Novel Food Processing and Extraction Technologies

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Engineering and Technology".

Deadline for manuscript submissions: closed (30 September 2018) | Viewed by 55320

Special Issue Editors


grade E-Mail Website
Guest Editor
Department of Food Technology, University North, 48000 Koprivnica, Croatia
Interests: general statistics; research methodology; experimental design; mathematical modeling; multivariate analysis; novel food processing and extraction technologies
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
Department of Biological Sciences, University of Limerick, Limerick, Ireland
Interests: food chemistry; natural product; antioxidant; phenolic-rich foods; food processing and extraction
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
Interests: 3D food printing; non-thermal processing; green extraction; functional food; food chemistry
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website1 Website2
Guest Editor
Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
Interests: nutrients; bioactive compounds; food preservation; thermal treatment; innovative processing; high-pressure processing; compressed fluids; pulsed electric fields; ultrasound; microwaves; phytochemical purification; phytochemical analysis; compound isolation; bioaccessibility; bioavailability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent trends originating from consumer demands for functional foods have led to an expansion of research that evaluates raw materials obtained by innovative processing and extraction techniques. The conventional methods largely rely on thermal treatments as a classic approach that commonly has detrimental effects on the nutritional and sensorial quality of the foods. To overcome such limitations, novel thermal and non-thermal food technologies are developed. Among those, high hydrostatic pressure (HHP), ultrasound (US) and pulsed electric fields (PEF) are primarily focused on food processing; while microwave (MAE) and supercritical fluid (SFE) technologies are utilized for various extraction procedures.

This Special Issue of Foods will address the topics relevant to novel food processing and extraction technologies applied to various plant matrices as raw materials for functional foods production.

Prof. Dr. Predrag Putnik
Dr. Danijela Bursac Kovacevic
Prof. Dr. Francisco J. Barba
Prof. Dr. Daniel Granato
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional foods
  • novel processing techniques
  • plant extraction
  • thermal processing
  • non-thermal processing
  • high hydrostatic pressure
  • ultrasound
  • pulsed electric fields
  • supercritical fluid
  • biologically active compounds

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 982 KiB  
Article
Enhancing Bioactive Antioxidants’ Extraction from “Horchata de Chufa” By-Products
by Elena Roselló-Soto, Francisco J. Barba, Predrag Putnik, Danijela Bursać Kovačević, Jose M. Lorenzo and Yara Cantavella-Ferrero
Foods 2018, 7(10), 161; https://0-doi-org.brum.beds.ac.uk/10.3390/foods7100161 - 01 Oct 2018
Cited by 14 | Viewed by 4819
Abstract
During the production of a traditional drink produced from the tubers of Cyperus esculentus L. also known as “horchata de chufa,” a high quantity of by-products are generated. These by-products are rich with valuable biological compounds, hence, there is a need to report [...] Read more.
During the production of a traditional drink produced from the tubers of Cyperus esculentus L. also known as “horchata de chufa,” a high quantity of by-products are generated. These by-products are rich with valuable biological compounds, hence, there is a need to report their extraction conditions for further use in food production as raw materials. Therefore, the objective of this study was to evaluate and improve the conventional extraction process, applied for recovery of phenolic compounds, total flavonoids, and total antioxidant capacity from the by-products. Independent variables for extraction were: (i) Solvent type (mixtures of ethanol-water (v/v) at 0%, 25% and 50%); (ii) temperature (40, 50 and 60 °C), and (iii) extraction time (1, 2 and 3 h). The obtained results showed that solvent type, temperature, and time significantly influenced (p < 0.05) all investigated parameters. The highest content of total polyphenols (16.02 mg GAE/100 g of dry matter; d.m.), and total flavonoids (30.09 mg CE/100 g d.m.) was achieved by ethanol at 25% (v/v), after 3 h of extraction with temperatures of 60 °C and 50 °C, respectively. The highest value of antioxidant capacity (1759.81 µM Trolox equivalents/g d.m.) was observed with 50% aqueous ethanol (v/v), at 60 °C, and 3 h of extraction. From the obtained results, it can be concluded that the by-products of “Horchata de Chufa” are an important source of antioxidant bioactive compounds. Full article
(This article belongs to the Special Issue Novel Food Processing and Extraction Technologies)
Show Figures

