ijms-logo

Journal Browser

Journal Browser

Drought Stress Tolerance in Plants

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 46500

Special Issue Editor


E-Mail Website
Guest Editor
Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Public University of Navarra, E-31006 Pamplona, Spain
Interests: drought; roots; legumes; carbon metabolism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The current climate change scenario is accelerating degradation, desertification, and salinization, all of them destructive processes negatively impacting arable lands and food production in a progressive manner as the world population grows. This context seems to lead to floods and decreasing water quality, but also decreasing availability of water resources in some regions. More than ever, drought is a major threat to agriculture worldwide.

This issue of the International Journal of Molecular Sciences journal will focus on recent advances in mechanisms involved in drought tolerance in crop plants with special attention to the role of the root tissue and shoot–root interaction. In addition to drought, it will consider other abiotic stresses involving water deficit stress at cell level and their interaction with drought.

 

Dr. Esther M. González
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • root physiology
  • drought
  • water deficit stress
  • shoot-root interaction
  • salinity
  • crop plants

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 11899 KiB  
Article
Strategies to Apply Water-Deficit Stress: Similarities and Disparities at the Whole Plant Metabolism Level in Medicago truncatula
by Verónica Castañeda and Esther M. González
Int. J. Mol. Sci. 2021, 22(6), 2813; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22062813 - 10 Mar 2021
Cited by 7 | Viewed by 2053
Abstract
Water-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study M. truncatula plants were subjected to 250 [...] Read more.
Water-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study M. truncatula plants were subjected to 250 mM NaCl as well as reduced irrigation (No-W) and 250 g/L polyethylene glycol (PEG)-6000 to induce salinity and drought stress, respectively, provoking a drop to −1.7 MPa in leaf water potential. The whole plant physiology and metabolism was explored by characterizing the stress responses at root, phloem sap and leaf organ level. PEG treatment led to some typical responses of plants to drought stress, but in addition to PEG uptake, an important impairment of nutrient uptake and a different regulation of carbon metabolism could be observed compared to No-W plants. No-W plants showed an important redistribution of antioxidants and assimilates to the root tissue, with a distinctive increase in root proline degradation and alkaline invertase activity. On the contrary, salinity provoked an increase in leaf starch and isocitrate dehydrogenase activity, suggesting key roles in the plant response to this stress. Overall, results suggest higher protection of salt-stressed shoots and non-irrigated roots through different mechanisms, including the regulation of proline and carbon metabolism, while discarding PEG as safe mimicker of drought. This raises the need to understand the effect at the whole plant level of the different strategies employed to apply water-deficit stress. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

