Advances in Diagnostics of Skin Diseases

A special issue of Diagnostics (ISSN 2075-4418). This special issue belongs to the section "Pathology and Molecular Diagnostics".

Deadline for manuscript submissions: closed (31 July 2022) | Viewed by 8236

Special Issue Editor


E-Mail
Guest Editor
Laboratory of Pathology, National Cancer Institute, Building 10, Room 2S235J, 10 Center Drive, Bethesda, MD 20892, USA
Interests: melanoma; skin cancers; dermatopathology; skin pathology; melanocytic skin lesions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The diagnosis of inflammatory skin diseases and cutaneous malignancies presents special challenges to physicians and laboratory professionals.

This Special Issue aims to provide a platform for the research community and professionals to demonstrate solutions and address research challenges in the diagnosis of skin diseases and cancers.  This Special Issue aims at publishing high-quality manuscripts covering new research on topics related to the advanced diagnostic methods of dermatologic conditions and malignancies. Proposals of novel diagnostic markers, methods, laboratory techniques, and clinical criteria are welcome.  Animal experiments with the potential to lead to clinical and laboratory diagnosis and review articles are also welcome.

Dr. Chyi-Chia Richard Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Dermatopathology
  • Skin pathology
  • Dermatology
  • Autoinflammatory
  • Autoimmune

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2022 KiB  
Article
Detection of Novel Biallelic Causative Variants in COL7A1 Gene by Whole-Exome Sequencing, Resulting in Congenital Recessive Dystrophic Epidermolysis Bullosa in Three Unrelated Families
by Fozia Fozia, Rubina Nazli, May Mohammed Alrashed, Hazem K. Ghneim, Zia Ul Haq, Musarrat Jabeen, Sher Alam Khan, Ijaz Ahmad, Mohammed Bourhia and Mourad A. M. Aboul-Soud
Diagnostics 2022, 12(7), 1525; https://0-doi-org.brum.beds.ac.uk/10.3390/diagnostics12071525 - 23 Jun 2022
Cited by 3 | Viewed by 1768
Abstract
Background: Dystrophic Epidermolysis bullosa (DEB) is a rare, severe subtype of epidermolysis bullosa (EB), characterized by blisters and miliary rashes of the skin. Dystrophic EB (DEB) includes variants inherited both in an autosomal-dominant or autosomal-recessive manner. Recessive dystrophic EB (RDEB) is divided into [...] Read more.
Background: Dystrophic Epidermolysis bullosa (DEB) is a rare, severe subtype of epidermolysis bullosa (EB), characterized by blisters and miliary rashes of the skin. Dystrophic EB (DEB) includes variants inherited both in an autosomal-dominant or autosomal-recessive manner. Recessive dystrophic EB (RDEB) is divided into many subtypes and prevails as a result of biallelic genetic mutations in COL7A1 gene encoding type VII collagen, a major stabilizing molecule of the dermo-epidermal junction. The blister formation is mainly due to the variable structural and functional impairment of anchoring fibrils in VII collagen (COLVII), responsible for the adhesion of the epidermis to the dermis. Method: Three Pakistani families (A, B and C) affected with congenital dystrophic epidermolysis bullosa were recruited in the present study. The whole-exome sequencing (WES) approach was utilized for the detection of the pathogenic sequence variants in probands. The segregation of these variants in other participants was confirmed by Sanger sequencing. Results: This study identified a novel missense variant c.7034G>A, p. Gly2345Asp in exon 91, a novel Frameshift mutation c.385del (p. His129MetfsTer18) in a homozygous form in exon no 3, and a previously known nonsense variation (c.1573 C>T; p. Arg525Ter) in exon 12 of COL7A1 gene in families A, B, and C, respectively, as causative mutations responsible for dystrophic epidermolysis bullosa in these families. Conclusion: Our study validates the involvement of the COL7A1 gene in the etiology of dystrophic epidermolysis bullosa. It further expands the COL7A1 gene mutation database and provides an additional scientific basis for diagnosis, genetic counseling, and prognosis purposes for EB patients. Full article
(This article belongs to the Special Issue Advances in Diagnostics of Skin Diseases)
Show Figures

