Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

15 pages, 5661 KiB  
Article
An Improved YOLOv5 Model: Application to Mixed Impurities Detection for Walnut Kernels
by Lang Yu, Mengbo Qian, Qiang Chen, Fuxing Sun and Jiaxuan Pan
Foods 2023, 12(3), 624; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030624 - 01 Feb 2023
Cited by 9 | Viewed by 1967
Abstract
Impurity detection is an important link in the chain of food processing. Taking walnut kernels as an example, it is difficult to accurately detect impurities mixed in walnut kernels before the packaging process. In order to accurately identify the small impurities mixed in [...] Read more.
Impurity detection is an important link in the chain of food processing. Taking walnut kernels as an example, it is difficult to accurately detect impurities mixed in walnut kernels before the packaging process. In order to accurately identify the small impurities mixed in walnut kernels, this paper established an improved impurities detection model based on the original YOLOv5 network model. Initially, a small target detection layer was added in the neck part, to improve the detection ability for small impurities, such as broken shells. Secondly, the Tansformer-Encoder (Trans-E) module is proposed to replace some convolution blocks in the original network, which can better capture the global information of the image. Then, the Convolutional Block Attention Module (CBAM) was added to improve the sensitivity of the model to channel features, which make it easy to find the prediction region in dense objects. Finally, the GhostNet module is introduced to make the model lighter and improve the model detection rate. During the test stage, sample photos were randomly chosen to test the model’s efficacy using the training and test set, derived from the walnut database that was previously created. The mean average precision can measure the multi-category recognition accuracy of the model. The test results demonstrate that the mean average precision (mAP) of the improved YOLOv5 model reaches 88.9%, which is 6.7% higher than the average accuracy of the original YOLOv5 network, and is also higher than other detection networks. Moreover, the improved YOLOv5 model is significantly better than the original YOLOv5 network in identifying small impurities, and the detection rate is only reduced by 3.9%, which meets the demand of real-time detection of food impurities and provides a technical reference for the detection of small impurities in food. Full article
Show Figures

Figure 1

16 pages, 1587 KiB  
Article
Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk
by Ilias Apostolakos, Spiros Paramithiotis and Marios Mataragas
Foods 2023, 12(3), 599; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030599 - 01 Feb 2023
Cited by 5 | Viewed by 2122
Abstract
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus [...] Read more.
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus plantarum had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions. A key finding of our analysis was the overall absence of acquired resistance genes (RGs), virulence genes (VGs), and prophages, denoting that all LAB isolates fulfill safety criteria and can be used as starter or adjunct cultures. In this regard, the identified mobile genetic elements found in LAB, rather than enabling the integration of RGs or VGs, they likely facilitate the uptake of genes involved in beneficial functions and in the adaptation of LAB in dairy matrices. Another important finding of our study was that bacteriocins and CAZymes were abundant in LAB though each species was associated with specific genes, which in turn had different activity spectrums and identified applications. Additionally, all isolates were able to metabolize glucose, lactose, maltose, and sucrose, but Lactiplantibacillus plantarum was strongly associated with the fermentation of rhamnose, mannose, cellobiose, and trehalose whereas Levilactobacillus brevis with the utilization of arabinose and xylose. Altogether these results suggest that to fully exploit the beneficial properties of LAB, a combination of strains as food additives may be necessary. Interestingly, biological processes involved in the metabolism of carbohydrates that are not of direct interest for the dairy industry may yield valuable metabolites or activate pathways associated with beneficial health effects. Our results provide useful information for the development of new probiotic artisanal cheeses and probiotic starter cultures. Full article
(This article belongs to the Special Issue Cheese: Chemistry, Physics and Microbiology)
Show Figures

Figure 1

18 pages, 4697 KiB  
Article
Cassava Starch Films Containing Quinoa Starch Nanocrystals: Physical and Surface Properties
by Lía Ethel Velásquez-Castillo, Mariani Agostinetto Leite, Victor Jesús Aredo Tisnado, Cynthia Ditchfield, Paulo José do Amaral Sobral and Izabel Cristina Freitas Moraes
Foods 2023, 12(3), 576; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030576 - 28 Jan 2023
Cited by 8 | Viewed by 2085
Abstract
Quinoa starch nanocrystals (QSNCs), obtained by acid hydrolysis, were used as a reinforcing filler in cassava starch films. The influence of QSNC concentrations (0, 2.5, 5.0, 7.5 and 10%, w/w) on the film’s physical and surface properties was investigated. QSNCs [...] Read more.
Quinoa starch nanocrystals (QSNCs), obtained by acid hydrolysis, were used as a reinforcing filler in cassava starch films. The influence of QSNC concentrations (0, 2.5, 5.0, 7.5 and 10%, w/w) on the film’s physical and surface properties was investigated. QSNCs exhibited conical and parallelepiped shapes. An increase of the QSNC concentration, from 0 to 5%, improved the film’s tensile strength from 6.5 to 16.5 MPa, but at 7.5%, it decreased to 11.85 MPa. Adequate exfoliation of QSNCs in the starch matrix also decreased the water vapor permeability (~17%) up to a 5% concentration. At 5.0% and 7.5% concentrations, the films increased in roughness, water contact angle, and opacity, whereas the brightness decreased. Furthermore, at these concentrations, the film’s hydrophilic nature changed (water contact angle values of >65°). The SNC addition increased the film opacity without causing major changes in color. Other film properties, such as thickness, moisture content and solubility, were not affected by the QSNC concentration. The DSC (differential scanning calorimetry) results indicated that greater QSNC concentrations increased the second glass transition temperature (related to the biopolymer-rich phase) and the melting enthalpy. However, the film’s thermal stability was not altered by the QSNC addition. These findings contribute to overcoming the starch-based films’ limitations through the development of nanocomposite materials for future food packaging applications. Full article
Show Figures

Graphical abstract

15 pages, 1342 KiB  
Article
Stability Kinetics of Anthocyanins of Grumixama Berries (Eugenia brasiliensis Lam.) during Thermal and Light Treatments
by Elivaldo Nunes Modesto Junior, Mayara Galvão Martins, Gustavo Araujo Pereira, Renan Campos Chisté and Rosinelson da Silva Pena
Foods 2023, 12(3), 565; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030565 - 28 Jan 2023
Cited by 9 | Viewed by 1744
Abstract
Grumixama (Eugenia brasiliensis Lam.) are red-colored fruits due to the presence of anthocyanins. In this paper, anthocyanin-rich extracts from grumixama were submitted to different temperatures and light irradiations, with the aim of investigating their stabilities. The thermal stability data indicated that a [...] Read more.
Grumixama (Eugenia brasiliensis Lam.) are red-colored fruits due to the presence of anthocyanins. In this paper, anthocyanin-rich extracts from grumixama were submitted to different temperatures and light irradiations, with the aim of investigating their stabilities. The thermal stability data indicated that a temperature range from 60 to 80 °C was critical to the stability of the anthocyanins of the grumixama extracts, with a temperature quotient value (Q10) of 2.8 and activation energy (Ea) of 52.7 kJ/mol. The anthocyanin-rich extracts of grumixama fruits showed the highest stability during exposure to incandescent irradiation (50 W), followed by fluorescent radiation (10 W). The t1/2 and k were 59.6 h and 0.012 h−1 for incandescent light, and 45.6 h and 0.015 h−1 for fluorescent light. In turn, UV irradiation (25 W) quickly degraded the anthocyanins (t1/2 = 0.18 h and k = 3.74 h−1). Therefore, grumixama fruits, and their derived products, should be handled carefully to avoid high temperature (>50 °C) and UV light exposure in order to protect the anthocyanins from degradation. Furthermore, grumixama fruits showed high contents of anthocyanins that can be explored as natural dyes; for example, by food, pharmaceutical and cosmetic industries. In addition, the results of this study may contribute to the setting of processing conditions and storage conditions for grumixama-derived fruit products. Full article
(This article belongs to the Special Issue Fruits and Fruit-Based Products as a Source of Bioactive Compounds)
Show Figures

Graphical abstract

16 pages, 912 KiB  
Article
Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors
by Xin Yan, Sophie Laurent, Isabelle Hue, Sylvie Cabon, Joelle Grua-Priol, Vanessa Jury, Michel Federighi and Geraldine Boué
Foods 2023, 12(3), 572; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030572 - 28 Jan 2023
Cited by 5 | Viewed by 2597
Abstract
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders [...] Read more.
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders obtained by four different processing pathways. Contents of dry matter, protein, fat, ash, water activity (aw) and a range of microbial counts were measured and analyzed by one-way ANOVA with Tukey’s test. Results showed small differences in the proximate composition of the powder samples (protein 55.62–57.90% and fat 23.63–28.21% of dry matter, DM), except for the one that underwent a defatting step (protein 70.04% and fat 16.84%), p < 0.05. A level of water activity of less than 0.2 was reached for all pathways. Fresh mealworm samples had high total aerobic counts (8.4 log CFU/g) but were free of foodborne pathogens. Heat treatments applied during transformation were sufficient to kill vegetative cells (reduction of 2.8–5.1 log CFU/g) rather than bacterial endospores (reduction of 0.3–1.8 log CFU/g). Results were confirmed by predictive microbiology. This study validated the efficacy of a boiling step as critical control points (CCPs) of insect powder processing, providing primary data for the implementation of HACCP plans. Full article
Show Figures

Figure 1

16 pages, 1425 KiB  
Article
Comparison of the Rheological Behavior of Fortified Rye–Wheat Dough with Buckwheat, Beetroot and Flax Fiber Powders and Their Effect on the Final Product
by Greta Adamczyk, Zuzanna Posadzka, Teresa Witczak and Mariusz Witczak
Foods 2023, 12(3), 559; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030559 - 27 Jan 2023
Cited by 5 | Viewed by 1691
Abstract
This study was focused on the replacement of the part of the flour (10% w/w) in rye–wheat bread with three different botanical origin powders with a high dietary fiber content (buckwheat hulls, beetroot and flax powder). The dough was based [...] Read more.
This study was focused on the replacement of the part of the flour (10% w/w) in rye–wheat bread with three different botanical origin powders with a high dietary fiber content (buckwheat hulls, beetroot and flax powder). The dough was based on rye–wheat flour without and with the addition of fiber powders with different botanical origins and was tested, and the quality of the finished baked products made from those doughs were assessed. In order to characterize the flour mixtures, their basic parameters were determined, and their pasting characteristic was performed. The dough parameters were described by the Burger rheological model and also the creep and recovery test. On the other hand, in bread, the basic parameters of baking, crumb and crust color parameters were determined, and an analysis of the crumb texture was carried out. Additionally, a sensory analysis of the finished products was carried out. The applied fiber additives influenced the pasting characteristics of the tested rye–wheat flour and were influenced by the dough rheological properties. It was found that used fiber powders changed the quality parameters of the final products. Despite this, using fiber at the amount of 10% as a flour substitute allowed us to obtain bread of a similar quality to the control sample. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 439 KiB  
Article
Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change
by Jelka Pleadin, Jovana Kos, Bojana Radić, Ana Vulić, Nina Kudumija, Radmila Radović, Elizabet Janić Hajnal, Anamarija Mandić and Mislav Anić
Foods 2023, 12(3), 548; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030548 - 26 Jan 2023
Cited by 11 | Viewed by 2221
Abstract
Aflatoxins (AFs) represent the most important mycotoxin group, whose presence in food and feed poses significant global health and economic issues. The occurrence of AFs in maize is a burning problem worldwide, mainly attributed to droughts. In recent years, Serbia and Croatia faced [...] Read more.
Aflatoxins (AFs) represent the most important mycotoxin group, whose presence in food and feed poses significant global health and economic issues. The occurrence of AFs in maize is a burning problem worldwide, mainly attributed to droughts. In recent years, Serbia and Croatia faced climate changes followed by a warming trend. Therefore, the main aim of this study was to estimate the influence of weather on AFs occurrence in maize from Serbia and Croatia in the 2018–2021 period. The results indicate that hot and dry weather witnessed in the year 2021 resulted in the highest prevalence of AFs in maize samples in both Serbia (84%) and Croatia (40%). In maize harvested in 2018–2020, AFs occurred in less than, or around, 10% of Serbian and 20% of Croatian samples. In order to conduct a comprehensive study on the implications of climate change for the occurrence of AFs in maize grown in these two countries, the results of available studies performed in the last thirteen years were searched for and discussed. Full article
(This article belongs to the Special Issue Mycotoxin in Foods: Implications of Climate Change)
Show Figures