21 pages, 4786 KiB  
Article
Exploitation of Tolerance of Wheat Kernel Weight and Shape-Related Traits from Aegilops tauschii under Heat and Combined Heat-Drought Stresses
by Gamila Mohamed Idris Elhadi, Nasrein Mohamed Kamal, Yasir Serag Alnor Gorafi, Yuji Yamasaki, Kanenori Takata, Izzat S. A. Tahir, Michel O. Itam, Hiroyuki Tanaka and Hisashi Tsujimoto
Int. J. Mol. Sci. 2021, 22(4), 1830; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22041830 - 12 Feb 2021
Cited by 12 | Viewed by 2281
Abstract
Kernel weight and shape-related traits are inherited stably and increase wheat yield. Narrow genetic diversity limits the progress of wheat breeding. Here, we evaluated kernel weight and shape-related traits and applied genome-wide association analysis to a panel of wheat multiple synthetic derivative (MSD) [...] Read more.
Kernel weight and shape-related traits are inherited stably and increase wheat yield. Narrow genetic diversity limits the progress of wheat breeding. Here, we evaluated kernel weight and shape-related traits and applied genome-wide association analysis to a panel of wheat multiple synthetic derivative (MSD) lines. The MSD lines harbored genomic fragments from Aegilops tauschii. These materials were grown under optimum conditions in Japan, as well as under heat and combined heat–drought conditions in Sudan. We aimed to explore useful QTLs for kernel weight and shape-related traits under stress conditions. These can be useful for enhancing yield under stress conditions. MSD lines possessed remarkable genetic variation for all traits under all conditions, and some lines showed better performance than the background parent Norin 61. We identified 82 marker trait associations (MTAs) under the three conditions; most of them originated from the D genome. All of the favorable alleles originated from Ae. tauschii. For the first time, we identified markers on chromosome 5D associated with a candidate gene encoding a RING-type E3 ubiquitin–protein ligase and expected to have a role in regulating wheat seed size. Our study provides important knowledge for the improvement of wheat yield under optimum and stress conditions. The results emphasize the importance of Ae. tauschii as a gene reservoir for wheat breeding. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Genomic Architecture of Phenotypic Plasticity in Response to Water Stress in Tetraploid Wheat
by Andrii Fatiukha, Mathieu Deblieck, Valentyna Klymiuk, Lianne Merchuk-Ovnat, Zvi Peleg, Frank Ordon, Tzion Fahima, Abraham Korol, Yehoshua Saranga and Tamar Krugman
Int. J. Mol. Sci. 2021, 22(4), 1723; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22041723 - 09 Feb 2021
Cited by 13 | Viewed by 2539
Abstract
Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is [...] Read more.
Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is the first to apply the linear regression residuals as drought plasticity scores while considering the variation in flowering phenology and traits under non-stress conditions. We characterized the genomic architecture of 17 complex traits and their drought plasticity scores for quantitative trait loci (QTL) mapping, using a mapping population derived from a cross between durum wheat (Triticum turgidum ssp. durum) and wild emmer wheat (T. turgidum ssp. dicoccoides). We identified 79 QTLs affected observed traits and their plasticity scores, of which 33 reflected plasticity in response to water stress and exhibited epistatic interactions and/or pleiotropy between the observed and plasticity traits. Vrn-B3 (TaTF1) residing within an interval of a major drought-escape QTL was proposed as a candidate gene. The favorable alleles for most of the plasticity QTLs were contributed by wild emmer wheat, demonstrating its high potential for wheat improvement. Our study presents a new approach for the quantification of plant adaptation to various stresses and provides new insights into the genetic basis of wheat complex traits under water-deficit stress. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

21 pages, 3593 KiB  
Article
Expression of Flavodiiron Proteins Flv2-Flv4 in Chloroplasts of Arabidopsis and Tobacco Plants Provides Multiple Stress Tolerance
by Paula Vicino, Julieta Carrillo, Rodrigo Gómez, Fahimeh Shahinnia, Suresh Tula, Michael Melzer, Twan Rutten, Néstor Carrillo, Mohammad-Reza Hajirezaei and Anabella F. Lodeyro
Int. J. Mol. Sci. 2021, 22(3), 1178; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031178 - 25 Jan 2021
Cited by 10 | Viewed by 3424
Abstract
With the notable exception of angiosperms, all phototrophs contain different sets of flavodiiron proteins that help to relieve the excess of excitation energy on the photosynthetic electron transport chain during adverse environmental conditions, presumably by reducing oxygen directly to water. Among them, the [...] Read more.
With the notable exception of angiosperms, all phototrophs contain different sets of flavodiiron proteins that help to relieve the excess of excitation energy on the photosynthetic electron transport chain during adverse environmental conditions, presumably by reducing oxygen directly to water. Among them, the Flv2-Flv4 dimer is only found in β-cyanobacteria and induced by high light, supporting a role in stress protection. The possibility of a similar protective function in plants was assayed by expressing Synechocystis Flv2-Flv4 in chloroplasts of tobacco and Arabidopsis. Flv-expressing plants exhibited increased tolerance toward high irradiation, salinity, oxidants, and drought. Stress tolerance was reflected by better growth, preservation of photosynthetic activity, and membrane integrity. Metabolic profiling under drought showed enhanced accumulation of soluble sugars and amino acids in transgenic Arabidopsis and a remarkable shift of sucrose into starch, in line with metabolic responses of drought-tolerant genotypes. Our results indicate that the Flv2-Flv4 complex retains its stress protection activities when expressed in chloroplasts of angiosperm species by acting as an additional electron sink. The flv2-flv4 genes constitute a novel biotechnological tool to generate plants with increased tolerance to agronomically relevant stress conditions that represent a significant productivity constraint. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