Figure 1

12 pages, 3764 KiB  
Article
Computer-Aided Assessment of Melanocytic Lesions by Means of a Mitosis Algorithm
by Bart Sturm, David Creytens, Jan Smits, Ariadne H. A. G. Ooms, Erik Eijken, Eline Kurpershoek, Heidi V. N. Küsters-Vandevelde, Carla Wauters, Willeke A. M. Blokx and Jeroen A. W. M. van der Laak
Diagnostics 2022, 12(2), 436; https://0-doi-org.brum.beds.ac.uk/10.3390/diagnostics12020436 - 08 Feb 2022
Cited by 6 | Viewed by 2052
Abstract
An increasing number of pathology laboratories are now fully digitised, using whole slide imaging (WSI) for routine diagnostics. WSI paves the road to use artificial intelligence (AI) that will play an increasing role in computer-aided diagnosis (CAD). In melanocytic skin lesions, the presence [...] Read more.
An increasing number of pathology laboratories are now fully digitised, using whole slide imaging (WSI) for routine diagnostics. WSI paves the road to use artificial intelligence (AI) that will play an increasing role in computer-aided diagnosis (CAD). In melanocytic skin lesions, the presence of a dermal mitosis may be an important clue for an intermediate or a malignant lesion and may indicate worse prognosis. In this study a mitosis algorithm primarily developed for breast carcinoma is applied to melanocytic skin lesions. This study aimed to assess whether the algorithm could be used in diagnosing melanocytic lesions, and to study the added value in diagnosing melanocytic lesions in a practical setting. WSI’s of a set of hematoxylin and eosin (H&E) stained slides of 99 melanocytic lesions (35 nevi, 4 intermediate melanocytic lesions, and 60 malignant melanomas, including 10 nevoid melanomas), for which a consensus diagnosis was reached by three academic pathologists, were subjected to a mitosis algorithm based on AI. Two academic and six general pathologists specialized in dermatopathology examined the WSI cases two times, first without mitosis annotations and after a washout period of at least 2 months with mitosis annotations based on the algorithm. The algorithm indicated true mitosis in lesional cells, i.e., melanocytes, and non-lesional cells, i.e., mainly keratinocytes and inflammatory cells. A high number of false positive mitosis was indicated as well, comprising melanin pigment, sebaceous glands nuclei, and spindle cell nuclei such as stromal cells and neuroid differentiated melanocytes. All but one pathologist reported more often a dermal mitosis with the mitosis algorithm, which on a regular basis, was incorrectly attributed to mitoses from mainly inflammatory cells. The overall concordance of the pathologists with the consensus diagnosis for all cases excluding nevoid melanoma (n = 89) appeared to be comparable with and without the use of AI (89% vs. 90%). However, the concordance increased by using AI in nevoid melanoma cases (n = 10) (75% vs. 68%). This study showed that in general cases, pathologists perform similarly with the aid of a mitosis algorithm developed primarily for breast cancer. In nevoid melanoma cases, pathologists perform better with the algorithm. From this study, it can be learned that pathologists need to be aware of potential pitfalls using CAD on H&E slides, e.g., misinterpreting dermal mitoses in non-melanotic cells. Full article
(This article belongs to the Special Issue Advances in Diagnostics of Skin Diseases)
Show Figures

Figure 1

15 pages, 3848 KiB  
Article
Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions
by Gergely Csány, László Hunor Gergely, Norbert Kiss, Klára Szalai, Kende Lőrincz, Lilla Strobel, Domonkos Csabai, István Hegedüs, Péter Marosán-Vilimszky, Krisztián Füzesi, Miklós Sárdy and Miklós Gyöngy
Diagnostics 2022, 12(1), 204; https://0-doi-org.brum.beds.ac.uk/10.3390/diagnostics12010204 - 15 Jan 2022
Cited by 7 | Viewed by 3286
Abstract
A compact handheld skin ultrasound imaging device has been developed that uses co-registered optical and ultrasound imaging to provide diagnostic information about the full skin depth. The aim of the current work is to present the preliminary clinical results of this device. Using [...] Read more.
A compact handheld skin ultrasound imaging device has been developed that uses co-registered optical and ultrasound imaging to provide diagnostic information about the full skin depth. The aim of the current work is to present the preliminary clinical results of this device. Using additional photographic, dermoscopic and ultrasonic images as reference, the images from the device were assessed in terms of the detectability of the main skin layer boundaries and characteristic image features. Combined optical-ultrasonic recordings of various types of skin lesions (melanoma, basal cell carcinoma, seborrheic keratosis, dermatofibroma, naevus, dermatitis and psoriasis) were taken with the device (N = 53) and compared with images captured with a reference portable skin ultrasound imager. The investigator and two additional independent experts performed the evaluation. The detectability of skin structures was over 90% for the epidermis, the dermis and the lesions. The morphological and echogenicity information observed for the different skin lesions were found consistent with those of the reference ultrasound device and relevant ultrasound images in the literature. The presented device was able to obtain simultaneous in-vivo optical and ultrasound images of various skin lesions. This has the potential for further investigations, including the preoperative planning of skin cancer treatment. Full article
(This article belongs to the Special Issue Advances in Diagnostics of Skin Diseases)
Show Figures

Figure 1

Back to TopTop