ijms-logo

Journal Browser

Journal Browser

Quantitative Identification and Action-Mechanisms of Anti-cancer and Anti-inflammatory Natural Compounds

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 77930

Special Issue Editors


E-Mail Website
Guest Editor
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
Interests: molecular biology; drug metabolism; drug toxicity; carcinogenesis; cancer metastasis; chemoprevention; post translational modifications; transcriptional regulation; immune regulation; inflammation; biomarkers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Pharmacotherapy, College of Pharmacy, Chungnam National University, Daehak-ro 99, Yuseong-gu, Daejeon 34134, Republic of Korea
Interests: pharmacometrics; systems pharmacology; modeling and simulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Many natural substances with pharmacological, especially anticancer and anti-inflammatory, activity have been discovered. Despite those discoveries, there are still limitations to making those for drugs and health supplements, since the efficacy with the appropriate disease animal model, identification of their molecular mechanisms and quantification of exposures and pharmacological behaviors need to be validated. This Special Issue aims to cover a selection of research papers and reviews that expand knowledge from recently discovered natural resources with anticancer and anti-inflammatory activity to new quantitative identification of natural resources in the body. In addition, new evaluation methods for the above fields are also to be covered. Therefore, we sincerely welcome not only studies on searching novel natural compounds with anticancer and anti-inflammatory activity, but also studies on the evaluation of efficacy of natural compounds, elucidation of mechanisms of action, identification of molecular targets, enhancement of bioactivity via derivatization or pharmaceutical formulation, and the new characterization of pharmacokinetics and pharmacodynamics of known bioactive natural compounds.

Prof. Dr. Hye Gwang Jeong
Prof. Dr. Hwi-Yeol Yun
Prof. Dr. Hangun Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Anticancer
  • Anti-inflammatory
  • Natural compounds
  • Efficacy
  • Mechanism of action
  • Molecular target
  • Bioactivity
  • Pharmacokinetics
  • Pharmacodynamics

Related Special Issue

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2908 KiB  
Article
Impressic Acid Ameliorates Atopic Dermatitis-Like Skin Lesions by Inhibiting ERK1/2-Mediated Phosphorylation of NF-κB and STAT1
by Jae Ho Choi, Gi Ho Lee, Sun Woo Jin, Ji Yeon Kim, Yong Pil Hwang, Eun Hee Han, Young Ho Kim and Hye Gwang Jeong
Int. J. Mol. Sci. 2021, 22(5), 2334; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22052334 - 26 Feb 2021
Cited by 9 | Viewed by 2858
Abstract
Impressic acid (IPA), a lupane-type triterpenoid from Acanthopanax koreanum, has many pharmacological activities, including the attenuation of vascular endothelium dysfunction, cartilage destruction, and inflammatory diseases, but its influence on atopic dermatitis (AD)-like skin lesions is unknown. Therefore, we investigated the suppressive effect [...] Read more.
Impressic acid (IPA), a lupane-type triterpenoid from Acanthopanax koreanum, has many pharmacological activities, including the attenuation of vascular endothelium dysfunction, cartilage destruction, and inflammatory diseases, but its influence on atopic dermatitis (AD)-like skin lesions is unknown. Therefore, we investigated the suppressive effect of IPA on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin symptoms in mice and the underlying mechanisms in cells. IPA attenuated the DNCB-induced increase in the serum concentrations of IgE and thymic stromal lymphopoietin (TSLP), and in the mRNA levels of thymus and activation regulated chemokine (TARC), macrophage derived chemokine (MDC), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) in mice. Histopathological analysis showed that IPA reduced the epidermal/dermal thickness and inflammatory and mast cell infiltration of ear tissue. In addition, IPA attenuated the phosphorylation of NF-κB and IκBα, and the degradation of IκBα in ear lesions. Furthermore, IPA treatment suppressed TNF-α/IFN-γ-induced TARC expression by inhibiting the NF-κB activation in cells. Phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) and the signal transducer and activator of transcription 1 (STAT1), the upstream signaling proteins, was reduced by IPA treatment in HaCaT cells. In conclusion, IPA ameliorated AD-like skin symptoms by regulating cytokine and chemokine production and so has therapeutic potential for AD-like skin lesions. Full article
Show Figures

Figure 1

18 pages, 12897 KiB  
Article
Neuroprotective and Anti-Inflammatory Effects of Evernic Acid in an MPTP-Induced Parkinson’s Disease Model
by Seulah Lee, Yeon Ji Suh, Seonguk Yang, Dong Geun Hong, Akihito Ishigami, Hangun Kim, Jae-Seoun Hur, Seung-Cheol Chang and Jaewon Lee
Int. J. Mol. Sci. 2021, 22(4), 2098; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22042098 - 20 Feb 2021
Cited by 20 | Viewed by 2969
Abstract
Oxidative stress, mitochondrial dysfunction, and neuroinflammation are strongly associated with the pathogenesis of Parkinson’s disease (PD), which suggests that anti-oxidative and anti-inflammatory compounds might provide an alternative treatment for PD. Here, we evaluated the neuroprotective effects of evernic aid (EA), which was screened [...] Read more.
Oxidative stress, mitochondrial dysfunction, and neuroinflammation are strongly associated with the pathogenesis of Parkinson’s disease (PD), which suggests that anti-oxidative and anti-inflammatory compounds might provide an alternative treatment for PD. Here, we evaluated the neuroprotective effects of evernic aid (EA), which was screened from a lichen library provided by the Korean Lichen Research Institute at Sunchon National University. EA is a secondary metabolite generated by lichens, including Ramalina, Evernia, and Hypogymnia, and several studies have described its anticancer, antifungal, and antimicrobial effects. However, the neuroprotective effects of EA have not been studied. We found that EA protected primary cultured neurons against 1-methyl-4-phenylpyridium (MPP+)-induced cell death, mitochondrial dysfunction, and oxidative stress, and effectively reduced MPP+-induced astroglial activation by inhibiting the NF-κB pathway. In vivo, EA ameliorated MPTP-induced motor dysfunction, dopaminergic neuronal loss, and neuroinflammation in the nigrostriatal pathway in C57BL/6 mice. Taken together, our findings demonstrate that EA has neuroprotective and anti-inflammatory effects in PD models and suggest that EA is a potential therapeutic candidate for PD. Full article
Show Figures