Figure 1

16 pages, 3109 KiB  
Article
Introduction of Curdlan Optimizes the Comprehensive Properties of Methyl Cellulose Films
by Liang Zhang, Liang Xu, Jin-Ke Ma, Yun-Yue Ye, Ying Chen and Jian-Ya Qian
Foods 2023, 12(3), 547; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030547 - 26 Jan 2023
Cited by 6 | Viewed by 1473
Abstract
The good oxygen barrier and hydrophobic properties of curdlan (CL) film might be suitable complements for MC film, and its similar glucose unit and thermal-gel character might endow the methyl cellulose (MC)/CL blended system with compatibility and good comprehensive properties. Thus, MC/CL blended [...] Read more.
The good oxygen barrier and hydrophobic properties of curdlan (CL) film might be suitable complements for MC film, and its similar glucose unit and thermal-gel character might endow the methyl cellulose (MC)/CL blended system with compatibility and good comprehensive properties. Thus, MC/CL blended films were developed. The effects of MC/CL blend ratios on the microstructures and physical properties of the blends were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), oxygen and water vapor permeability testing, dynamic mechanical analysis (DMA), light transmittance testing, tensile testing, hydrophilic property testing, and water solubility testing. The introduction of CL affected the molecular aggregation and crystallization of the MC molecules, suggesting MC–CL molecular interactions. The cross-sectional roughness of the MC/CL film increased with an increase in CL content, while the surface of the MC/CL 5:5 film was smoother than those of the MC/CL 7:3 and 3:7 films. Only one glass transition temperature, which was between that of the MC and CL films, was observed for the MC/CL 7:3 and MC/CL 5:5 films, indicating the good compatibility of the MC and CL molecules at these two blend ratios. The hydrophobicity and water insolubility increased with the CL content, which was due to the combined effects of more hydrophobic cavities in the CL triple-helix and increased surface roughness. Increased oxygen barrier properties with increasing CL content might be a combined effect of the increased hydrogen bonds and hydrophilic ektexines of the CL triple-helix. The elongations of the blended films were higher than those of the MC film, which might be related to its increased water content. The MC/CL 7:3 and MC/CL 5:5 films retained the good light transmittance and tensile strength of the MC film, which corresponded well to their good compatibility and might be due to the effects of the MC–CL molecular interactions and the relative smooth morphologies. MC/CL 5:5 showed improved water vapor barrier properties, which might be due to its smooth surface morphologies. This research offers new MC based films with improved properties and good compatibility, providing great potential for use as edible coatings, capsules, and packaging materials. Full article
(This article belongs to the Special Issue Edible Film Based on Polysaccharides, Proteins and Lipids)
Show Figures

Figure 1

24 pages, 2595 KiB  
Article
‘Superfoods’: Reliability of the Information for Consumers Available on the Web
by Ángel Cobos and Olga Díaz
Foods 2023, 12(3), 546; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030546 - 26 Jan 2023
Cited by 6 | Viewed by 4487
Abstract
The term ‘superfoods’, used frequently with marketing purposes, is usually associated with foodstuffs with beneficial health properties. ‘Superfoods’ appears in many information sources, including digital media. The information they provide is easily accessible for consumers through Internet search engines. The objective of this [...] Read more.
The term ‘superfoods’, used frequently with marketing purposes, is usually associated with foodstuffs with beneficial health properties. ‘Superfoods’ appears in many information sources, including digital media. The information they provide is easily accessible for consumers through Internet search engines. The objective of this work is to investigate the data that web pages offer to consumers and their accuracy according to current scientific knowledge. The two main search engines were utilized for English language websites search, introducing the term ‘superfoods’. In total, 124 search results were found. After applying the selection criteria, 45 web pages were studied. A total of 136 foods were considered as ‘superfoods’ by sites; 10 of them (kale, spinach, salmon, blueberries, avocado, chia, walnuts, beans, fermented milks and garlic) were mentioned on at least 15 sites. Nutritional and healthy properties displayed on sites were compared to scientific information. In conclusion, websites present the information in a very simplified manner and it is generally not wrong. However, they should offer to consumers comprehensible information without raising false expectations regarding health benefits. In any case, ‘superfoods’ consumption can have salutary effects as part of a balanced diet. Full article
Show Figures

Figure 1

17 pages, 1117 KiB  
Article
Effects of the Aging Period and Method on the Physicochemical, Microbiological and Rheological Characteristics of Two Cuts of Charolais Beef
by Marika Di Paolo, Rosa Luisa Ambrosio, Claudia Lambiase, Valeria Vuoso, Angela Salzano, Giovanna Bifulco, Carmela Maria Assunta Barone and Raffaele Marrone
Foods 2023, 12(3), 531; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030531 - 25 Jan 2023
Cited by 4 | Viewed by 2160
Abstract
Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers’ tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts [...] Read more.
Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers’ tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts of Charolais beef (Longissimus dorsi and Semitendinosus). For 60 days (i.e., 2 days, 15 days, 30 days and 60 days of sampling), a physicochemical, rheological, and microbiological analysis were performed at WA (vacuum packed; temperature of 4 ± 1 °C) and at DA (air velocity of 0.5 m/s; temperature of 1 ± 1 °C; relative humidity of 78 ± 10%) conditions. The results showed that the aging method influenced the aging loss (higher in the DA), cooking loss (higher in the WA), malondialdehyde concentration (higher in the DA) and fatty acid profile (few changes). No differences in the drip loss and color were observed, which decreased after 30 days of aging. The WBSF and TPA test values changed with increasing an aging time showing that the aging improved the tenderness of meat regardless of the aging method. Moreover, the aging method does not influence the microbiological profile. In conclusion, both WA and DA enhanced the quality of the different beef cuts, suggesting that an optimal method-time and aging combination could be pursued to reach the consumers’ preferences. Full article
Show Figures

Figure 1

20 pages, 6652 KiB  
Article
Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology
by Xiaodong Zhang, Yafei Wang, Zhankun Zhou, Yixue Zhang and Xinzhong Wang
Foods 2023, 12(3), 535; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030535 - 25 Jan 2023
Cited by 6 | Viewed by 1651
Abstract
Leaf mildew is a common disease of tomato leaves. Its detection is an important means to reduce yield loss from the disease and improve tomato quality. In this study, a new method was developed for the multi-source detection of tomato leaf mildew by [...] Read more.
Leaf mildew is a common disease of tomato leaves. Its detection is an important means to reduce yield loss from the disease and improve tomato quality. In this study, a new method was developed for the multi-source detection of tomato leaf mildew by THz hyperspectral imaging through combining internal and external leaf features. First, multi-source information obtained from tomato leaves of different disease grades was extracted by near-infrared hyperspectral imaging and THz time-domain spectroscopy, while the influence of low-frequency noise was removed by the Savitzky Golay (SG) smoothing algorithm. A genetic algorithm (GA) was used to optimize the selection of the characteristic near-infrared hyperspectral band. Principal component analysis (PCA) was employed to optimize the THz characteristic absorption spectra and power spectrum dimensions. Recognition models were developed for different grades of tomato leaf mildew infestation by incorporating near-infrared hyperspectral imaging, THz absorbance, and power spectra using the backpropagation neural network (BPNN), and the models had recognition rates of 95%, 96.67%, and 95%, respectively. Based on the near-infrared hyperspectral features, THz time-domain spectrum features, and classification model, the probability density of the posterior distribution of tomato leaf health parameter variables was recalculated by a Bayesian network model. Finally, a fusion diagnosis and health evaluation model of tomato leaf mildew with hyperspectral fusion THz was established, and the recognition rate of tomato leaf mildew samples reached 97.12%, which improved the recognition accuracy by 0.45% when compared with the single detection method, thereby achieving the accurate detection of facility diseases. Full article
Show Figures

Figure 1

18 pages, 3136 KiB  
Article
Valorization of Rice Husk (Oryza sativa L.) as a Source of In Vitro Antiglycative and Antioxidant Agents
by Ilaria Frosi, Daniela Vallelonga, Raffaella Colombo, Chiara Milanese and Adele Papetti
Foods 2023, 12(3), 529; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030529 - 25 Jan 2023
Cited by 4 | Viewed by 2021
Abstract
Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the [...] Read more.
Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the protein glycation at different stages of the reaction, correlating this activity with the antiradical properties. A microwave-assisted extraction using hydro-alcoholic solvents was applied to recover husk polyphenols. Extraction parameters were optimized by the design of the experiment. The extract with the highest polyphenolic recovery was obtained at 500 W and 90 °C, using 1:35 g of dry material/mL solvent, 80% ethanol, and a 5 min extraction time. Results highlight the ability of RHE to inhibit the formation of fructosamine in the early stage of glycation with a dose-dependent activity. Furthermore, in the middle stage of the reaction, the highest RHE tested concentration (2.5 mg/mL) almost completely inhibit the monitored advanced glycation end products (AGEs), as well as showing a good trapping ability against α-dicarbonyl intermediates. A strong positive correlation with antioxidant activity is also found. The obtained results are supported by the presence of ten polyphenols detected by RP-HPLC-DAD-ESI-MSn, mainly hydroxycinnamic acids and flavonoids, already reported in the literature as antiglycative and antioxidant agents. Full article
Show Figures

Figure 1

22 pages, 2829 KiB  
Article
How Cooking Time Affects In Vitro Starch and Protein Digestibility of Whole Cooked Lentil Seeds versus Isolated Cotyledon Cells
by Dorine Duijsens, Sarah H. E. Verkempinck, Audrey De Coster, Katharina Pälchen, Marc Hendrickx and Tara Grauwet
Foods 2023, 12(3), 525; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030525 - 24 Jan 2023
Cited by 4 | Viewed by 2993
Abstract
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive [...] Read more.
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC, cooking time had no significant effect on amylolysis kinetics, while small but significant differences in proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure obtained upon the mechanical disintegration of whole lentils, resulting in significantly different digestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter). However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities with perspectives for household and industrial preparation. Full article
Show Figures

