Special Issue "Fire in Human Landscapes"

A special issue of Fire (ISSN 2571-6255).

Deadline for manuscript submissions: 21 February 2022.

Special Issue Editor

Dr. Grant Williamson
E-Mail Website
Guest Editor
School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
Interests: air quality and smoke management; GIS; remote sensing; fire ecology; landscape ecology; fire modelling; smoke transport modelling; forests; climate change; emission factors
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

While trends in fire occurrence vary across the globe, researchers and managers are increasingly identifying the importance of understanding the interactions between landscape fire and human land use. Humans come in into contact with landscape fire in the densely settled and expanding wildland–urban interface (WUI), as well as in less-populated but modified agricultural and pastoral areas. The human impact in fire occurrence in these zones is complicated; there is the potential for greater ignitions, either accidental or deliberate, but also increased suppression, and the opportunity for fuel treatment and other vegetation and landscape planning activities to moderate fire occurrence and severity. Landscape fire close to urban and settled areas poses unique challenges for suppression, due to the combination of structure fires with vegetation fires. Population exposure to landscape fire smoke is also of particular concern in these landscapes, where smoke concentrations from both prescribed and wildfires can be extreme, although often short-lived, and epidemiological understanding of the health impacts of short-term exposure to high concentrations of smoke is limited.

In recent years, significant fires in a number of countries (Australia, the United States of America, Greece, Chile) have impacted human lives, property, and infrastructure in human-modified landscapes. These events have drawn global attention to the interaction of landscape fire with human settlements and have provided novel research opportunities.

This Special Issue encourages the submission of papers that enhance our understanding of the complex interactions of fire and human land use, including issues of landscape planning, risk assessment, fire spread in complex landscapes, cost–benefit analysis of fuel treatment and suppression close to settlements, the unique challenges of burning structures combined with burning vegetation, and the impact of prescribed and wildfire smoke on populated areas. We especially welcome studies focusing on fire in human landscapes from less economically developed countries and areas.

Dr. Grant Williamson
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fire is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vegetation fire
  • WUI
  • risk assessment
  • landscape ecology
  • smoke pollution
  • fuel treatment
  • agriculture
  • infrastructure
  • fuels
  • structure fire

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020
Fire 2021, 4(3), 58; https://0-doi-org.brum.beds.ac.uk/10.3390/fire4030058 (registering DOI) - 04 Sep 2021
Viewed by 666
Abstract
The summer season of 2019–2020 has been named Australia’s Black Summer because of the large forest fires that burnt for months in southeast Australia, affecting millions of Australia’s citizens and hundreds of millions of animals and capturing global media attention. This extensive fire [...] Read more.
The summer season of 2019–2020 has been named Australia’s Black Summer because of the large forest fires that burnt for months in southeast Australia, affecting millions of Australia’s citizens and hundreds of millions of animals and capturing global media attention. This extensive fire season has been attributed to the global climate crisis, a long drought season and extreme fire weather conditions. Our aim in this study was to examine the factors that have led some of the wildfires to burn over larger areas for a longer duration and to cause more damage to vegetation. To this end, we studied all large forest and non-forest fires (>100 km2) that burnt in Australia between September 2019 and mid-February 2020 (Australia’s Black Summer fires), focusing on the forest fires in southeast Australia. We used a segmentation algorithm to define individual polygons of large fires based on the burn date from NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS) active fires product and the Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area product (MCD64A1). For each of the wildfires, we calculated the following 10 response variables, which served as proxies for the fires’ extent in space and time, spread and intensity: fire area, fire duration (days), the average spread of fire (area/days), fire radiative power (FRP; as detected by NASA’s MODIS Collection 6 active fires product (MCD14ML)), two burn severity products, and changes in vegetation as a result of the fire (as calculated using the vegetation health index (VHI) derived from AVHRR and VIIRS as well as live fuel moisture content (LFMC), photosynthetic vegetation (PV) and combined photosynthetic and non-photosynthetic vegetation (PV+NPV) derived from MODIS). We also computed more than 30 climatic, vegetation and anthropogenic variables based on remotely sensed derived variables, climatic time series and land cover datasets, which served as the explanatory variables. Altogether, 391 large fires were identified for Australia’s Black Summer. These included 205 forest fires with an average area of 584 km2 and 186 non-forest fires with an average area of 445 km2; 63 of the forest fires took place in southeast (SE) Australia (the area between Fraser Island, Queensland, and Kangaroo Island, South Australia), with an average area of 1097 km2. Australia’s Black Summer forest fires burnt for more days compared with non-forest fires. Overall, the stepwise regression models were most successful at explaining the response variables for the forest fires in SE Australia (n = 63; median-adjusted R2 of 64.3%), followed by all forest fires (n = 205; median-adjusted R2 of 55.8%) and all non-forest fires (n = 186; median-adjusted R2 of 48.2%). The two response variables that were best explained by the explanatory variables used as proxies for fires’ extent, spread and intensity across all models for the Black Summer forest and non-forest fires were the change in PV due to fire (median-adjusted R2 of 69.1%) and the change in VHI due to fire (median-adjusted R2 of 66.3%). Amongst the variables we examined, vegetation and fuel-related variables (such as previous frequency of fires and the conditions of the vegetation before the fire) were found to be more prevalent in the multivariate models for explaining the response variables in comparison with climatic and anthropogenic variables. This result suggests that better management of wildland–urban interfaces and natural vegetation using cultural and prescribed burning as well as planning landscapes with less flammable and more fire-tolerant ground cover plants may reduce fire risk to communities living near forests, but this is challenging given the sheer size and diversity of ecosystems in Australia. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