Figure 1

12 pages, 10443 KiB  
Article
Anti-Cancer Effects of Glaucarubinone in the Hepatocellular Carcinoma Cell Line Huh7 via Regulation of the Epithelial-To-Mesenchymal Transition-Associated Transcription Factor Twist1
by Jihye Seo, Jain Ha, Eunjeong Kang, Haelim Yoon, Sewoong Lee, Shi Yong Ryu, Kwonseop Kim and Sayeon Cho
Int. J. Mol. Sci. 2021, 22(4), 1700; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22041700 - 08 Feb 2021
Cited by 6 | Viewed by 3597
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In [...] Read more.
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC. Full article
Show Figures

Graphical abstract

12 pages, 2603 KiB  
Article
Impressic Acid Attenuates the Lipopolysaccharide-Induced Inflammatory Response by Activating the AMPK/GSK3β/Nrf2 Axis in RAW264.7 Macrophages
by Gi Ho Lee, Ji Yeon Kim, Sun Woo Jin, Thi Hoa Pham, Jin Song Park, Chae Yeon Kim, Jae Ho Choi, Eun Hee Han, Young Ho Kim and Hye Gwang Jeong
Int. J. Mol. Sci. 2021, 22(2), 762; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22020762 - 14 Jan 2021
Cited by 10 | Viewed by 2883
Abstract
Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of [...] Read more.
Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of impressic acid (IPA) isolated from Acanthopanax koreanum on the lipopolysaccharide (LPS)-induced inflammation and the underlying molecular mechanisms in RAW264.7 cells. IPA attenuated the LPS-induced production of pro-inflammatory cytokines and reactive oxygen species, and the activation of the NF-κB signaling pathway. IPA also increased the protein levels of Nrf2, HO-1, and NQO1 by phosphorylating CaMKKβ, AMPK, and GSK3β. Furthermore, ML385, an Nrf2 inhibitor, reversed the inhibitory effect of IPA on LPS-induced production of pro-inflammatory cytokines in RAW264.7 cells. Therefore, IPA exerts an anti-inflammatory effect via the AMPK/GSK3β/Nrf2 signaling pathway in macrophages. Taken together, the findings suggest that IPA has preventive potential for inflammation-related diseases. Full article
Show Figures

Figure 1

14 pages, 2007 KiB  
Article
Isolinderalactone Induces Cell Death via Mitochondrial Superoxide- and STAT3-Mediated Pathways in Human Ovarian Cancer Cells
by Shakya Rajina, Woo Jean Kim, Jung-Hyun Shim, Kyung-Soo Chun, Sang Hoon Joo, Hwa Kyoung Shin, Seo-Yeon Lee and Joon-Seok Choi
Int. J. Mol. Sci. 2020, 21(20), 7530; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21207530 - 13 Oct 2020
Cited by 10 | Viewed by 2618
Abstract
The mortality rate of ovarian cancer (OC) worldwide increases with age. OC is an often fatal cancer with a curative rate of only 20–30%, as symptoms often appear after disease progression. Studies have reported that isolinderalactone (ILL), a furanosesquiterpene derivative extracted from the [...] Read more.
The mortality rate of ovarian cancer (OC) worldwide increases with age. OC is an often fatal cancer with a curative rate of only 20–30%, as symptoms often appear after disease progression. Studies have reported that isolinderalactone (ILL), a furanosesquiterpene derivative extracted from the dried root of Lindera aggregata, can inhibit several cancer cell lines’ growth. However, the molecular mechanisms underlying ILL activities in human OC cells remain unexplored. This study investigated the antitumor activities of ILL in human OC cells by inducing mitochondrial superoxide (mtSO) and JAK-signal transducer and activator of transcription 3 (STAT3)-dependent cell death. ILL caused cell death in SKOV-3 and OVCAR-3 cells and increased the cell proportion in the subG1 phase. Additionally, ILL significantly induced mtSO production and reduced ROS production. Moreover, ILL downregulated mitochondrial membrane potential and the expression levels of anti-apoptotic Bcl-2 family proteins and superoxide dismutase (SOD)2. Results showed that ILL decreased phosphorylation of serine 727 and tyrosine 705 of STAT3 and expression of survivin, a STAT3-regulated gene. Furthermore, ILL-induced cell death was reversed by pretreatment of Mito-TEMPO, a mitochondria-specific antioxidant. These results suggest that ILL induces cell death by upregulation of mtSO, downregulation of mitochondrial SOD2, and inactivation of the STAT3-mediated pathway. Full article
Show Figures