Graphical abstract

20 pages, 593 KiB  
Article
Effects of Pork Backfat Replacement with Emulsion Gels Formulated with a Mixture of Olive, Chia and Algae Oils on the Quality Attributes of Pork Patties
by Nicoleta Cîrstea (Lazăr), Violeta Nour and Andrei Iulian Boruzi
Foods 2023, 12(3), 519; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030519 - 23 Jan 2023
Cited by 9 | Viewed by 1905
Abstract
This paper reports on the development of new emulsion gels containing a mixture of olive, chia and algae oil emulsified with soy protein isolate and stabilized by two different cold gelling agents, gelatin (EGEL) and chitosan (ECHIT), and to evaluate their potential use [...] Read more.
This paper reports on the development of new emulsion gels containing a mixture of olive, chia and algae oil emulsified with soy protein isolate and stabilized by two different cold gelling agents, gelatin (EGEL) and chitosan (ECHIT), and to evaluate their potential use as pork backfat replacers in cooked pork patties. Reformulated patties were produced by half and full pork backfat replacement and compared to normal fat patties and reduced fat content patties made by replacing half of the added fat with water. Color parameters, pH and thermal stability of the emulsion gels were determined at processing and after 10 days of refrigerated storage. Proximate composition, fatty acid profile, technological properties and sensory attributes were evaluated after patty processing, while color parameters, pH and lipid oxidation were monitored in patties during 15 days of refrigerated storage (4 °C). Reformulated patties showed significant improvements of the lipid profile (lower saturated fatty acid content and n-6/n-3 ratio and higher long-chain polyunsaturated fatty acid content) as compared to the controls. In terms of technological properties, chitosan was more effective than gelatin as a stabilizer of the emulsion gel. All reformulated patties showed a good evolution of lipid oxidation during storage and acceptable sensory attributes. Full article
(This article belongs to the Special Issue Strategies to Improve the Functional Value of Meat and Meat Products)
Show Figures

Figure 1

23 pages, 2180 KiB  
Article
Effect of Edible Coating Enriched with Natural Antioxidant Extract and Bergamot Essential Oil on the Shelf Life of Strawberries
by Alessandra De Bruno, Antonio Gattuso, Davide Ritorto, Amalia Piscopo and Marco Poiana
Foods 2023, 12(3), 488; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12030488 - 20 Jan 2023
Cited by 15 | Viewed by 3389
Abstract
In this study, the effects of the application of edible coatings on the shelf life of the strawberry were evaluated, with the aim of extending the fruit’s availability and shelf life while preserving its qualitative characteristics. In particular, the application of edible coatings [...] Read more.
In this study, the effects of the application of edible coatings on the shelf life of the strawberry were evaluated, with the aim of extending the fruit’s availability and shelf life while preserving its qualitative characteristics. In particular, the application of edible coatings enriched with a natural antioxidant to strawberries was evaluated for their physicochemical, microbial, and structural properties, during a storage period (up to 14 days) at refrigerated temperature. The experimental plan provided the formulation for edible coatings enriched with different concentrations of a natural antioxidant extract obtained from bergamot (Citrus bergamia Risso) pomace (1, 2.5, and 5%), bergamot essential oil (0.1% v/v and 0.2% v/v), and a synthetic antioxidant, butylated hydroxytoluene (BHT, 100 ppm). Moreover, a control test with untreated strawberries was considered. The enriched gum Arabic coatings provided good results related to the preservation of the qualitative parameters of the strawberries. The samples coated with the antioxidant extract (2.5%, sample D) and bergamot essential oil (0.1%, sample F) showed the best maintenance of the qualitative parameters after 14 days, showing lower decay rates (36% D and 27% F), good acceptability by consumers (between 5 and 6), and good retention of ascorbic acid (>30 mg 100 g−1). Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Food Applications)
Show Figures

Figure 1

15 pages, 5135 KiB  
Article
A Broad-Spectrum Phage Endolysin (LysCP28) Able to Remove Biofilms and Inactivate Clostridium perfringens Strains
by Rui Lu, Banhong Liu, Liting Wu, Hongduo Bao, Pilar García, Yongjuan Wang, Yan Zhou and Hui Zhang
Foods 2023, 12(2), 411; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020411 - 15 Jan 2023
Cited by 12 | Viewed by 2125
Abstract
Clostridium perfringens is a gram-positive, anaerobic, spore-forming bacterium capable of producing four major toxins which cause disease symptoms and pathogenesis in humans and animals. C. perfringens strains carrying enterotoxins can cause food poisoning in humans and are associated with meat consumption. An endolysin, [...] Read more.
Clostridium perfringens is a gram-positive, anaerobic, spore-forming bacterium capable of producing four major toxins which cause disease symptoms and pathogenesis in humans and animals. C. perfringens strains carrying enterotoxins can cause food poisoning in humans and are associated with meat consumption. An endolysin, named LysCP28, is encoded by orf28 from C. perfringens bacteriophage BG3P. This protein has an N-terminal glycosyl–hydrolase domain (lysozyme) and a C-terminal SH3 domain. Purified LysCP28 (38.8 kDa) exhibited a broad spectrum of lytic activity against C. perfringens strains (77 of 96 or 80.21%), including A, B, C, and D types, isolated from different sources. Moreover, LysCP28 (10 μg/mL) showed high antimicrobial activity and was able to lyse 2 × 107 CFU/mL C. perfringens ATCC 13124 and C. perfringens J21 (animal origin) within 2 h. Necessary due to this pathogenic bacterium’s ability to form biofilms, LysCP28 (18.7 μg/mL) was successfully evaluated as an antibiofilm agent in both biofilm removal and formation inhibition. Finally, to confirm the efficacy of LysCP28 in a food matrix, duck meat was contaminated with C. perfringens and treated with endolysin (100 µg/mL and 50 µg/mL), which reduced viable bacteria by 3.2 and 3.08 units-log, respectively, in 48 h at 4 °C. Overall, the endolysin LysCP28 could potentially be used as a biopreservative to reduce C. perfringens contamination during food processing. Full article
Show Figures

Figure 1

15 pages, 3717 KiB  
Article
Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients
by Saeid Jafari, Zohreh Karami, Khursheed Ahmad Shiekh, Isaya Kijpatanasilp, Randy W. Worobo and Kitipong Assatarakul
Foods 2023, 12(2), 412; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020412 - 15 Jan 2023
Cited by 8 | Viewed by 2585
Abstract
In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45–65 °C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that [...] Read more.
In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45–65 °C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 °C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties. Full article
Show Figures

Graphical abstract

15 pages, 2692 KiB  
Article
Advanced Glycation End Products and Nitrosamines in Sausages Influenced by Processing Parameters, Food Additives and Fat during Thermal Processing
by Jingnan Lu, Mingyu Li, Mingyue Shen, Jianhua Xie and Mingyong Xie
Foods 2023, 12(2), 394; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020394 - 13 Jan 2023
Cited by 12 | Viewed by 1738
Abstract
Advanced glycation end products (AGEs) and nitrosamines (NAs) in sausage are associated with pathogenic and carcinogenic risks. However, the multiple reaction parameters affecting the production of AGEs and NAs during sausage processing remain unclear. This experiment evaluated the effects of processing parameters, food [...] Read more.
Advanced glycation end products (AGEs) and nitrosamines (NAs) in sausage are associated with pathogenic and carcinogenic risks. However, the multiple reaction parameters affecting the production of AGEs and NAs during sausage processing remain unclear. This experiment evaluated the effects of processing parameters, food additives and fat ratios on the formation of AGEs and NAs in sausages. The results showed a 2–3-fold increase in Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) when the sausage processing temperature was increased from 90 °C to 130 °C, and N-nitrosodimethylamine (NDEA) increased from 3.68 ng/g to 6.41 ng/g. The addition of salt inhibited the formation of AGEs and NAs, and the inhibitory ability of 2 g/100 g of salt was 63.6% for CML and 36.5% for N-nitrosodimethylamine (NDMA). The addition of 10 mg/kg nitrite to sausages reduced CML formation by 43.9%, however, nitrite had a significant contribution to the formation of NAs. The addition of fat only slightly contributed to the production of CML. In addition, the relationship between α-dicarbonyl compounds and the formation of AGEs was investigated by measuring the changes in α-dicarbonyl compounds in sausages. The results showed two trends of AGEs and α-dicarbonyl compounds: AGEs increased with the increase in α-dicarbonyl compounds and AGE level increased but α-dicarbonyl compound level decreased. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 3680 KiB  
Article
Optimization and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides Derived from Camellia Seed Cake through Enzymatic Hydrolysis
by Yuanping Zhang, Fenghua Wu, Zhiping He, Xuezhi Fang and Xingquan Liu
Foods 2023, 12(2), 393; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020393 - 13 Jan 2023
Cited by 11 | Viewed by 1958
Abstract
In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with [...] Read more.
In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition. The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration, 50 °C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF) were identified and synthesized for the first time by Liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of 0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and treatment of diabetes. Full article
(This article belongs to the Special Issue Bioactivity of Peptides and Proteins from Plant Derived Sources)
Show Figures

Figure 1

20 pages, 1570 KiB  
Article
Effect of Juglone and Other Allelochemicals in Walnut Leaves on Yield, Quality and Metabolites of Snack Cucumber (Cucumis sativus L.)
by Aljaz Medic, Tilen Zamljen, Ana Slatnar, Metka Hudina, Mariana Cecilia Grohar and Robert Veberic
Foods 2023, 12(2), 371; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020371 - 12 Jan 2023
Cited by 7 | Viewed by 1885
Abstract
The consumption of fresh vegetables has been consistently associated with numerous health benefits. However, several factors (such as allelochemicals) influence yield, quality, and metabolites, which inevitably affect the fruit quality and health benefits. The present study was conducted to investigate the yield, quality, [...] Read more.
The consumption of fresh vegetables has been consistently associated with numerous health benefits. However, several factors (such as allelochemicals) influence yield, quality, and metabolites, which inevitably affect the fruit quality and health benefits. The present study was conducted to investigate the yield, quality, metabolic responses, and potential toxicity of Cucumis sativus grown in juglone-containing soils. For the treatments, pure juglone (100 µM, 1 mM) and walnut leaf extracts (100 µM) in soil concentrations found in walnut orchards were used. A total of 36 phenolic compounds were identified and quantified in fruits, leaves, and roots using a mass spectrometer coupled with high-performance liquid chromatography. We concluded that juglone at a concentration of 100 µM or walnut leaf extract at the same juglone concentration does not affect the yield of C. sativus, while juglone at a concentration of 1 mM strongly affects it. In the case of juglone, juglone itself was found only in the roots of C. sativus, but not in the leaves or fruits, so C. sativus fruits are considered safe for cultivation in juglone-containing soils. However, this could prove problematic if the plants grown are tubers or root vegetables. The data suggest that juglone itself inhibits secondary metabolism in the plant, making it more susceptible to stress and pathogen attacks. Full article
Show Figures

Figure 1

19 pages, 6952 KiB  
Article
Plant Protein versus Dairy Proteins: A pH-Dependency Investigation on Their Structure and Functional Properties
by Qi Tang, Yrjö H. Roos and Song Miao
Foods 2023, 12(2), 368; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020368 - 12 Jan 2023
Cited by 15 | Viewed by 4267
Abstract
Plant proteins are constantly gaining attention as potential substitutes for dairy proteins, due to their suitable functionality and nutritional value. This study was designed to compare the structural and functional responses of different plant protein isolates (soy, pea, lentil, and chickpea) with two [...] Read more.
Plant proteins are constantly gaining attention as potential substitutes for dairy proteins, due to their suitable functionality and nutritional value. This study was designed to compare the structural and functional responses of different plant protein isolates (soy, pea, lentil, and chickpea) with two commonly used dairy protein (whey protein isolates and sodium caseinate) under different pH treatments (pH 3.0, 5.0, 7.0, and 9.0). The results showed that pH had a different alteration on the structural, surface properties and functional properties of plant and dairy proteins. Plant protein generally possessed a darker color, lower solubility, emulsifying properties, and foaming capacity, whereas their foaming stability and water holding capacity were higher than those of dairy proteins. Soy protein isolates were characterized by its comparable proportion of β-turn and random coils, zeta-potential, emulsifying (30.37 m2/g), and water-holding capacity (9.03 g/g) at alkaline conditions and chickpea protein isolates showed good oil-holding capacity (3.33 g/g at pH 9) among plant proteins. Further analysis confirmed that pH had a greater influence on the structural and functional properties of proteins as compared to protein sources, particularly at acidic conditions. Overall, this study might help processors select the appropriate plant protein as dairy alternatives for their target application in plant-based food products. Full article
Show Figures

