insufficient due the delayed re-endothelialization progress, [...] Read more.
Cardiovascular stents enable the rapid re-endothelialization of endothelial cells (ECs), and the constant suppression of smooth muscle cell (SMC) proliferation has been proved to effectively prevent thrombosis. However, the development and application of such stents are still insufficient due the delayed re-endothelialization progress, as well as the poor durability of the SMC inhibition. In this paper, we developed a mussel-inspired coating with the ability for the dual delivery of both growth factor (e.g., platelet-derived growth factor, PDGF) and therapeutic gas (e.g., nitric oxide, NO) for thrombosis prevention. We firstly synthesized the mussel-inspired co-polymer (DMHM) of dopamine methacrylamide (DMA) and hydroxyethyl methacrylate (HEMA) and then coated the DMHM on 316L SS stents combined with CuII. Afterwards, we immobilized the PDGF on the DMHM-coated stent and found that the PDGF could be released in the first 3 days to enhance the recruitment, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) to promote re-endothelialization. The CuII could be “sealed” in the DMHM coating, with extended durability (2 months), with the capacity for catalyzed NO generation for up to 2 months to suppress the proliferation of SMCs. Such a stent surface modification strategy could enhance the development of the cardiovascular stents for thrombosis prevention. Full article
Show Figures

Figure 1

13 pages, 3271 KiB  
Article
Precise Design of Alginate Hydrogels Crosslinked with Microgels for Diabetic Wound Healing
by Yishu Yan, Panpan Ren, Qingqing Wu and Tianmeng Zhang
Biomolecules 2022, 12(11), 1582; https://0-doi-org.brum.beds.ac.uk/10.3390/biom12111582 - 28 Oct 2022
Cited by 3 | Viewed by 1522
Abstract
Alginate hydrogel has received great attention in diabetic wound healing. However, the limited tunability of the ionic crosslinking method prevents the delicate management of physical properties in response to diverse wound conditions. We addressed this issue by using a microgel particle (fabricated by [...] Read more.
Alginate hydrogel has received great attention in diabetic wound healing. However, the limited tunability of the ionic crosslinking method prevents the delicate management of physical properties in response to diverse wound conditions. We addressed this issue by using a microgel particle (fabricated by zinc ions and coordinated through the complex of carboxymethyl chitosan and aldehyde hyaluronic acid) as a novel crosslinker. Then the cation was introduced as a second crosslinker to create a double crosslinked network. The method leads to the precise regulation of the hydrogel characters, including the biodegradation rate and the controlled release rate of the drug. As a result, the optimized hydrogels facilitated the live-cell infiltration in vitro and boosted the tissue regeneration of diabetic wounds in vivo. The results indicated that the addition of the microgel as a new crosslinker created flexibility during the construction of the alginate hydrogel, adapting for diverse applications during diabetic-induced wound therapy. Full article
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 5617 KiB  
Review
In Vitro Models of Ovarian Cancer: Bridging the Gap between Pathophysiology and Mechanistic Models
by Elliot Lopez, Sahil Kamboj, Changchong Chen, Zixu Wang, Sabrina Kellouche, Johanne Leroy-Dudal, Franck Carreiras, Ambroise Lambert and Carole Aimé
Biomolecules 2023, 13(1), 103; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13010103 - 04 Jan 2023
Cited by 4 | Viewed by 2352
Abstract
Ovarian cancer (OC) is a disease of major concern with a survival rate of about 40% at five years. This is attributed to the lack of visible and reliable symptoms during the onset of the disease, which leads over 80% of patients to [...] Read more.
Ovarian cancer (OC) is a disease of major concern with a survival rate of about 40% at five years. This is attributed to the lack of visible and reliable symptoms during the onset of the disease, which leads over 80% of patients to be diagnosed at advanced stages. This implies that metastatic activity has advanced to the peritoneal cavity. It is associated with both genetic and phenotypic heterogeneity, which considerably increase the risks of relapse and reduce the survival rate. To understand ovarian cancer pathophysiology and strengthen the ability for drug screening, further development of relevant in vitro models that recapitulate the complexity of OC microenvironment and dynamics of OC cell population is required. In this line, the recent advances of tridimensional (3D) cell culture and microfluidics have allowed the development of highly innovative models that could bridge the gap between pathophysiology and mechanistic models for clinical research. This review first describes the pathophysiology of OC before detailing the engineering strategies developed to recapitulate those main biological features. Full article
Show Figures

Figure 1

Back to TopTop