Figure 1

14 pages, 3001 KiB  
Article
Chrysin Inhibits NF-κB-Dependent CCL5 Transcription by Targeting IκB Kinase in the Atopic Dermatitis-Like Inflammatory Microenvironment
by Hyunjin Yeo, Young Han Lee, Dongsoo Koh, Yoongho Lim and Soon Young Shin
Int. J. Mol. Sci. 2020, 21(19), 7348; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21197348 - 05 Oct 2020
Cited by 19 | Viewed by 2916
Abstract
Chrysin (5,7-dihydroxyflavone) is a natural polyphenolic compound that induces an anti-inflammatory response. In this study, we investigated the molecular mechanism underlying the chrysin-induced suppression of C-C motif chemokine ligand 5 (CCL5) gene expression in atopic dermatitis (AD)-like inflammatory microenvironment. We showed [...] Read more.
Chrysin (5,7-dihydroxyflavone) is a natural polyphenolic compound that induces an anti-inflammatory response. In this study, we investigated the molecular mechanism underlying the chrysin-induced suppression of C-C motif chemokine ligand 5 (CCL5) gene expression in atopic dermatitis (AD)-like inflammatory microenvironment. We showed that chrysin inhibited CCL5 expression at the transcriptional level through the suppression of nuclear factor kappa B (NF-κB) in the inflammatory environment. Chrysin could bind to the ATP-binding pocket of the inhibitor of κB (IκB) kinase (IKK) and, subsequently, prevent IκB degradation and NF-κB activation. The clinical efficacy of chrysin in targeting IKK was evaluated in 2,4-dinitrochlorobenzene-induced skin lesions in BALB/c mice. Our results suggested that chrysin prevented CCL5 expression by targeting IKK to reduce the infiltration of mast cells to the inflammatory sites and at least partially attenuate the inflammatory responses. These findings suggested that chrysin might be useful as a platform for the design and synthesis of small-molecule IKK-targeting drugs for the treatment of chronic inflammatory diseases, such as AD. Full article
Show Figures

Figure 1

19 pages, 3293 KiB  
Article
Astaxanthin Suppresses PM2.5-Induced Neuroinflammation by Regulating Akt Phosphorylation in BV-2 Microglial Cells
by Ryeong-Eun Kim, Chan Young Shin, Seol-Heui Han and Kyoung Ja Kwon
Int. J. Mol. Sci. 2020, 21(19), 7227; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21197227 - 30 Sep 2020
Cited by 53 | Viewed by 5799
Abstract
Air pollution has become one of the most serious issues for human health and has been shown to be particularly concerning for neural and cognitive health. Recent studies suggest that fine particulate matter of less than 2.5 (PM2.5), common in air pollution, can [...] Read more.
Air pollution has become one of the most serious issues for human health and has been shown to be particularly concerning for neural and cognitive health. Recent studies suggest that fine particulate matter of less than 2.5 (PM2.5), common in air pollution, can reach the brain, potentially resulting in the development and acceleration of various neurological disorders including Alzheimer’s disease, Parkinson’s disease, and other forms of dementia, but the underlying pathological mechanisms are not clear. Astaxanthin is a red-colored phytonutrient carotenoid that has been known for anti-inflammatory and neuroprotective effects. In this study, we demonstrated that exposure to PM2.5 increases the neuroinflammation, the expression of proinflammatory M1, and disease-associated microglia (DAM) signature markers in microglial cells, and that treatment with astaxanthin can prevent the neurotoxic effects of this exposure through anti-inflammatory properties. Diesel particulate matter (Sigma-Aldrich) was used as a fine particulate matter 2.5 in the present study. Cultured rat glial cells and BV-2 microglial cells were treated with various concentrations of PM2.5, and then the expression of various inflammatory mediators and signaling pathways were measured using qRT-PCR and Western blot. Astaxanthin was then added and assayed as above to evaluate its effects on microglial changes, inflammation, and toxicity induced by PM2.5. PM2.5 increased the production of nitric oxide and reactive oxygen species and upregulated the transcription of various proinflammatory markers including Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Tumor necrosis factor α (TNFα), inducible nitric oxide synthase (iNOS), triggering receptor expressed on myeloid cells 2 (TREM2), Toll-like receptor 2/4 (TLR2/4), and cyclooxygenase-2 (COX-2) in BV-2 microglial cells. However, the mRNA expression of IL-10 and arginase-1 decreased following PM2.5 treatment. PM2.5 treatment increased c-Jun N-terminal kinases (JNK) phosphorylation and decreased Akt phosphorylation. Astaxanthin attenuated these PM2.5-induced responses, reducing transcription of the proinflammatory markers iNOS and heme oxygenase-1 (HO-1), which prevented neuronal cell death. Our results indicate that PM2.5 exposure reformulates microglia via proinflammatory M1 and DAM phenotype, leading to neurotoxicity, and the fact that astaxanthin treatment can prevent neurotoxicity by inhibiting transition to the proinflammatory M1 and DAM phenotypes. These results demonstrate that PM2.5 exposure can induce brain damage through the change of proinflammatory M1 and DAM signatures in the microglial cells, as well as the fact that astaxanthin can have a potential beneficial effect on PM2.5 exposure of the brain. Full article
Show Figures