Figure 1

17 pages, 2347 KiB  
Article
Metabolomic Approach to Study the ‘Purple Queen’ Pomegranate Cultivar Response to Alternative Culture Media and Phenological Stages
by Juan José Martínez-Nicolás, Francisca Hernández, Dámaris Núñez-Gómez, Francisco García-Sánchez, Rafael Martínez-Font, Pilar Legua and Pablo Melgarejo
Foods 2023, 12(2), 352; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020352 - 11 Jan 2023
Cited by 3 | Viewed by 1260
Abstract
The increasingly evident threat of depletion of world peat bogs is encouraging the search for and study of alternative agricultural substrates that can fully or partially replace peat, guaranteeing food supply (quality and quantity). On the other hand, the identification of the potential [...] Read more.
The increasingly evident threat of depletion of world peat bogs is encouraging the search for and study of alternative agricultural substrates that can fully or partially replace peat, guaranteeing food supply (quality and quantity). On the other hand, the identification of the potential for the reuse of waste from relevant economic activities has increased in recent years, mainly motivated by the change to a sustainable circular economy, as is the case of port sediments. Taking into account that significant volumes of dredged port sediments are generated annually so that ports can maintain their economic activity, it is necessary to find objective, sustainable and safe reuse alternatives. In this sense, the objective of this study was to study the response of the “Purple Queen” pomegranate when grown with dredged port sediment. For this, the fruit production (kg), number of fruits (fruits tree-1), fruit weight (g), and seed yield (%) aiming to verify the correct tree development were evaluated. In addition, a 1H-NMR foliar metabolomic study for the three most relevant phenological phases was performed (flowering, fruit development, and post-harvest) to identify metabolic changes in trees. In total, 29 metabolites were identified; among them, 11 were amino acids, 6 organic acids, 5 sugars, and 7 secondary metabolites. The good agronomical development of the trees and fruits indicated the potential for using the dredged sediment as an agricultural substrate. On the other hand, the results revealed that the greatest variability in the metabolomic study occurred between the phenological phases and a lower variability is explained by the substrates used. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

20 pages, 2561 KiB  
Article
The Impact of High-Intensity Ultrasound-Assisted Extraction on the Structural and Functional Properties of Hempseed Protein Isolate (HPI)
by Shunyu Yao, Wu Li, Yue Wu, Gregory J. O. Martin and Muthupandian Ashokkumar
Foods 2023, 12(2), 348; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020348 - 11 Jan 2023
Cited by 13 | Viewed by 2409
Abstract
Hempseed protein has become a promising candidate as a future alternative protein source due to its high nutritional value. In the current study, hempseed protein isolate (HPI) was obtained using ultrasonic-assisted extraction with the aim to improve the functionality of HPI via protein [...] Read more.
Hempseed protein has become a promising candidate as a future alternative protein source due to its high nutritional value. In the current study, hempseed protein isolate (HPI) was obtained using ultrasonic-assisted extraction with the aim to improve the functionality of HPI via protein structure modification. The solubility of HPI could be improved twofold under 20 kHz ultrasound processing compared to conventional alkaline extraction-isoelectric point precipitation. The protein solubility was gradually enhanced as the ultrasonic power improved, whereas excessive ultrasound intensity would cause a decline in protein solubility. Ultrasonic processing was found to have beneficial effects on the other functionalities of the extracted HPI, such as emulsifying and foaming properties. This improvement can be ascribed to the physical effects of acoustic cavitation that changed the secondary and tertiary structures of the protein to enhance surface hydrophobicity and decrease the particle size of the extracted protein aggregates. In addition, more available thiols were observed in US-treated samples, which could be another reason for improved functionality. However, the results of this study also revealed that prolonged high-power ultrasound exposure may eventually have a detrimental impact on HPI functional properties due to protein aggregation. Overall, this study suggests that high intensity ultrasound can enhance the functionality of HPI, which may ultimately improve its value in HPI-based food products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 6744 KiB  
Article
Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma
by Huiyan Zhao, Jingting Xu, Ruican Wang, Xinran Liu, Xingyun Peng and Shuntang Guo
Foods 2023, 12(2), 329; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020329 - 10 Jan 2023
Cited by 5 | Viewed by 1805
Abstract
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography–mass spectrometry, [...] Read more.
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography–mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes. Full article
Show Figures

Figure 1

18 pages, 1650 KiB  
Article
Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil
by Pengbo Wang, Dongman Wan, Ting Peng, Yujing Yang, Xuefang Wen, Xianghui Yan, Jiaheng Xia, Qingwen Zhu, Ping Yu, Deming Gong and Zheling Zeng
Foods 2023, 12(2), 293; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020293 - 08 Jan 2023
Cited by 5 | Viewed by 2000
Abstract
Cinnamomum camphora seed kernel oil (CCSKO) is one of the important natural medium chain triglycerides (MCT) resources, with more than 95.00% of medium chain fatty acids found in the world, and has various physiological effects. However, CCSKO has not been generally recognized as [...] Read more.
Cinnamomum camphora seed kernel oil (CCSKO) is one of the important natural medium chain triglycerides (MCT) resources, with more than 95.00% of medium chain fatty acids found in the world, and has various physiological effects. However, CCSKO has not been generally recognized as a safe oil or new food resource yet. The acute oral toxicity test and a standard battery of genotoxicity tests (mammalian erythrocyte micronucleus test, Ames test, and in vitro mammalian cell TK gene mutation test) of CCSKO as a new edible plant oil were used in the study. The results of the acute oral toxicity test showed that CCSKO was preliminary non-toxic, with an LD50 value higher than 21.5 g/kg body weight. In the mammalian erythrocyte micronucleus test, there was no concentration-response relationship between the dose of CCSKO and micronucleus value in polychromatic erythrocytes compared to the negative control group. No genotoxicity was observed in the Ames test in the presence or absence of S9 at 5000 μg/mL. In vitro mammalian cell TK gene mutation test showed that CCSKO did not induce in vitro mammalian cell TK gene mutation in the presence or absence of S9 at 5000 μg/mL. These results indicated that CCSKO is a non-toxic natural medium-chain oil. Full article
(This article belongs to the Special Issue Development and Utilization of Bioactive Compound Resources in Food)
Show Figures

Figure 1

16 pages, 4041 KiB  
Article
Trade for Food Security: The Stability of Global Agricultural Trade Networks
by Xiang Wang, Libang Ma, Simin Yan, Xianfei Chen and Anna Growe
Foods 2023, 12(2), 271; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020271 - 06 Jan 2023
Cited by 11 | Viewed by 5149
Abstract
Global food production is facing increasing uncertainties under climate change and the coronavirus pandemic, provoking challenges and severe concerns to national food security. The role of global agricultural trade in bridging the imbalance between food supply and demand has come to the fore. [...] Read more.
Global food production is facing increasing uncertainties under climate change and the coronavirus pandemic, provoking challenges and severe concerns to national food security. The role of global agricultural trade in bridging the imbalance between food supply and demand has come to the fore. However, the impact of multifaceted and dynamic factors, such as trade policies, national relations, and epidemics, on the stability of the agricultural trade network (ATN) needs to be better addressed. Quantitatively, this study estimated grouping characteristics and network stability by analyzing the changing global ATN from 1986 to 2018. We found that the evolution of global agricultural trade communities has gone through four stages: the dominance of the US–Asian community, the rise of the European–African community, the formation of tri-pillar communities, and the development of a multipolar community with a more complex structure. Despite witnessing a progressive increase in the nodal stability of the global ATN during the decades, particular gaps can still be found in stability across countries. Specifically, the European community achieved stability of 0.49 and its trade relations were effectively secured. Meanwhile, the remaining leading communities’ stability shows a stable and upward trend, albeit with more significant challenges in trade relations among some of them. Therefore, how to guarantee the stability of trade relations and strengthen the global ATN to resist external shocks has become an essential question to safeguard global food security. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

15 pages, 706 KiB  
Article
Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage
by Carlota Delso, Alejandro Berzosa, Jorge Sanz, Ignacio Álvarez and Javier Raso
Foods 2023, 12(2), 278; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020278 - 06 Jan 2023
Cited by 9 | Viewed by 1964
Abstract
New techniques are required to replace the use of sulfur dioxide (SO2) or of sterilizing filtration in wineries, due to those methods’ drawbacks. Pulsed electric fields (PEF) is a technology capable of inactivating microorganisms at low temperatures in a continuous flow [...] Read more.
New techniques are required to replace the use of sulfur dioxide (SO2) or of sterilizing filtration in wineries, due to those methods’ drawbacks. Pulsed electric fields (PEF) is a technology capable of inactivating microorganisms at low temperatures in a continuous flow with no detrimental effect on food properties. In the present study, PEF technology was evaluated for purposes of microbial decontamination of red wines after alcoholic and malolactic fermentation, respectively. PEF combined with SO2 was evaluated in terms of microbial stability and physicochemical parameters over a period of four months. Furthermore, the effect of PEF on the sensory properties of red wine was compared with the sterilizing filtration method. Results showed that up to 4.0 Log10 cycles of S. cerevisiae and O. oeni could be eradicated by PEF and sublethal damages and a synergetic effect with SO2 were also observed, respectively. After 4 months, wine treated by PEF after alcoholic fermentation was free of viable yeasts; and less than 100 CFU/mL of O. oeni cells were viable in PEF-treated wine added with 20 ppm of SO2 after malolactic fermentation. No detrimental qualities were found, neither in terms of oenological parameters, nor in the sensory parameters of wines subjected to PEF after storage time. Full article
Show Figures

Figure 1

17 pages, 25052 KiB  
Article
Layer-by-Layer Deposited Multi-Modal PDAC/rGO Composite-Based Sensors
by Ammar Al-Hamry, Tianqi Lu, Jing Bai, Anurag Adiraju, Tharun K. Ega, Igor A. Pašti and Olfa Kanoun
Foods 2023, 12(2), 268; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020268 - 06 Jan 2023
Cited by 3 | Viewed by 1774
Abstract
Different environmental parameters, such as temperature and humidity, aggravate food spoilage, and different volatile organic compounds (VOCs) are released based on the extent of spoilage. In addition, a lack of efficient monitoring of the dosage of pesticides leads to crop failure. This could [...] Read more.
Different environmental parameters, such as temperature and humidity, aggravate food spoilage, and different volatile organic compounds (VOCs) are released based on the extent of spoilage. In addition, a lack of efficient monitoring of the dosage of pesticides leads to crop failure. This could lead to the loss of food resources and food production with harmful contaminants and a short lifetime. For this reason, precise monitoring of different environmental parameters and contaminations during food processing and storage is a key factor for maintaining its safety and nutritional value. Thus, developing reliable, efficient, cost-effective sensor devices for these purposes is of utmost importance. This paper shows that Poly-(diallyl-dimethyl ammonium chloride)/reduced Graphene oxide (PDAC/rGO) films produced by a simple Layer-by-Layer deposition can be effectively used to monitor temperature, relative humidity, and the presence of volatile organic compounds as indicators for spoilage odors. At the same time, they show potential for electrochemical detection of organophosphate pesticide dimethoate. By monitoring the resistance/impedance changes during temperature and relative humidity variations or upon the exposure of PDAC/rGO films to methanol, good linear responses were obtained in the temperature range of 10–100 °C, 15–95% relative humidity, and 35 ppm–55 ppm of methanol. Moreover, linearity in the electrochemical detection of dimethoate is shown for the concentrations in the order of 102 µmol dm−3. The analytical response to different external stimuli and analytes depends on the number of layers deposited, affecting sensors’ sensitivity, response and recovery time, and long-term stability. The presented results could serve as a starting point for developing advanced multi-modal sensors and sensor arrays with high potential for analytical applications in food safety and quality monitoring. Full article
Show Figures