Article
Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS
Fire 2021, 4(3), 53; https://0-doi-org.brum.beds.ac.uk/10.3390/fire4030053 - 25 Aug 2021
Viewed by 428
Abstract
The fires encountered in the buildings and facilities of industrial areas make up quite a small proportion of all fire cases. However, in terms of the heat release rate, size of the burned area, damage, and impact zone, such fires have a large [...] Read more.
The fires encountered in the buildings and facilities of industrial areas make up quite a small proportion of all fire cases. However, in terms of the heat release rate, size of the burned area, damage, and impact zone, such fires have a large impact as compared to other fire cases. All fires have risk in terms of propagation. However, since fires in industrial structures and plants have rather high levels, qualitatively and quantitatively, compared to residential fires and other types of fires, it should be regarded as necessary to research them extensively. In this study, fires that have broken out in various places around Turkey, such as in factories, cold storage plants, and manufacturing facilities, were investigated. We aimed to determine the level of risk of the occurrence of these fires in the environment. A large amount of detailed information gathered about these fires was analyzed. This information includes data about the causes of the fires, deformation data of various materials, data on technical problems, data on financial damage levels, and data on fire patterns. We found 40 of these fire cases in total, and the case data were used to calculate the risk scores with the Geographic Information System (GIS), Analytical Hierarchy Process (AHP), and Inverse Distance Weight (IDW) methods. For each fire case, places sensitive to damage and losses were assessed according to six main criteria. Buffer analysis maps were generated for the 40 fire cases, and the cases were ordered based on their overall risk scores. In this ordering, fire case number 21 was found in the riskiest region, and fire cases 32, 17, and 31 were found in the low-risk region. Fire case number 21 occurred in a factory used for manufacturing fabric. This factory works with high volumes of acrylic, polyester, and other raw materials. In addition, there are some structures in very close proximity. It was observed that fire cases could be well differentiated depending on the selected criteria in the model applied. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