Graphical abstract

13 pages, 3409 KiB  
Article
Atraric Acid Exhibits Anti-Inflammatory Effect in Lipopolysaccharide-Stimulated RAW264.7 Cells and Mouse Models
by Seul-Ki Mun, Kyung-Yun Kang, Ho-Yeol Jang, Yun-Ho Hwang, Seong-Gyeol Hong, Su-Jin Kim, Hyun-Wook Cho, Dong-Jo Chang, Jae-Seoun Hur and Sung-Tae Yee
Int. J. Mol. Sci. 2020, 21(19), 7070; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21197070 - 25 Sep 2020
Cited by 19 | Viewed by 2873
Abstract
Lichens, composite organisms resulting from the symbiotic association between the fungi and algae, produce a variety of secondary metabolites that exhibit pharmacological activities. This study aimed to investigate the anti-inflammatory activities of the secondary metabolite atraric acid produced by Heterodermia hypoleuca. The [...] Read more.
Lichens, composite organisms resulting from the symbiotic association between the fungi and algae, produce a variety of secondary metabolites that exhibit pharmacological activities. This study aimed to investigate the anti-inflammatory activities of the secondary metabolite atraric acid produced by Heterodermia hypoleuca. The results confirmed that atraric acid could regulate induced pro-inflammatory cytokine, nitric oxide, prostaglandin E2, induced nitric oxide synthase and cyclooxygenase-2 enzyme expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Meanwhile, atraric acid downregulated the expression of phosphorylated IκB, extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NFκB) signaling pathway to exhibit anti-inflammatory effects in LPS-stimulated RAW264.7 cells. Based on these results, the anti-inflammatory effect of atraric acid during LPS-induced endotoxin shock in a mouse model was confirmed. In the atraric acid treated-group, cytokine production was decreased in the peritoneum and serum, and each organ damaged by LPS-stimulation was recovered. These results indicate that atraric acid has an anti-inflammatory effect, which may be the underlying molecular mechanism involved in the inactivation of the ERK/NFκB signaling pathway, demonstrating its potential therapeutic value for treating inflammatory diseases. Full article
Show Figures

Figure 1

14 pages, 11248 KiB  
Article
Monitoring of the Surface Charge Density Changes of Human Glioblastoma Cell Membranes upon Cinnamic and Ferulic Acids Treatment
by Monika Naumowicz, Magdalena Kusaczuk, Marcin Zając, Miroslav Gál and Joanna Kotyńska
Int. J. Mol. Sci. 2020, 21(18), 6972; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186972 - 22 Sep 2020
Cited by 8 | Viewed by 2342
Abstract
Cinnamic acid (CA) and ferulic acid (FA) are naturally occurring phenolic acids claimed to exert beneficial effects against disorders related to oxidative stress, including cancer. One such malignancy that still remains a therapeutic challenge mainly due to its heterogeneity and inaccessibility to therapeutic [...] Read more.
Cinnamic acid (CA) and ferulic acid (FA) are naturally occurring phenolic acids claimed to exert beneficial effects against disorders related to oxidative stress, including cancer. One such malignancy that still remains a therapeutic challenge mainly due to its heterogeneity and inaccessibility to therapeutic agents is Glioblastoma multiforme (GBM). Here, the influence of CA and FA on the surface charge density of human GBM cell line LN-229 was studied using the electrophoretic light scattering technique. Also, the cytotoxicity of both phenolic acids was determined by metabolic activity-assessing tetrazolium test (MTT) analysis after exposure to CA and FA for 24 h and 48 h. Results showed that both compounds reduced cell viability of LN-229 cells, with more pronounced effect evoked by CA as reflected in IC50 values. Further analyses demonstrated that, after treatment with both phenolic acids, the negative charge of membranes decreased at high pH values and the positive charge of the membranes increased at low pH values compared to the data obtained for untreated cells. Afterward, a four-equilibrium model was applied to estimate the total surface concentrations of both acidic and basic functional groups and their association constants with solution ions in order to calculate theoretical values of membrane surface charge densities. Then, the theoretical data were compared to the experimental data in order to verify the mathematical model. As such, our results indicate that application of electrochemical methods to determine specific drug–membrane interactions might be crucial for predicting their pharmacological activity and bioavailability. Full article
Show Figures

Figure 1

13 pages, 1586 KiB  
Article
Sudachinoid- and Ichangensin-Type Limonoids from Citrus junos Downregulate Pro-Inflammatory Cytokines
by Jihun Shin, Hwa Young Song and Mina Lee
Int. J. Mol. Sci. 2020, 21(18), 6963; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186963 - 22 Sep 2020
Cited by 7 | Viewed by 2332
Abstract
Limonoids, a dominant group of phytochemicals in the Rutaceae family, are known to exhibit several pharmacological activities. To identify natural products having efficacy against inflammatory bowel disease (IBD), we isolated 13 limonoids including a new compound, methyl sudachinoid A, from the seeds of [...] Read more.
Limonoids, a dominant group of phytochemicals in the Rutaceae family, are known to exhibit several pharmacological activities. To identify natural products having efficacy against inflammatory bowel disease (IBD), we isolated 13 limonoids including a new compound, methyl sudachinoid A, from the seeds of Citrus junos and investigated their anti-inflammatory effects by assessing the expression of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 mouse macrophages and HT-29 human colon epithelial cells. Our findings revealed that limonoids significantly downregulated the pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and nuclear transcription factor κB. In particular, sudachinoid-type compounds, methyl sudachinoid A and sudachinoid B, and ichangensin-type compound, 1-O-methyichangensin downregulated the expression of pro-inflammatory cytokines more potently than other limonoids, nomilin and limonin, which have been previously reported to exhibit anti-inflammatory activities in other cells; nomilin and limonin were therefore employed as positive controls in this study. Herein, we reveal that the anti-inflammatory activities of limonoids including a new compound methyl sudachinoid A from C. junos were mediated via the downregulation of pro-inflammatory cytokines and these limonoids can be employed as potential therapeutic phytochemicals for IBD. Full article
Show Figures