Graphical abstract

17 pages, 2223 KiB  
Article
AFB1 and OTA Promote Immune Toxicity in Human LymphoBlastic T Cells at Transcriptomic Level
by Massimo Frangiamone, Manuel Lozano, Alessandra Cimbalo, Guillermina Font and Lara Manyes
Foods 2023, 12(2), 259; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020259 - 06 Jan 2023
Cited by 6 | Viewed by 1950
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are typical contaminants of food and feed, which have serious implications for human and animal health, even at low concentrations. Therefore, a transcriptomic study was carried out to analyze gene expression changes triggered by low doses [...] Read more.
Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are typical contaminants of food and feed, which have serious implications for human and animal health, even at low concentrations. Therefore, a transcriptomic study was carried out to analyze gene expression changes triggered by low doses of AFB1 and OTA (100 nM; 7 days), individually and combined, in human lymphoblastic T cells. RNA-sequencing analysis showed that AFB1-exposure resulted in 99 differential gene expressions (DEGs), while 77 DEGs were obtained in OTA-exposure and 3236 DEGs in the combined one. Overall, 16% of human genome expression was altered. Gene ontology analysis revealed, for all studied conditions, biological processes and molecular functions typically associated with the immune system. PathVisio analysis pointed to ataxia telangiectasia mutated signaling as the most significantly altered pathway in AFB1-exposure, glycolysis in OTA-exposure, and ferroptosis in the mixed condition (Z-score > 1.96; adjusted p-value ≤ 0.05). Thus, the results demonstrated the potential DNA damage caused by AFB1, the possible metabolic reprogramming promoted by OTA, and the plausible cell death with oxidative stress prompted by the mixed exposure. They may be considered viable mechanisms of action to promote immune toxicity in vitro. Full article
Show Figures

Figure 1

19 pages, 5358 KiB  
Article
Lactobacillus acidophilus (LA) Fermenting Astragalus Polysaccharides (APS) Improves Calcium Absorption and Osteoporosis by Altering Gut Microbiota
by Junhua Zhou, Jing Cheng, Liu Liu, Jianming Luo and Xichun Peng
Foods 2023, 12(2), 275; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020275 - 06 Jan 2023
Cited by 10 | Viewed by 2581
Abstract
Lactobacillus acidophilus (LA) and Astragalus polysaccharides (APS) have each been shown to have anti-osteoporotic activity, and the aim of this study was to further investigate whether the LA fermenting APS was more effective in improving calcium absorption and osteoporosis than the unfermented mixed [...] Read more.
Lactobacillus acidophilus (LA) and Astragalus polysaccharides (APS) have each been shown to have anti-osteoporotic activity, and the aim of this study was to further investigate whether the LA fermenting APS was more effective in improving calcium absorption and osteoporosis than the unfermented mixed solution (MS). We found that the fermentation solution (FS) intervention improved the calcium absorption, BMD, and bone microarchitecture in osteoporotic rats and resulted in better inhibition of osteoclast differentiation markers ACP-5 and pro-inflammatory cytokines TNF-α and IL-6 and promotion of osteoblast differentiation marker OCN. This better performance may be due to the improved restoration of the relative abundance of specific bacteria associated with improved calcium absorption and osteoporosis such as Lactobacillus, Allobaculum, and UCG-005. Several key metabolites, including indicaxanthin, chlorogenic acid, and 3-hydroxymelatonin, may also be the key to the better improvement. In conclusion, the LA fermenting APS can better improve calcium absorption and osteoporosis by increasing active metabolites and altering gut microbiota. This finding should become a solid foundation for the development of LA fermenting APS in functional foods. Full article
Show Figures

Graphical abstract

15 pages, 2603 KiB  
Article
Microencapsulation of Probiotics by Oil-in-Water Emulsification Technique Improves Cell Viability under Different Storage Conditions
by Sebastião Ânderson Dantas da Silva, Leonam da Silva Pereira Batista, Dara Souza Diniz, Sara Sayonara da Cruz Nascimento, Neyna Santos Morais, Cristiane Fernandes de Assis, Thaís Souza Passos and Francisco Canindé de Sousa Júnior
Foods 2023, 12(2), 252; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020252 - 05 Jan 2023
Cited by 6 | Viewed by 2603
Abstract
Probiotics are associated with health benefits to the host. However, their application can be limited due to a decrease in cell viability during processing, storage, and passage through the gastrointestinal tract. Microencapsulation is a simple and efficient alternative to improve the physical protection [...] Read more.
Probiotics are associated with health benefits to the host. However, their application can be limited due to a decrease in cell viability during processing, storage, and passage through the gastrointestinal tract. Microencapsulation is a simple and efficient alternative to improve the physical protection and stability of probiotics. The present study aimed to produce and characterize alginate or gelatin-based microparticles containing Lactobacillus acidophilus NRRL B-4495 or Lactiplantibacillus plantarum NRRL B-4496 by oil-in-water (O/W) emulsification and to evaluate the stability under storage conditions. The results showed that L. acidophilus and L. plantarum encapsulated in gelatin (LAEG and LPEG) presented diameters of 26.08 ± 1.74 μm and 21.56 ± 4.17 μm and encapsulation efficiencies of 89.6 ± 4.2% and 81.1 ± 9.7%, respectively. However, those encapsulated in alginate (LAEA and LPEA) showed an encapsulation efficiency of <1.0%. Furthermore, LAEG was stable for 120 days of storage at 5 °C and 25 °C. Therefore, encapsulation in gelatin by O/W emulsification is a promising strategy for protecting and stabilizing probiotic bacteria, enabling future application in foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

14 pages, 3033 KiB  
Article
Extraction and Quantitation of Phytosterols from Edible Brown Seaweeds: Optimization, Validation, and Application
by Zhen Chen, Nianqiu Shen, Xunzhi Wu, Jiaping Jia, Yue Wu, Hitoshi Chiba and Shuping Hui
Foods 2023, 12(2), 244; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020244 - 05 Jan 2023
Cited by 4 | Viewed by 2130
Abstract
Brown seaweeds are known as important marine food sources, from which phytosterols have been recognized as functional food components with multiple health-beneficial effects. However, studies on phytosterol extraction and quantitation from edible brown seaweeds are limited. In the present work, extraction methods for [...] Read more.
Brown seaweeds are known as important marine food sources, from which phytosterols have been recognized as functional food components with multiple health-beneficial effects. However, studies on phytosterol extraction and quantitation from edible brown seaweeds are limited. In the present work, extraction methods for seaweed phytosterols were compared and optimized by one-factor-at-one-time method and response surface methodology. Moreover, the quantitation method of total sterols and major sterol components, including fucosterol, saringosterol, and ostreasterol, was established and validated using 1H NMR. Furthermore, the developed extraction and determination methods were applied to investigate three common edible seaweeds from Japan (Hijiki, Wakame, and Kombu). As a result, the finally optimized conditions were ultrasound-assisted extraction with CHCl3-MeOH 2:3 for 15 min followed by saponification with 1.65 mL of 1.85 M KOH for 14.5 h. Based on the developed methods, phytosterols in three seaweeds were compared, and Hijiki showed an abundant total sterol amount (2.601 ± 0.171 mg/g DW), significantly higher than Wakame (1.845 ± 0.137 mg/g DW) and Kombu (1.171 ± 0.243 mg/g DW). Notably, the composition of the sterol components varied in different seaweeds. These findings might help the nutritional investigation and functional food development concerning phytosterols from seaweeds. Full article
(This article belongs to the Special Issue Phytochemicals from Algae: Isolation, Analysis and Food Applications)
Show Figures

Figure 1

26 pages, 1871 KiB  
Article
Deliver Smart, Not More! Building Economically Sustainable Competitiveness on the Ground of High Agri-Food Trade Specialization in the EU
by Marius Constantin, Juan Sapena, Andreea Apetrei and Simona Roxana Pătărlăgeanu
Foods 2023, 12(2), 232; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12020232 - 04 Jan 2023
Cited by 14 | Viewed by 4694
Abstract
Competitiveness has always been a multifaceted illusive concept, which has made it a real challenge for scholars and practitioners to find the most suitable measurement tools to completely encapsulate all the complex nuances of competitiveness. This becomes even more of a challenge when [...] Read more.
Competitiveness has always been a multifaceted illusive concept, which has made it a real challenge for scholars and practitioners to find the most suitable measurement tools to completely encapsulate all the complex nuances of competitiveness. This becomes even more of a challenge when approached in relation to particular economic sectors. The agri-food sector is no exception, especially when considering all its interconnections with the other sectors: water, energy, transport, waste. All of them impact the achievement of the Sustainable Development Goals (SDGs). Similarly, scholars have been debating the meaning of sustainability for decades, some even arguing that it is a political, subjective, and, in some cases, self-contradictory concept. As far as the sustainability of agricultural competitiveness is concerned, the literature is still developing. It is much more focused on fostering environmental competitiveness, and less attention was paid to the strategies designed to capitalize on sustainable economic competitiveness—a concept that has attracted divergent opinions in the literature, mainly due to ambiguity. Thus, instead of falling into the pitfall of vagueness, this paper was aimed at bringing its contribution to this field by undertaking the research objective of exploring a single facet of sustainable agricultural competitiveness: the economic facet. Hence, this paper proposes the construction of the sustainable economic competitiveness index (SECI) with direct application for agri-food value chains. It consists of three attributes: (a) factor endowments, resource independence; (b) agricultural chain performance; and (c) national agricultural chain strategies and policies. In this study, SECI was tested against the cereal chain for a selection of EU countries, based on the data taken over from FAOSTAT and INTRACEN Trade Map, in the case of the 2011–2020 period. Various statistical and econometric methods were used to test the robustness of SECI. Results stand as proof that building sustainable agricultural economic competitiveness relies on a mix of strategic actions. The key vector in this mix is that trade flow patterns and policies must be calibrated in accordance with national factor endowments in order to achieve high levels of SECI. To add more managerial implications, this paper argues for the smart delivery of agri-food products with high added value instead of focusing on exporting big volumes of raw agricultural materials with little added value. Full article
(This article belongs to the Special Issue Sustainable Food Systems and Food Market)
Show Figures