Graphical abstract

14 pages, 2332 KiB  
Article
Optimization of Ultrasonic-Assisted Extraction of Major Phenolic Compounds from Olive Leaves (Olea europaea L.) Using Response Surface Methodology
by Jasminka Giacometti, Gordana Žauhar and Marta Žuvić
Foods 2018, 7(9), 149; https://0-doi-org.brum.beds.ac.uk/10.3390/foods7090149 - 06 Sep 2018
Cited by 60 | Viewed by 5648
Abstract
The ultrasound-assisted extraction (UAE) of oleuropein (OLE), verbascoside (VER), and luteolin-4′-O-glucoside (L4OG), as the major phenolics from olive leaves, was optimized using response surface methodology (RSM). A Box–Behnken design (BBD) was used to monitor the effect of different modes of ultrasound [...] Read more.
The ultrasound-assisted extraction (UAE) of oleuropein (OLE), verbascoside (VER), and luteolin-4′-O-glucoside (L4OG), as the major phenolics from olive leaves, was optimized using response surface methodology (RSM). A Box–Behnken design (BBD) was used to monitor the effect of different modes of ultrasound operation (pulsed and continuous), liquid–solid (L–S) ratio, and sonication time on each phenolic yield. The yield of UAE and conventional solid extraction (CSE) was determined after performing ultrahigh-performance liquid chromatography with a diode-array detector (UHPLC-DAD) analysis on the extracts. The results suggested that, under optimal conditions, the concentrations of OLE, VER, and L4OG were 13.386, 0.363, and 0.527 mg/g of dry powdered olive leaves (DPOL), respectively. Verification of experiments was carried out under the modified optimal conditions and the relative errors between the predicted and experimental values were dependent on the examined phenolic compound (OLE 8.63%, VER 11.3%, and L4OG 22.48%). In comparison with CSE, UAE improved the yields of OLE, VER, and L4OG (32.6%, 41.8%, and 47.5%, respectively, after 1 min) at a temperature of 60 °C, an L–S ratio of 15 (v/w), and in the continuous mode of UAE. We demonstrated that the UAE technique is an efficient method for enhancing yields of OLE, VER, and L4OG in olive-leaf extracts, while the chosen model was adequate to optimize the extraction of major phenolic compounds from olive leaves. Full article
(This article belongs to the Special Issue Novel Food Processing and Extraction Technologies)
Show Figures

Graphical abstract

Review

Jump to: Research

18 pages, 878 KiB  
Review
Application of Ultrasound in Food Science and Technology: A Perspective
by Monica Gallo, Lydia Ferrara and Daniele Naviglio
Foods 2018, 7(10), 164; https://0-doi-org.brum.beds.ac.uk/10.3390/foods7100164 - 04 Oct 2018
Cited by 254 | Viewed by 26569
Abstract
Ultrasound is composed of mechanical sound waves that originate from molecular movements that oscillate in a propagation medium. The waves have a very high frequency, equal to approximately 20 kHz, are divided into two categories (i.e., low-intensity and high-intensity waves) and cannot be [...] Read more.
Ultrasound is composed of mechanical sound waves that originate from molecular movements that oscillate in a propagation medium. The waves have a very high frequency, equal to approximately 20 kHz, are divided into two categories (i.e., low-intensity and high-intensity waves) and cannot be perceived by the human ear. Nature has created the first ultrasound applications. Bats use ultrasound to navigate in the dark, and many cetaceans use echolocation to detect prey or obstacles using ultrasound produced by their vocal system. Ultrasound is commonly associated with the biomedical field. Today, ultrasound-based methods and equipment are available to detect organs, motion, tumour masses, and pre/post-natal handicaps, and for kidney stone removal, physiotherapy, and aesthetic cures. However, ultrasound has found multiple applications in many other fields as well. In particular, ultrasound has recently been used in the food industry to develop various effective and reliable food processing applications. Therefore, this review summarizes the major applications of ultrasound in the food industry. The most common applications in the food industry include cell destruction and extraction of intracellular material. Depending on its intensity, ultrasound is used for the activation or deactivation of enzymes, mixing and homogenization, emulsification, dispersion, preservation, stabilization, dissolution and crystallization, hydrogenation, tenderization of meat, ripening, ageing and oxidation, and as an adjuvant for solid-liquid extraction for maceration to accelerate and to improve the extraction of active ingredients from different matrices, as well as the degassing and atomization of food preparations. Full article
(This article belongs to the Special Issue Novel Food Processing and Extraction Technologies)
Show Figures

Graphical abstract

16 pages, 857 KiB  
Review
Novel Food Processing and Extraction Technologies of High-Added Value Compounds from Plant Materials
by Predrag Putnik, Jose M. Lorenzo, Francisco J. Barba, Shahin Roohinejad, Anet Režek Jambrak, Daniel Granato, Domenico Montesano and Danijela Bursać Kovačević
Foods 2018, 7(7), 106; https://0-doi-org.brum.beds.ac.uk/10.3390/foods7070106 - 05 Jul 2018
Cited by 168 | Viewed by 16502
Abstract
Some functional foods contain biologically active compounds (BAC) that can be derived from various biological sources (fruits, vegetables, medicinal plants, wastes, and by-products). Global food markets demand foods from plant materials that are “safe”, “fresh”, “natural”, and with “nutritional value” while processed in [...] Read more.
Some functional foods contain biologically active compounds (BAC) that can be derived from various biological sources (fruits, vegetables, medicinal plants, wastes, and by-products). Global food markets demand foods from plant materials that are “safe”, “fresh”, “natural”, and with “nutritional value” while processed in sustainable ways. Functional foods commonly incorporate some plant extract(s) rich with BACs produced by conventional extraction. This approach implies negative thermal influences on extraction yield and quality with a large expenditure of organic solvents and energy. On the other hand, sustainable extractions, such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), high-pressure assisted extraction (HPAE), high voltage electric discharges assisted extraction (HVED), pulsed electric fields assisted extraction (PEF), supercritical fluids extraction (SFE), and others are aligned with the “green” concepts and able to provide raw materials on industrial scale with optimal expenditure of energy and chemicals. This review provides an overview of relevant innovative food processing and extraction technologies applied to various plant matrices as raw materials for functional foods production. Full article
(This article belongs to the Special Issue Novel Food Processing and Extraction Technologies)
Show Figures

Graphical abstract

Back to TopTop