Graphical abstract

15 pages, 3433 KiB  
Article
Deoxypodophyllotoxin, a Lignan from Anthriscus sylvestris, Induces Apoptosis and Cell Cycle Arrest by Inhibiting the EGFR Signaling Pathways in Esophageal Squamous Cell Carcinoma Cells
by Ah-Won Kwak, Mee-Hyun Lee, Goo Yoon, Seung-Sik Cho, Joon-Seok Choi, Jung-Il Chae and Jung-Hyun Shim
Int. J. Mol. Sci. 2020, 21(18), 6854; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186854 - 18 Sep 2020
Cited by 8 | Viewed by 2717
Abstract
Deoxypodophyllotoxin (DPT) derived from Anthriscus sylvestris (L.) Hoffm has attracted considerable interest in recent years because of its anti-inflammatory, antitumor, and antiviral activity. However, the mechanisms underlying DPT mediated antitumor activity have yet to be fully elucidated in esophageal squamous cell carcinoma (ESCC). [...] Read more.
Deoxypodophyllotoxin (DPT) derived from Anthriscus sylvestris (L.) Hoffm has attracted considerable interest in recent years because of its anti-inflammatory, antitumor, and antiviral activity. However, the mechanisms underlying DPT mediated antitumor activity have yet to be fully elucidated in esophageal squamous cell carcinoma (ESCC). We show here that DPT inhibited the kinase activity of epidermal growth factor receptor (EGFR) directly, as well as phosphorylation of its downstream signaling kinases, AKT, GSK-3β, and ERK. We confirmed a direct interaction between DPT and EGFR by pull-down assay using DPT-beads. DPT treatment suppressed ESCC cell viability and colony formation in a time- and dose-dependent manner, as shown by MTT analysis and soft agar assay. DPT also down-regulated cyclin B1 and cdc2 expression to induce G2/M phase arrest of the cell cycle and upregulated p21 and p27 expression. DPT treatment of ESCC cells triggered the release of cytochrome c via loss of mitochondrial membrane potential, thereby inducing apoptosis by upregulation of related proteins. In addition, treatment of KYSE 30 and KYSE 450 cells with DPT increased endoplasmic reticulum stress, reactive oxygen species generation, and multi-caspase activation. Consequently, our results suggest that DPT has the potential to become a new anticancer therapeutic by inhibiting EGFR mediated AKT/ERK signaling pathway in ESCC. Full article
Show Figures

Figure 1

13 pages, 2391 KiB  
Article
Cinobufagin Suppresses Melanoma Cell Growth by Inhibiting LEF1
by Geon-Hee Kim, Xue-Quan Fang, Woo-Jin Lim, Jooho Park, Tae-Bong Kang, Ji Hyung Kim and Ji-Hong Lim
Int. J. Mol. Sci. 2020, 21(18), 6706; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186706 - 13 Sep 2020
Cited by 16 | Viewed by 3040
Abstract
Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 [...] Read more.
Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 is highly expressed in melanoma, the functional role of LEF1 in melanoma growth is not fully understood. While A375, A2058, and G361 melanoma cells exhibit abnormally high LEF1 expression, lung cancer cells express lower LEF1 levels. A luciferase assay-based high throughput screening (HTS) with a natural compound library showed that cinobufagin suppressed β-catenin/TCF4 transcriptional activity by inhibiting LEF1 expression. Cinobufagin decreases LEF1 expression in a dose-dependent manner and Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell lines. Cinobufagin sensitively attenuates cell viability and induces apoptosis in LEF1 expressing melanoma cells compared to LEF1-low expressing lung cancer cells. In addition, ectopic LEF1 expression is sufficient to attenuate cinobufagin-induced apoptosis and cell growth retardation in melanoma cells. Thus, we suggest that cinobufagin is a potential anti-melanoma drug that suppresses tumor-promoting Wnt/β-catenin signaling via LEF1 inhibition. Full article
Show Figures