Figure 1

26 pages, 9374 KiB  
Article
Oil Bodies from Chia (Salvia hispanica L.) and Camelina (Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability
by Christelle Lopez, Hélène Sotin, Hanitra Rabesona, Bruno Novales, Jean-Michel Le Quéré, Marine Froissard, Jean-Denis Faure, Sylvain Guyot and Marc Anton
Foods 2023, 12(1), 211; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12010211 - 03 Jan 2023
Cited by 7 | Viewed by 4507
Abstract
Exploring and deciphering the biodiversity of oil bodies (OBs) recovered from oilseeds are of growing interest in the preparation of sustainable, natural and healthy plant-based food products. This study focused on chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seed [...] Read more.
Exploring and deciphering the biodiversity of oil bodies (OBs) recovered from oilseeds are of growing interest in the preparation of sustainable, natural and healthy plant-based food products. This study focused on chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seed OBs. A green refinery process including ultrasound to remove mucilage, aqueous extraction by grinding and centrifugation to recover OBs from the seeds was used. The microstructure, composition and physical stability of the OBs were examined. Confocal laser scanning microscopy images showed that chia and camelina seed OBs are spherical assemblies coated by a layer of phospholipids and proteins, which have been identified by gel electrophoresis. The mean diameters determined by laser light scattering measurements were 2.3 and 1.6 µm for chia and camelina seed OBs, respectively. The chia and camelina seed OBs were rich in lipids and other bioactive components with, respectively, 64% and 30% α-linolenic acid representing 70% and 53% of the total fatty acids in the sn-2 position of the triacylglycerols, 0.23% and 0.26% phospholipids, 3069 and 2674 mg/kg oil of β-sitosterol, and lipophilic antioxidants: 400 and 670 mg/kg oil of γ-tocopherol. Phenolic compounds were recovered from the aqueous extracts, such as rutin from camelina and caffeic acid from chia. Zeta-potential measurements showed changes from about −40 mV (pH 9) to values that were positive below the isoelectric points of pH 5.1 and 3.6 for chia and camelina seed OBs, respectively. Below pH 6.5, physical instability of the natural oil-in-water emulsions with aggregation and phase separation was found. This study will contribute to the development of innovative and sustainable food products based on natural oil-in-water emulsions containing chia and camelina seed OBs for their nutritional and health benefits. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
Alginate Oligosaccharides Prevent Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Enhancing Intestinal Barrier Function and Modulating Gut Microbiota
by Axue Wu, Yuan Gao, Ruotong Kan, Pengfei Ren, Changhu Xue, Biao Kong and Qingjuan Tang
Foods 2023, 12(1), 220; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12010220 - 03 Jan 2023
Cited by 10 | Viewed by 2664
Abstract
Alginate oligosaccharides are degradation products of alginate and have attracted increasing attention due to their versatile biological functions. In the present study, C57BL/6 mice were used to assess the ameliorative effects and mechanisms of guluronate oligosaccharides (GAOS), mannuronic oligosaccharides (MAOS), and heterozygous alginate [...] Read more.
Alginate oligosaccharides are degradation products of alginate and have attracted increasing attention due to their versatile biological functions. In the present study, C57BL/6 mice were used to assess the ameliorative effects and mechanisms of guluronate oligosaccharides (GAOS), mannuronic oligosaccharides (MAOS), and heterozygous alginate oligosaccharides (HAOS), which are the three alginate oligosaccharides of dextran sulfate sodium (DSS)-induced ulcerative colitis. The study showed that alginate oligosaccharides alleviated pathological histological damage by slowing down weight loss, inhibiting colonic length shortening, and reducing disease activity index (DAI) and histopathological scores. Alginate oligosaccharides modulated the colonic inflammatory response by reducing colonic MPO levels and downregulating the expression of IL-6 and IL-1β. Alginate oligosaccharides reduced intestinal permeability and reversed intestinal barrier damage by increasing the number of goblet cells, decreasing LPS levels, downregulating Bax protein levels, upregulating Bcl-2 protein levels, and enhancing the expression of the E-cadherin. Furthermore, alginate oligosaccharides modulated the composition of the gut microbiota and restored the production of short-chain fatty acids (SCFAs), especially acetate and butyrate. In conclusion, our study provides a scientific basis for the role of alginate oligosaccharides in relieving ulcerative colitis. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

15 pages, 1164 KiB  
Article
Feeding Lactic Acid Bacteria with Different Sugars: Effect on Exopolysaccharides (EPS) Production and Their Molecular Characteristics
by Andrea Fuso, Elena Bancalari, Vincenzo Castellone, Augusta Caligiani, Monica Gatti and Benedetta Bottari
Foods 2023, 12(1), 215; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12010215 - 03 Jan 2023
Cited by 6 | Viewed by 4204
Abstract
Exopolysaccharides (EPS) are complex molecules produced by some microorganisms and used in foods as texturizers and stabilizers, their properties depending on their chemical structure. In this work, three different lactic acid bacteria (LAB), were tested for their ability to produce EPS, by using [...] Read more.
Exopolysaccharides (EPS) are complex molecules produced by some microorganisms and used in foods as texturizers and stabilizers, their properties depending on their chemical structure. In this work, three different lactic acid bacteria (LAB), were tested for their ability to produce EPS, by using five different mono- and disaccharides as their sole carbon source. The growth and acidifying ability were analysed, the EPSs were quantified by the official method AOAC 991.43, and their chemical structure was investigated. The amount of EPS varied from 0.71 g/L to 2.38 g/L, and maltose was the best sugar for EPS production by Lacticaseibacillus paracasei 2333. Lacticaseibacillus rhamnosus 1019 produced the highest amount when fed with lactose, whereas the EPS amount of Lactobacillus bulgaricus 1932 was not significantly different depending on the sugar type. The EPS chains consisted of fructose, galactose, glucose, mannose, ribose, glucosamine, galactosamine, and in some cases rhamnose in different proportions, depending on the strain and carbon source. The molecular weight of EPS ranged from <10 KDa to >500 KDa and was again highly dependent on the strain and the sugar used, suggesting the possibility of growing different strains under different conditions to obtain EPS with different potential applications in the food system. Full article
Show Figures

Graphical abstract

16 pages, 2117 KiB  
Article
Internal Quality Attributes and Sensory Characteristics of ‘Ambrosia’ Apples with Different Dry Matter Content after a Two-Week and a Ten-Week Air Storage at 1 °C
by Masoumeh Bejaei and Hao Xu
Foods 2023, 12(1), 219; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12010219 - 03 Jan 2023
Cited by 3 | Viewed by 1878
Abstract
This research was conducted to determine the compositional and textural characteristics and sensory profile of ‘Ambrosia’ apples with different dry matter content (DMC) as estimated using a Felix-750 Produce Quality Meter (Felix Instruments Inc., Camas, WA, USA). Fruits were harvested from a commercial [...] Read more.
This research was conducted to determine the compositional and textural characteristics and sensory profile of ‘Ambrosia’ apples with different dry matter content (DMC) as estimated using a Felix-750 Produce Quality Meter (Felix Instruments Inc., Camas, WA, USA). Fruits were harvested from a commercial orchard in Cawston and an experimental field in Summerland Research and Development Centre (SuRDC) in British Columbia, Canada, when the average absorbance difference index/coefficient of fruit skin δAbsorbance (δA) dropped under 0.45 ± 0.10. DMC levels were estimated after harvest at the blush/background transition zone for fruit categorization on 300 fruits from each location. Fruits were coded with an individual number and grouped in different DMC categories. The distribution of the estimated DMC levels obtained from two locations was different. The results indicate that DMC levels were strongly and positively correlated with the soluble solids content (SSC) of the fruit (r = 0.81). Sensory evaluations also demonstrated that apples in the lowest DMC category (12.5% ± 0.5 from Cawston) were considered the least sweet apples with the least overall flavour quality by panellists compared to the apples from the other DMC categories included in the sensory evaluations from the two locations. Panellists also perceived less-than-expected “fresh apple” and “tropical” flavours but more-than-expected “no flavour” and “bland” off flavour from the lowest-DMC-category apples. The non-destructive DMC measurements show a potential to be used to sort apples for SSC, sweetness and flavour; nevertheless, they were not related to firmness or textural attributes. Full article
Show Figures

Figure 1

19 pages, 1444 KiB  
Article
Torulaspora delbrueckii May Help Manage Total and Volatile Acidity of Santorini-Assyrtiko Wine in View of Global Warming
by Georgios Sgouros, Athanasios Mallouchos, Dimitra Dourou, Georgios Banilas, Ioanna Chalvantzi, Yiannis Kourkoutas and Aspasia Nisiotou
Foods 2023, 12(1), 191; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12010191 - 01 Jan 2023
Cited by 4 | Viewed by 1497
Abstract
Non-Saccharomyces (NS) yeasts are gaining popularity in modern winemaking for improving wine quality. Climate change is one of the biggest challenges winegrowing now faces in warm regions. Here, Lachancea thermotolerans LtS1 and Torulaspora delbrueckii TdS6 combined with Saccharomyces cerevisiae ScS13 isolated from Assyrtiko [...] Read more.
Non-Saccharomyces (NS) yeasts are gaining popularity in modern winemaking for improving wine quality. Climate change is one of the biggest challenges winegrowing now faces in warm regions. Here, Lachancea thermotolerans LtS1 and Torulaspora delbrueckii TdS6 combined with Saccharomyces cerevisiae ScS13 isolated from Assyrtiko grapes from Santorini island were evaluated in grape must fermentation with the aim to mitigate major consequences of temperature rise. Different inoculation protocols were evaluated, including simultaneous and sequential mixed-strain inoculations, displaying significant variation in the chemical and kinetic characteristics. Both LtS1 and TdS6 could raise the titratable acidity (TA). TdS6 also reduced the volatile acidity (VA) and was thus chosen for further evaluation in microvinifications and pilot-scale fermentations. Consistent with lab-scale trials, sequential inoculation exhibited the longest persistence of TdS6 resulting in minimum VA levels. Diethyl succinate, ethyl propanoate, and ethyl isobutyrate were significantly increased in sequential inoculations, although a decline in the net total ester content was observed. On the other hand, significantly higher levels of TA, succinic acid, and 2-methylpropanoic were associated with sequential inoculation. The overall performance of TdS6 coupled with a high compatibility with S. cerevisiae suggests its use in the fermentation of Santorini-Assyrtiko or other high sugar musts for the production of structured dry or sweet wines. Full article
(This article belongs to the Special Issue Research Advances in Wine Technology and Microbiology)
Show Figures