Article
Comprehensive Examination of the Determinants of Damage to Houses in Two Wildfires in Eastern Australia in 2013
Fire 2021, 4(3), 44; https://0-doi-org.brum.beds.ac.uk/10.3390/fire4030044 - 09 Aug 2021
Viewed by 895
Abstract
Wildfires continue to destroy houses, but an understanding of the complex mix of risk factors remains elusive. These factors comprise six themes: preparedness actions (including defensible space), response actions (including defence), house construction, landscape fuels, topography and weather. The themes span a range [...] Read more.
Wildfires continue to destroy houses, but an understanding of the complex mix of risk factors remains elusive. These factors comprise six themes: preparedness actions (including defensible space), response actions (including defence), house construction, landscape fuels, topography and weather. The themes span a range of spatial scales (house to region) and responsible agents (householders through government to entirely natural forces). We conducted a statistical analysis that partitions the contribution of these six themes on wildfire impact to houses, using two fires that destroyed 200 houses in New South Wales (Australia) in October 2013 (the Linksview and Mt York fires). We analysed 85 potential predictor variables using Random Forest modelling. The best predictors of impact were whether the house was defended and distance to forest toward the direction of fire spread. However, predictors from all four of the other themes had some influence, including distance to the nearest other burnt house (indicating house-to-house transmission) and vegetation cover up to 40 m from the house. The worst-placed houses (undefended, without adequate defensible space, with burnt houses nearby and with a westerly aspect) were 10 times more likely to be impacted than the best-placed houses in our study. The results indicate that householders are the agents most able to mitigate risk in the conditions experienced in these fires through both preparation and active defence. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

Article
Towards Understanding Fire Causes in Informal Settlements Based on Inhabitant Risk Perception
Fire 2021, 4(3), 39; https://0-doi-org.brum.beds.ac.uk/10.3390/fire4030039 - 23 Jul 2021
Cited by 1 | Viewed by 629
Abstract
Informal settlements (ISs) are a high-risk environment in which fires are often seen. In 2019 alone, 5544 IS fires were reported in South Africa. One of the main problems, when investigating an IS fire, is determining the fire cause. In the last 15 [...] Read more.
Informal settlements (ISs) are a high-risk environment in which fires are often seen. In 2019 alone, 5544 IS fires were reported in South Africa. One of the main problems, when investigating an IS fire, is determining the fire cause. In the last 15 years, approximately 40% of the fire causes were classified as ‘undetermined’ in South Africa. Furthermore, the cases where the fire causes have been determined, do not provide the necessary information to comprehend why the fire started. This paper seeks to gain better insight with respect to fire causes by analysing the fire risk perception of IS inhabitants. To this end, a survey that was conducted in 2017, consisting of data from 2178 IS households, that were affected by a large-scale fire, was analysed. The survey consisted of questions relating to the fire risk perception with regards to the settlement in general, to the inhabitants’ own household, and about measures that could reduce fire risk. The analysis suggests that (a) the survey’s risk target had a strong influence on risk perception, (b) the inhabitants’ fire risk perception of their settlement is similar to that of firefighters in previous research, (c) the risk mitigation demands are more focused on decreasing the consequences of the fire than on the occurrence of a fire event, (d) the national fire statistics are not capturing the causes of real fire incidents, and (e) improvements to the documentation process after a fire event could provide critical information for the implementation of prevention measures. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

Article
Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California
Fire 2021, 4(1), 12; https://0-doi-org.brum.beds.ac.uk/10.3390/fire4010012 - 12 Mar 2021
Cited by 1 | Viewed by 1038
Abstract
Recent increases in destructive wildfires are driving a need for empirical research documenting factors that contribute to structure loss. Existing studies show that fire risk is complex and varies geographically, and the role of vegetation has been especially difficult to quantify. Here, we [...] Read more.
Recent increases in destructive wildfires are driving a need for empirical research documenting factors that contribute to structure loss. Existing studies show that fire risk is complex and varies geographically, and the role of vegetation has been especially difficult to quantify. Here, we evaluated the relative importance of vegetation cover at local (measured through the Normalized Difference Vegetation Index) and landscape (as measured through the Wildland–Urban Interface) scales in explaining structure loss from 2013 to 2018 in California—statewide and divided across three regions. Generally, the pattern of housing relative to vegetation better explained structure loss than local-scale vegetation amount, but the results varied regionally. This is likely because exposure to fire is a necessary first condition for structure survival, and sensitivity is only relevant once the fire reaches there. The relative importance of other factors such as long-term climatic variability, distance to powerlines, and elevation also varied among regions. These suggest that effective fire risk reduction strategies may need to account for multiple factors at multiple scales. The geographical variability in results also reinforces the notion that “one size does not fit all”. Local-scale empirical research on specific vegetation characteristics relative to structure loss is needed to inform the most effective customized plan. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

Back to TopTop