Figure 1

15 pages, 2823 KiB  
Article
Novel ANO1 Inhibitor from Mallotus apelta Extract Exerts Anticancer Activity through Downregulation of ANO1
by Yohan Seo, Nguyen Hoang Anh, Yunkyung Heo, So-Hyeon Park, Phan Van Kiem, Yechan Lee, Duong Thi Hai Yen, Sungwoo Jo, Dongkyu Jeon, Bui Huu Tai, Nguyen Hoai Nam, Chau Van Minh, Seung Hyun Kim, Nguyen Xuan Nhiem and Wan Namkung
Int. J. Mol. Sci. 2020, 21(18), 6470; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186470 - 04 Sep 2020
Cited by 9 | Viewed by 3351
Abstract
Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including human prostate cancer and oral squamous cell carcinomas. ANO1 plays a critical role in tumor growth and maintenance of these cancers. In this study, we have isolated two new compounds [...] Read more.
Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including human prostate cancer and oral squamous cell carcinomas. ANO1 plays a critical role in tumor growth and maintenance of these cancers. In this study, we have isolated two new compounds (1 and 2) and four known compounds (36) from Mallotus apelta. These compounds were evaluated for their inhibitory effects on ANO1 channel activity and their cytotoxic effects on PC-3 prostate cancer cells. Interestingly, compounds 1 and 2 significantly reduced both ANO1 channel activity and cell viability. Electrophysiological study revealed that compound 2 (Ani-D2) is a potent and selective ANO1 inhibitor, with an IC50 value of 2.64 μM. Ani-D2 had minimal effect on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity and intracellular calcium signaling. Notably, Ani-D2 significantly reduced ANO1 protein expression levels and cell viability in an ANO1-dependent manner in PC-3 and oral squamous cell carcinoma CAL-27 cells. In addition, Ani-D2 strongly reduced cell migration and induced activation of caspase-3 and cleavage of PARP in PC-3 and CAL-27 cells. This study revealed that a novel ANO1 inhibitor, Ani-D2, has therapeutic potential for the treatment of several cancers that overexpress ANO1, such as prostate cancer and oral squamous cell carcinoma. Full article
Show Figures

Figure 1

13 pages, 2786 KiB  
Article
Chrysophanol Mitigates T Cell Activation by Regulating the Expression of CD40 Ligand in Activated T Cells
by Hyun-Su Lee and Gil-Saeng Jeong
Int. J. Mol. Sci. 2020, 21(17), 6122; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21176122 - 25 Aug 2020
Cited by 6 | Viewed by 4144
Abstract
Since T lymphocytes act as mediators between innate and acquired immunity, playing a crucial role in chronic inflammation, regulation of T cell activation to suitable levels is important. Chrysophanol, a member of the anthraquinone family, is known to possess several bioactivities, including anti-microbial, [...] Read more.
Since T lymphocytes act as mediators between innate and acquired immunity, playing a crucial role in chronic inflammation, regulation of T cell activation to suitable levels is important. Chrysophanol, a member of the anthraquinone family, is known to possess several bioactivities, including anti-microbial, anti-cancer, and hepatoprotective activities, however, little information is available on the inhibitory effects of chrysophanol on T cell activation. To elucidate whether chrysophanol regulates the activity of T cells, IL-2 expression in activated Jurkat T cells pretreated with chrysophanol was assessed. We showed that chrysophanol is not cytotoxic to Jurkat T cells under culture conditions using RPMI (Rosewell Park Memorial Institute) medium. Pretreatment with chrysophanol inhibited IL-2 production in T cells stimulated by CD3/28 antibodies or SEE-loaded Raji B cells. We also demonstrated that chrysophanol suppressed the expression of the CD40 ligand (CD40L) in activated T cells, and uncontrolled conjugation between B cells by pretreatment with chrysophanol reduced T cell activation. Besides, treatment with chrysophanol of Jurkat T cells blocked the NFκB signaling pathway, resulting in the abrogation of MAPK (mitogen-activated protein kinase) in activated T cells. These results provide novel insights into the suppressive effect of chrysophanol on T cell activation through the regulation of CD40L expression in T cell receptor-mediated stimulation conditions. Full article
Show Figures

Figure 1

13 pages, 3155 KiB  
Article
Picropodophyllotoxin, an Epimer of Podophyllotoxin, Causes Apoptosis of Human Esophageal Squamous Cell Carcinoma Cells Through ROS-Mediated JNK/P38 MAPK Pathways
by Ah-Won Kwak, Goo Yoon, Mee-Hyun Lee, Seung-Sik Cho, Jung-Hyun Shim and Jung-Il Chae
Int. J. Mol. Sci. 2020, 21(13), 4640; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21134640 - 30 Jun 2020
Cited by 14 | Viewed by 2540
Abstract
Esophageal squamous cell carcinoma (ESCC), a major histologic type of esophageal cancer, is one of the frequent causes of cancer-related death worldwide. Picropodophyllotoxin (PPT) is the main component of Podophyllum hexandrum root with antitumor activity via apoptosis-mediated mechanisms in several cancer cells. However, [...] Read more.
Esophageal squamous cell carcinoma (ESCC), a major histologic type of esophageal cancer, is one of the frequent causes of cancer-related death worldwide. Picropodophyllotoxin (PPT) is the main component of Podophyllum hexandrum root with antitumor activity via apoptosis-mediated mechanisms in several cancer cells. However, the underlying mechanism of the PPT effects in apoptosis induction in cancer remains ambiguous. Hence, in this study, we evaluate the anti-cancer effects of PPT in apoptotic signaling pathway-related mechanisms in ESCC cells. First, to verify the effect of PPT on ESCC cell viability, we employed an MTT assay. PPT inhibited the viability of ESCC cells in time- and dose-dependent manners. PPT induced G2/M phase cell cycle arrest and annexin V-stained cell apoptosis through the activation of the c-Jun N-terminal kinase (JNK)/p38 pathways. Furthermore, the treatment of KYSE 30 and KYSE 450 ESCC cells with PPT induced apoptosis involving the regulation of endoplasmic reticulum stress- and apoptosis-related proteins by reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, and multi-caspase activation. In conclusion, our results indicate that the apoptotic effect of PPT on ESCC cells has the potential to become a new anti-cancer drug by increasing ROS levels and inducing the JNK/p38 signaling pathways. Full article
Show Figures