Figure 1

15 pages, 1171 KiB  
Article
Antioxidant Activity, Total Phenolic Content and Total Flavonoid Content in Sweet Chestnut (Castanea sativa Mill.) Cultivars Grown in Northwest Spain under Different Environmental Conditions
by Sidonia Martínez, Carlota Fuentes and Javier Carballo
Foods 2022, 11(21), 3519; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11213519 - 04 Nov 2022
Cited by 20 | Viewed by 2997
Abstract
The sweet chestnut fruit has always had great importance in the southern European countries. Chestnut production is an important source of income and a crop of high environmental value thanks to its role in soil protection. It is also a good food with [...] Read more.
The sweet chestnut fruit has always had great importance in the southern European countries. Chestnut production is an important source of income and a crop of high environmental value thanks to its role in soil protection. It is also a good food with enormous potential for various aspects of health because of its nutritional qualities. The quality of sweet chestnuts is affected by various factors, such as climatic conditions and cultivation inputs. It is very important to recognize the impacts of climate on chestnut fruits, to improve our current understanding of climate–chestnut interconnections. The current study investigated and compared the antioxidant activity and the total phenolic and flavonoid contents of different cultivars of chestnuts grown in different geographic areas of northwest Spain. The results obtained with three antioxidant capability assays (DPPH, ABTS and FRAP assays) were highly correlated. All the samples had high antioxidant capacity and high total phenolic and total flavonoid contents, which depended both on cultivar and growth region. Ventura variety, harvested in the coldest environments, presented the highest values of antioxidant activity (IC50DPPH = 34.5 g/L), total phenolic content (131.84 mg equivalent of gallic acid/100 g FW) and total flavonoids (7.77 mg eq. catechin/100 g). The variations in the antioxidant capacity, total phenolic and total flavonoid contents of different cultivars, and their associations with climatic environmental factors, revealed the significant impacts of these factors on the synthesis of specialized metabolites and on the nutraceutical potential of chestnuts. The results can provide valuable information for selection of the cultivar and the cultivation conditions of the chestnut, in order to obtain chestnuts with high-quality bioactive characteristics. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 3106 KiB  
Article
Chitosan-Based Edible Coatings Containing Essential Oils to Preserve the Shelf Life and Postharvest Quality Parameters of Organic Strawberries and Apples during Cold Storage
by Paul-Alexandru Popescu, Laurentiu Mihai Palade, Ioana-Cătălina Nicolae, Elisabeta Elena Popa, Amalia Carmen Miteluț, Mihaela Cristina Drăghici, Florentina Matei and Mona Elena Popa
Foods 2022, 11(21), 3317; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11213317 - 23 Oct 2022
Cited by 21 | Viewed by 7912
Abstract
Edible coatings and films have been researched for more than three decades due to their ability to be incorporated with different functional ingredients or compounds as an option to maintain the postharvest quality of fruits and vegetables. The aim of this study was [...] Read more.
Edible coatings and films have been researched for more than three decades due to their ability to be incorporated with different functional ingredients or compounds as an option to maintain the postharvest quality of fruits and vegetables. The aim of this study was to evaluate the effect of three types of chitosan-based (CH) edible coatings obtained from medium and high molecular weight chitosan, containing ascorbic or acetic acid and sea buckthorn or grape seed essential oils on the physical–chemical and microbiological properties of organic strawberries and apple slices during cold storage at 4 °C and 8 °C. Scanning electron microscope images showed both a smooth structure and a fracture and pore structure on strawberry coatings and a dense and smooth structure on the apple slices coatings. Further, the edible coatings managed to reduce the microbial load of yeasts and molds of the coated strawberries during the storage period. Overall, the treatments preserved the ascorbic acid, total polyphenol content, and antioxidant activity for all the tested samples compared to the control sample, throughout the storage period. In addition, the water activity (aw) of the coated samples presented lower values (0.96–0.98) than the control samples. The obtained results indicate that the developed chitosan-based edible coatings could maintain the postharvest parameters of the tested samples, also leading to their shelf-life prolongation. Full article
(This article belongs to the Collection Edible Films and Coatings for Food Preservation)
Show Figures

Figure 1

13 pages, 311 KiB  
Article
Basil (Ocimum basilicum L.) Leaves as a Source of Bioactive Compounds
by Raffaele Romano, Lucia De Luca, Alessandra Aiello, Raffaele Pagano, Prospero Di Pierro, Fabiana Pizzolongo and Paolo Masi
Foods 2022, 11(20), 3212; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11203212 - 14 Oct 2022
Cited by 14 | Viewed by 6051
Abstract
Basil (Ocimum basilicum L.) is an annual spicy plant generally utilized as a flavouring agent for food. Basil leaves also have pharmaceutical properties due to the presence of polyphenols, phenolic acids, and flavonoids. In this work, carbon dioxide was employed to extract [...] Read more.
Basil (Ocimum basilicum L.) is an annual spicy plant generally utilized as a flavouring agent for food. Basil leaves also have pharmaceutical properties due to the presence of polyphenols, phenolic acids, and flavonoids. In this work, carbon dioxide was employed to extract bioactive compounds from basil leaves. Extraction with supercritical CO2 (p = 30 MPa; T = 50 °C) for 2 h using 10% ethanol as a cosolvent was the most efficient method, with a yield similar to that of the control (100% ethanol) and was applied to two basil cultivars: “Italiano Classico” and “Genovese”. Antioxidant activity, phenolic acid content, and volatile organic compounds were determined in the extracts obtained by this method. In both cultivars, the supercritical CO2 extracts showed antiradical activity (ABTS●+ assay), caffeic acid (1.69–1.92 mg/g), linalool (35–27%), and bergamotene (11–14%) contents significantly higher than those of the control. The polyphenol content and antiradical activity measured by the three assays were higher in the “Genovese” cultivar than in the “Italiano Classico” cultivar, while the linalool content was higher (35.08%) in the “Italiano Classico” cultivar. Supercritical CO2 not only allowed us to obtain extracts rich in bioactive compounds in an environmentally friendly way but also reduced ethanol consumption. Full article
(This article belongs to the Section Plant Foods)
13 pages, 2831 KiB  
Article
Development of Antimicrobial Cellulose Nanofiber-Based Films Activated with Nisin for Food Packaging Applications
by Diamante Maresca and Gianluigi Mauriello
Foods 2022, 11(19), 3051; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11193051 - 01 Oct 2022
Cited by 15 | Viewed by 2312
Abstract
The cellulose nanofiber (CNF) is characterized by the nano-sized (fibers with a diameter between 5 and 20 nm and a length between 2 and 10 μm), flexible and cross-linked structure that confer enhanced mechanical and gas barrier properties to cellulosic fiber-based packaging materials. [...] Read more.
The cellulose nanofiber (CNF) is characterized by the nano-sized (fibers with a diameter between 5 and 20 nm and a length between 2 and 10 μm), flexible and cross-linked structure that confer enhanced mechanical and gas barrier properties to cellulosic fiber-based packaging materials. The purpose of this work was to develop an antimicrobial packaging film by direct mixing nisin with CNF, followed by coating it onto polyethylene (PE), polypropylene (PP), and polylactic acid (PLA) films. The antimicrobial effectiveness of CNF-Nis+PE, CNF-Nis+PP, and CNF-Nis+PLA was investigated both in vitro end in ex vivo tests. In the latter case, challenge test experiments were carried out to investigate the antimicrobial activity of the coupled films of CNF-Nisin+PLA to inhibit the growth of Listeria innocua 1770 during the storage of a meat product. The films were active against the indicator microorganisms Brochothrix thermosphacta and Listeria innocua in in vitro test. Moreover, a reduction in the Listeria population of about 1.3 log cycles was observed immediately after the contact (T0) of the active films with hamburgers. Moreover, when the hamburgers were stored in active films, a further reduction of the Listeria population of about 1.4 log cycles was registered after 2 days of storage. After this time, even though an increase in Listeria load was observed, the trend of the Listeria population in hamburgers packed with active films was maintained significantly lower than the meat samples packed with control films during the whole storage period. Full article
(This article belongs to the Special Issue Application of Bioactive Compounds in Food Systems)
Show Figures

Figure 1

15 pages, 2932 KiB  
Article
Bioactive Edible Sodium Alginate Films Incorporated with Tannic Acid as Antimicrobial and Antioxidative Food Packaging
by Han Li, Chen Liu, Jingrong Sun and Shanshan Lv
Foods 2022, 11(19), 3044; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11193044 - 30 Sep 2022
Cited by 20 | Viewed by 2765
Abstract
Currently, biodegradable and functional food packaging materials have attracted more and more attention due to their potential advantages. Biopolymers are one of the promising materials used to produce biodegradable food packaging films, and sodium alginate (SA) is one of the most used polysaccharides. [...] Read more.
Currently, biodegradable and functional food packaging materials have attracted more and more attention due to their potential advantages. Biopolymers are one of the promising materials used to produce biodegradable food packaging films, and sodium alginate (SA) is one of the most used polysaccharides. In this work, we explored a novel edible sodium alginate (SA)/tannic acid (TA) film as biodegradable active food packaging material. The impact of TA concentration on the UV light blocking ability, transparency, water vapor barrier ability, mechanical strength, antioxidant, and antimicrobial activity of the SA-TA films was comprehensively investigated. Fourier transform infrared spectroscopy results revealed that strong hydrogen bonding was the main intermolecular interaction between SA and TA. As TA concentration in the films increased, the water vapor permeability (WVP) decreased from 1.24 × 10−6 to 0.54 × 10−6 g/m/h/Pa, the DPPH radical scavenging activity increased from 0.008% to 89.02%. Moreover, the incorporation of TA effectively blocked UV light and elevated antimicrobial activity against Escherichia coli. Overall, the SA films with TA exhibited better water vapor barrier ability, remarkable UV-light barrier ability and antioxidant activity while showing a slight decrease in light transmittance. These results indicated the potential application of TA as a functional additive agent for developing multifunctional food packaging materials. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

16 pages, 3058 KiB  
Article
Impact of the Russian–Ukrainian Conflict on Global Food Crops
by Muh Amat Nasir, Agus Dwi Nugroho and Zoltan Lakner
Foods 2022, 11(19), 2979; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11192979 - 23 Sep 2022
Cited by 32 | Viewed by 8105
Abstract
The Russian–Ukrainian conflict has been proven to cause significant losses of life and goods on both sides. This may have potentially impacted the agricultural sector. This study examines the impact of the conflict between Russia and Ukraine on the global food situation. We [...] Read more.
The Russian–Ukrainian conflict has been proven to cause significant losses of life and goods on both sides. This may have potentially impacted the agricultural sector. This study examines the impact of the conflict between Russia and Ukraine on the global food situation. We performed a descriptive analysis and literature review to answer this objective. Russia and Ukraine play essential roles in world food production and trade. However, the war has disrupted food production in Ukraine. Estimated Ukrainian wheat, soybean, and maize production in 2022–2023 fell precipitously. On the other hand, Russian production of these three food products shows positive growth during the same period. Furthermore, the global supply chain and food trade are hampered, causing an increase in the world’s food prices. From March to May 2022, the average global price of wheat, soybeans, and maize increased dramatically compared to during and before the COVID-19 pandemic. Finally, this poses a danger to global food security, particularly for low-income countries that depend heavily on food imports from both countries. Therefore, all countries must be prepared for the possibility that the Sustainable Development Goals cannot be achieved. Full article
(This article belongs to the Special Issue The Challenges and Strategies of Food Security under Global Change)
Show Figures

Figure 1

20 pages, 2208 KiB  
Article
Optimization of a Multi-Residue Analytical Method during Determination of Pesticides in Meat Products by GC-MS/MS
by Sang-Hyeob Lee, Se-Yeon Kwak, Aniruddha Sarker, Joon-Kwan Moon and Jang-Eok Kim
Foods 2022, 11(19), 2930; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11192930 - 20 Sep 2022
Cited by 13 | Viewed by 2444
Abstract
In this study, a multi-residue analysis was developed for 32 compounds, including pesticides and metabolites, in five meat products using gas chromatography-tandem mass spectrometry (GC-MS/MS). The validation of the developed analytical method was also evaluated in accordance with Codex Alimentarius guidelines. Aminopropyl (NH [...] Read more.
In this study, a multi-residue analysis was developed for 32 compounds, including pesticides and metabolites, in five meat products using gas chromatography-tandem mass spectrometry (GC-MS/MS). The validation of the developed analytical method was also evaluated in accordance with Codex Alimentarius guidelines. Aminopropyl (NH2), C18, and florisil solid phase extraction (SPE) cartridges were used to evaluate and optimize the cleanup procedure of the tested samples prior to GC-MS/MS analysis. Based on the analytical performance, the C18 SPE cartridge was deemed to be the most suitable among the examined SPE cartridges. The optimized method demonstrated that 29 out of 32 tested compounds acquired good linearity (R2 ≥ 0.99), and 25 tested compounds displayed the method limit of quantification (MLOQ) ≤ 0.01 mg/kg. Out of the 32 tested compounds, only 21 compounds met the acceptable analytical criteria for the lard and tallow samples, compared to 27 compounds in the beef, pork, and chicken samples that falls within the acceptable standards for recovery (70–120%) and analytical precision (relative standard deviation RSD ≤ 20%). The average matrix effect was widely varied (20.1–64.8%) in the studied meat samples that were affected by either ion enhancement or suppression. In particular, in the lard sample, 13 compounds showed poor recovery and analytical precision due to ion suppression. Thus, the matrix effect (ME) was considered a critical factor during multi-residue pesticide analysis in different meat products. In conclusion, this developed analytical method can be used as a routine monitoring system for residual pesticide analysis in livestock products with acceptable analytical standards. Further meticulous analytical studies should be optimized and validated for multi-residue pesticide analysis in diversified meat products. Full article
Show Figures