Figure 1

14 pages, 1686 KiB  
Article
Protective Effect of Tetrahydroquinolines from the Edible Insect Allomyrina dichotoma on LPS-Induced Vascular Inflammatory Responses
by InWha Park, Wonhwa Lee, Youngbum Yoo, Hyosoo Shin, Joonseok Oh, Hyelim Kim, Mi-Ae Kim, Jae Sam Hwang, Jong-Sup Bae and MinKyun Na
Int. J. Mol. Sci. 2020, 21(10), 3406; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103406 - 12 May 2020
Cited by 11 | Viewed by 2981
Abstract
The larva of Allomyrina dichotoma (family Scarabaeidae) is an edible insect that is registered in the Korean Food Standards Codex as a food resource. The chemical study on the larvae of A. dichotoma resulted in the isolation of three new tetrahydroquinolines, allomyrinaines A–C [...] Read more.
The larva of Allomyrina dichotoma (family Scarabaeidae) is an edible insect that is registered in the Korean Food Standards Codex as a food resource. The chemical study on the larvae of A. dichotoma resulted in the isolation of three new tetrahydroquinolines, allomyrinaines A–C (13), one new dopamine derivative, allomyrinamide A (4), and four known compounds (58). The structures were elucidated on the basis of 1D and 2D nuclear magnetic resonance (NMR) and MS spectroscopic data analysis. Allomyrinaines A–C (13) possessed three stereogenic centers at C-2, C-3, and C-4, whose relative configurations were determined by analyses of the coupling constants and the nuclear Overhauser enhancement spectroscopy (NOESY) data, as well as DP4+ calculation. The anti-inflammatory effects of compounds 14 were evaluated in human endothelial cells. Allomyrinaines A–C (13) could stabilize vascular barrier integrity on lipopolysaccharide (LPS)-induced vascular inflammation via inhibition of the nuclear factor-κB (NF-κB) pathway. The physiologically relevant concentration was confirmed by Q-TOF-MS-based quantitative analysis on allomyrinaines A–C in crude extract. This study suggests that allomyrinaines A–C (13) are bioactive constituents of A. dichotoma to treat vascular inflammatory disorder. Full article
Show Figures

Graphical abstract

11 pages, 1818 KiB  
Article
Kaempferol and Its Glycoside, Kaempferol 7-O-rhamnoside, Inhibit PD-1/PD-L1 Interaction In Vitro
by Ji Hye Kim, Young Soo Kim, Jang-Gi Choi, Wei Li, Eun Jin Lee, Jin-Wan Park, Jaeyoung Song and Hwan-Suck Chung
Int. J. Mol. Sci. 2020, 21(9), 3239; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21093239 - 03 May 2020
Cited by 26 | Viewed by 4602
Abstract
Kaempferol (KO) and kaempferol 7-O-rhamnoside (KR) are natural products from various oriental herbs such as Geranii Herba. Previous studies have reported some biological activities of KO and KR; however, their effects on PD-1/PD-L1 interaction have not been reported yet. To elucidate their inhibitory [...] Read more.
Kaempferol (KO) and kaempferol 7-O-rhamnoside (KR) are natural products from various oriental herbs such as Geranii Herba. Previous studies have reported some biological activities of KO and KR; however, their effects on PD-1/PD-L1 interaction have not been reported yet. To elucidate their inhibitory activities on PD-1/PD-L1 protein–protein interaction (PPI), biochemical assays including competitive ELISA and biolayer interferometry (BLI) systems were performed. Cellular PD-1/PD-L1 blocking activity was measured in a co-culture system with PD-1 Jurkat and PD-L1/aAPC CHO-K1 cells by T-cell receptor (TCR) activation-induced nuclear factor of activated T cells (NFAT)-luciferase reporter assay. The detailed binding mode of action was simulated by an in silico docking study and pharmacophore analysis. Competitive ELISA revealed that KO and its glycoside KR significantly inhibited PD-1/PD-L1 interaction. Cellular PD-1/PD-L1 blocking activity was monitored by KO and KR at non-cytotoxic concentration. Surface plasmon resonance (SPR) and biolayer interferometry (BLI) analysis suggested the binding affinity and direct inhibition of KR against PD-1/PD-L1. An in silico docking simulation determined the detailed mode of binding of KR to PD-1/PD-L1. Collectively, these results suggest that KR could be developed as a potent small molecule inhibitor for PD-1/PD-L1 blockade. Full article
Show Figures

Graphical abstract

11 pages, 2092 KiB  
Article
Anti-Inflammatory and Anti-Oxidative Effects of luteolin-7-O-glucuronide in LPS-Stimulated Murine Macrophages through TAK1 Inhibition and Nrf2 Activation
by Young-Chang Cho, Jiyoung Park and Sayeon Cho
Int. J. Mol. Sci. 2020, 21(6), 2007; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21062007 - 16 Mar 2020
Cited by 39 | Viewed by 4225
Abstract
Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their [...] Read more.
Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress. Full article
Show Figures

Graphical abstract

18 pages, 3294 KiB  
Article
Application of an Inter-Species Extrapolation Method for the Prediction of Drug Interactions between Propolis and Duloxetine in Humans
by Thi Lien Ngo, Chung-Hee Lee, Nayoung Han, Hyun-Moon Back, Su-Jin Rhee, Keumhan Noh, Hwi-Yeol Yun, Wonku Kang and Jung-Woo Chae
Int. J. Mol. Sci. 2020, 21(5), 1862; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21051862 - 09 Mar 2020
Cited by 2 | Viewed by 3143
Abstract
Duloxetine (DLX) is a potent drug investigated for the treatment of depression and urinary incontinence. DLX is extensively metabolized in the liver by two P450 isozymes, CYP2D6 and CYP1A2. Propolis (PPL) is one of the popular functional foods known to have effects on [...] Read more.
Duloxetine (DLX) is a potent drug investigated for the treatment of depression and urinary incontinence. DLX is extensively metabolized in the liver by two P450 isozymes, CYP2D6 and CYP1A2. Propolis (PPL) is one of the popular functional foods known to have effects on activities of CYPs, including CYP1A2. Due to the high probability of using DLX and PPL simultaneously, the present study was designed to investigate the potent effect of PPL on pharmacokinetics (PKs) of DLX after co-administration in humans. A PK study was first conducted in 18 rats (n = 6/group), in which the plasma concentration of DLX and its major metabolite 4-hydroxy duloxetine (4-HD) with or without administration of PPL was recorded. Population PKs and potential effects of PPL were then analyzed using NONMEM software. Lastly, these results were extrapolated from rats to humans using the allometric scaling and the liver blood flow method. PPL (15,000 mg/day) exerts a statistically significant increase in DLX exposures at steady state, with a 20.2% and 24.6% increase in DLX C m a x , s s and the same 28.0% increase in DLX A U C s s when DLX (40 or 60 mg) was administered once or twice daily, respectively. In conclusion, safety issues are required to be attended to when individuals simultaneously use DLX and PPL at high doses, and the possibility of interactions between DLX and PPL might be noted. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

15 pages, 2031 KiB  
Review
Alternative Options for Skin Cancer Therapy via Regulation of AKT and Related Signaling Pathways
by Sun-Young Hwang, Jung-Il Chae, Ah-Won Kwak, Mee-Hyun Lee and Jung-Hyun Shim
Int. J. Mol. Sci. 2020, 21(18), 6869; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186869 - 18 Sep 2020
Cited by 17 | Viewed by 3758
Abstract
Global environmental pollution has led to human exposure to ultraviolet (UV) radiation due to the damaged ozone layer, thereby increasing the incidence and death rate of skin cancer including both melanoma and non-melanoma. Overexpression and activation of V-akt murine thymoma viral oncogene homolog [...] Read more.
Global environmental pollution has led to human exposure to ultraviolet (UV) radiation due to the damaged ozone layer, thereby increasing the incidence and death rate of skin cancer including both melanoma and non-melanoma. Overexpression and activation of V-akt murine thymoma viral oncogene homolog (AKT, also known as protein kinase B) and related signaling pathways are major factors contributing to many cancers including lung cancer, esophageal squamous cell carcinoma and skin cancer. Although BRAF inhibitors are used to treat melanoma, further options are needed due to treatment resistance and poor efficacy. Depletion of AKT expression and activation, and related signaling cascades by its inhibitors, decreases the growth of skin cancer and metastasis. Here we have focused the effects of AKT and related signaling (PI3K/AKT/mTOR) pathways by regulators derived from plants and suggest the need for efficient treatment in skin cancer therapy. Full article
Show Figures

Figure 1

29 pages, 1358 KiB  
Review
Anti-Inflammatory Drugs as Anticancer Agents
by Silvia Zappavigna, Alessia Maria Cossu, Anna Grimaldi, Marco Bocchetti, Giuseppe Andrea Ferraro, Giovanni Francesco Nicoletti, Rosanna Filosa and Michele Caraglia
Int. J. Mol. Sci. 2020, 21(7), 2605; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21072605 - 09 Apr 2020
Cited by 197 | Viewed by 10989
Abstract
Inflammation is strictly associated with cancer and plays a key role in tumor development and progression. Several epidemiological studies have demonstrated that inflammation can predispose to tumors, therefore targeting inflammation and the molecules involved in the inflammatory process could represent a good strategy [...] Read more.
Inflammation is strictly associated with cancer and plays a key role in tumor development and progression. Several epidemiological studies have demonstrated that inflammation can predispose to tumors, therefore targeting inflammation and the molecules involved in the inflammatory process could represent a good strategy for cancer prevention and therapy. In the past, several clinical studies have demonstrated that many anti-inflammatory agents, including non-steroidal anti-inflammatory drugs (NSAIDs), are able to interfere with the tumor microenvironment by reducing cell migration and increasing apoptosis and chemo-sensitivity. This review focuses on the link between inflammation and cancer by describing the anti-inflammatory agents used in cancer therapy, and their mechanisms of action, emphasizing the use of novel anti-inflammatory agents with significant anticancer activity. Full article
Show Figures

Figure 1

Back to TopTop