Figure 1

16 pages, 4007 KiB  
Article
Study on the Suitability of Tea Cultivars for Processing Oolong Tea from the Perspective of Aroma Based on Olfactory Sensory, Electronic Nose, and GC-MS Data Correlation Analysis
by Chang He, Yuchuan Li, Jingtao Zhou, Xinlei Yu, De Zhang, Yuqiong Chen, Dejiang Ni and Zhi Yu
Foods 2022, 11(18), 2880; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11182880 - 16 Sep 2022
Cited by 17 | Viewed by 2346
Abstract
The oolong tea aroma is shown to consist of cultivar aroma and technical aroma in this study based on the aroma differences between oolong tea products of cultivars of different suitability, as determined by correlation analysis of olfactory, sensory, electronic nose, and GC-MS [...] Read more.
The oolong tea aroma is shown to consist of cultivar aroma and technical aroma in this study based on the aroma differences between oolong tea products of cultivars of different suitability, as determined by correlation analysis of olfactory, sensory, electronic nose, and GC-MS data. Human senses were significantly affected by the aroma components, which included eight terpene metabolites (β-Ocimene, (Z)-Furan linalool oxide, linalool, (3E)-4,8-Dimethyl-1,3,7-nonatriene, (E)-Pyranoid linalool oxide, γ-Elemene, Humulene, (Z,E)-α-Farnesene), three carotenoid metabolites (β-Ionone, (Z)-Geranylacetone and 6-methyl-5-Hepten -2-one), three lipid metabolites ((Z)-3-Hexenyl (Z)-3-hexenoate, Butanoic acid hexyl ester, and (Z)-Jasmone), four amino acid metabolites (Methyl salicylate, Geranyl isovalerate, indole, and Phenylethyl alcohol), and six thermal reaction products (2-Pentylfuran, Octanal, Decanal, (E,E)-2,4-Nonadienal, (Z)-2-Decenal, and (E)-2-Undecenal). Meanwhile, several aroma compounds (such as (E)-Nerolidol and α-Farnesene), mainly comprising the “technical aroma” formed in the processing mode, were noted to be less closely related to cultivar suitability. This study sheds light on the aroma characteristics of different tea cultivars for oolong tea processing. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

24 pages, 4371 KiB  
Article
Characterization of the Key Aroma Volatile Compounds in Nine Different Grape Varieties Wine by Headspace Gas Chromatography–Ion Mobility Spectrometry (HS-GC-IMS), Odor Activity Values (OAV) and Sensory Analysis
by Weiyu Cao, Nan Shu, Jinli Wen, Yiming Yang, Yuning Jin and Wenpeng Lu
Foods 2022, 11(18), 2767; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11182767 - 08 Sep 2022
Cited by 21 | Viewed by 4082
Abstract
During this study, the physicochemical properties, color, and volatile aroma compounds of the original wines produced from the grape varieties ‘Hassan’, ‘Zuoshaner’, ‘Beibinghong’, ‘Zuoyouhong’, ‘Beta’, ‘Shuanghong’, ‘Zijingganlu’, ‘Cabernet Sauvignon’, and ‘Syrah’ were determined and sensory evaluation was performed. Results indicated that ‘Hassan’ contained [...] Read more.
During this study, the physicochemical properties, color, and volatile aroma compounds of the original wines produced from the grape varieties ‘Hassan’, ‘Zuoshaner’, ‘Beibinghong’, ‘Zuoyouhong’, ‘Beta’, ‘Shuanghong’, ‘Zijingganlu’, ‘Cabernet Sauvignon’, and ‘Syrah’ were determined and sensory evaluation was performed. Results indicated that ‘Hassan’ contained the most solids, ‘Zuoshaner’ produced the most total acid, residual sugar, total anthocyanin, and total phenol, and ‘Shuanghong’ produced the most tannin. Calculation of the chroma and hue of the wines according to the CIEL*a*b* parameters revealed that the ‘Cabernet Sauvignon’ wines were the brightest of the nine varieties and that the ‘Zuoshaner’ wines had the greatest red hue and yellow hue and the greatest saturation’. A total of 52 volatile compounds were identified and quantified in nine wine samples by HS-GC-IMS analysis, with the most significant number of species detected being 20 esters, followed by 16 alcohols, 8 aldehydes, four ketones, one terpene, and one furan, with the highest total volatile compound content being ‘Beta’. A total of 14 volatile components with OAV (odor activity value) >1 were calculated using the odor activity value (OAV) of the threshold of the aromatic compound, and the OPLS-DA analysis was performed by orthogonal partial least squares discriminant analysis (OPLS-DA) using the OAV values of the compounds with OAV values >1 as the Y variable. The VIP (Variable Importance in Projection) values of six compounds, ethyl isobutyrate, ethyl hexanoate-D, 2-methylpropanal, ethyl octanoate, ethyl butanoate-D, and Isoamyl acetate-D, were calculated to be higher than one between groups, indicating that these six compounds may influence aroma differences. It is essential to recognize that the results of this study have implications for understanding the quality differences between different varieties of wines and for developing wines that have the characteristics of those varieties. Full article
(This article belongs to the Special Issue Advance in Grape Derived Product Aroma and Flavour Chemistry)
Show Figures

Figure 1

13 pages, 3574 KiB  
Article
Hydrogen Sulfide Treatment Alleviates Chilling Injury in Cucumber Fruit by Regulating Antioxidant Capacity, Energy Metabolism and Proline Metabolism
by Jingda Wang, Yaqin Zhao, Zhiqian Ma, Yonghua Zheng and Peng Jin
Foods 2022, 11(18), 2749; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11182749 - 07 Sep 2022
Cited by 19 | Viewed by 1762
Abstract
Although low-temperature storage could maintain the quality of fruits and vegetables, it may also result in chilling injury (CI) in cold-sensitive produce, such as cucumbers. This can seriously affect their quality.” The antioxidant capacity, energy metabolism and proline metabolism of cucumbers treated with [...] Read more.
Although low-temperature storage could maintain the quality of fruits and vegetables, it may also result in chilling injury (CI) in cold-sensitive produce, such as cucumbers. This can seriously affect their quality.” The antioxidant capacity, energy metabolism and proline metabolism of cucumbers treated with hydrogen sulfide (H2S) were studied in this assay. The outcomes displayed that H2S treatment effectively reduced CI and delayed the increase in electrolyte leakage (EL) and malondialdehyde (MDA) content. In addition, the H2S-treated cucumber fruit exhibited higher L* and hue angle values, as well as nutrients such as ascorbic acid (AsA). The H2S-treated fruit showed lower levels of reactive oxygen species (ROS) and higher antioxidant enzyme activities. Meanwhile, H2S treatment also increased the activities of the essential enzymes involved in energy metabolism, including cytochrome C oxidase (CCO), succinate dehydrogenase (SDH), H+-ATPase and Ca2+-ATPase, which improved the energy supply. H2S induced higher ornithine δ-aminotransferase (OAT) and Δ-1-pyrroline-5-carboxylate synthetase (P5CS) activities, and reduced proline dehydrogenase (PDH) activity, promoting the accumulation of proline. These results indicated that H2S could alleviate CI in the cucumber fruit by modulating antioxidant capacity, energy metabolism and proline metabolism, thereby extending the shelf life of postharvest cucumbers. Full article
Show Figures

Figure 1

17 pages, 4528 KiB  
Article
Optimized Dynamic Monitoring and Quality Management System for Post-Harvest Matsutake of Different Preservation Packaging in Cold Chain
by Zihan Yang, Jinchao Xu, Lin Yang and Xiaoshuan Zhang
Foods 2022, 11(17), 2646; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11172646 - 31 Aug 2022
Cited by 33 | Viewed by 1716
Abstract
The quality of Tibetan matsutake drops during cold chain transportation. To extend the shelf life and improve the market value, this study analyzed the matsutake logistics process, and optimized the dynamic monitoring and quality management systems for post-harvest matsutake with different preservation packaging [...] Read more.
The quality of Tibetan matsutake drops during cold chain transportation. To extend the shelf life and improve the market value, this study analyzed the matsutake logistics process, and optimized the dynamic monitoring and quality management systems for post-harvest matsutake with different preservation packaging in the cold chain. This system monitored the micro-environmental parameters of the cold chain in real time, and it identified the best preservation method by analyzing the quality change characteristics of the matsutake with different preservation packaging. It was concluded that the matsutake were best preserved under the conditions of modified atmosphere packaging. The data analysis on the collected data verified the performance of the system. Relevant personnel were invited to participate in the system performance analysis and offer optimization suggestions to improve the applicability of the established monitoring system. The optimized model could provide a more effective theoretical reference for the dynamic monitoring and quality management of the system. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 2733 KiB  
Article
Antibacterial Effect of Eugenol on Shigella flexneri and Its Mechanism
by Xiangyang Bai, Xuejiao Li, Xue Liu, Zeyu Xing, Ruiying Su, Yutang Wang, Xiaodong Xia and Chao Shi
Foods 2022, 11(17), 2565; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11172565 - 25 Aug 2022
Cited by 13 | Viewed by 2323
Abstract
Shigella flexneri (Sh. flexneri), which can be found in food and the environment, is a widespread food-borne pathogen that causes human diarrhea termed “shigellosis”. In this study, eugenol, a natural active substance, was investigated for its antibacterial activity against Sh. flexneri [...] Read more.
Shigella flexneri (Sh. flexneri), which can be found in food and the environment, is a widespread food-borne pathogen that causes human diarrhea termed “shigellosis”. In this study, eugenol, a natural active substance, was investigated for its antibacterial activity against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of eugenol against Sh. flexneri ATCC 12022 was 0.5 and 0.8 mg/mL. The growth curves and inhibitory effect in LB broth, PBS, vegetable juice, and minced pork showed that eugenol had a good activity against Sh. flexneri. Research findings indicated the superoxide dismutase activity of Sh. flexneri was inhibited after eugenol treatment, resulting in concentrations of intracellular reactive oxygen species and an increase in malondialdehyde. The flow cytometry analysis and field emission scanning electron microscopy results revealed obvious damage to cell membrane integrity and changes in the morphology of Sh. flexneri. In addition, the intracellular ATP concentration leaked from 0.5 μM to below 0.05 μM and the membrane potential showed a concentration-dependent depolarization after eugenol treatment. In summary, eugenol exerted strong antibacterial activity and has the potential to control Sh. flexneri in the food industry. Full article
Show Figures

Graphical abstract

Back to TopTop