15 pages, 3554 KiB  
Article
First Report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 Genes in Chickpea Protoplasts
by Sapna Badhan, Andrew S. Ball and Nitin Mantri
Int. J. Mol. Sci. 2021, 22(1), 396; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22010396 - 01 Jan 2021
Cited by 84 | Viewed by 7888
Abstract
The current genome editing system Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR/Cas9) has already confirmed its proficiency, adaptability, and simplicity in several plant-based applications. Together with the availability of a vast amount of genome data and transcriptome data, CRISPR/Cas9 presents a massive [...] Read more.
The current genome editing system Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR/Cas9) has already confirmed its proficiency, adaptability, and simplicity in several plant-based applications. Together with the availability of a vast amount of genome data and transcriptome data, CRISPR/Cas9 presents a massive opportunity for plant breeders and researchers. The successful delivery of ribonucleoproteins (RNPs), which are composed of Cas9 enzyme and a synthetically designed single guide RNA (sgRNA) and are used in combination with various transformation methods or lately available novel nanoparticle-based delivery approaches, allows targeted mutagenesis in plants species. Even though this editing technique is limitless, it has still not been employed in many plant species to date. Chickpea is the second most crucial winter grain crop cultivated worldwide; there are currently no reports on CRISPR/Cas9 gene editing in chickpea. Here, we selected the 4-coumarate ligase (4CL) and Reveille 7 (RVE7) genes, both associated with drought tolerance for CRISPR/Cas9 editing in chickpea protoplast. The 4CL represents a key enzyme involved in phenylpropanoid metabolism in the lignin biosynthesis pathway. It regulates the accumulation of lignin under stress conditions in several plants. The RVE7 is a MYB transcription factor which is part of regulating circadian rhythm in plants. The knockout of these selected genes in the chickpea protoplast using DNA-free CRISPR/Cas9 editing represents a novel approach for achieving targeted mutagenesis in chickpea. Results showed high-efficiency editing was achieved for RVE7 gene in vivo compared to the 4CL gene. This study will help unravel the role of these genes under drought stress and understand the complex drought stress mechanism pathways. This is the first study in chickpea protoplast utilizing CRISPR/Cas9 DNA free gene editing of drought tolerance associated genes. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

28 pages, 20540 KiB  
Article
Physiological, Biochemical, and Transcriptomic Responses of Neolamarckia cadamba to Aluminum Stress
by Baojia Dai, Chen Chen, Yi Liu, Lijun Liu, Mirza Faisal Qaseem, Jinxiang Wang, Huiling Li and Ai-Min Wu
Int. J. Mol. Sci. 2020, 21(24), 9624; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21249624 - 17 Dec 2020
Cited by 17 | Viewed by 2761
Abstract
Aluminum is the most abundant metal of the Earth’s crust accounting for 7% of its mass, and release of toxic Al3+ in acid soils restricts plant growth. Neolamarckia cadamba, a fast-growing tree, only grows in tropical regions with acidic soils. In [...] Read more.
Aluminum is the most abundant metal of the Earth’s crust accounting for 7% of its mass, and release of toxic Al3+ in acid soils restricts plant growth. Neolamarckia cadamba, a fast-growing tree, only grows in tropical regions with acidic soils. In this study, N. cadamba was treated with high concentrations of aluminum under acidic condition (pH 4.5) to study its physiological, biochemical, and molecular response mechanisms against high aluminum stress. High aluminum concentration resulted in significant inhibition of root growth with time in N. cadamba. The concentration of Al3+ ions in the root tip increased significantly and the distribution of absorbed Al3+ was observed in the root tip after Al stress. Meanwhile, the concentration of Ca, Mg, Mn, and Fe was significantly decreased, but P concentration increased. Aluminum stress increased activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase from micrococcus lysodeiktic (CAT), and peroxidase (POD) in the root tip, while the content of MDA was decreased. Transcriptome analysis showed 37,478 differential expression genes (DEGs) and 4096 GOs terms significantly associated with treatments. The expression of genes regulating aluminum transport and abscisic acid synthesis was significantly upregulated; however, the genes involved in auxin synthesis were downregulated. Of note, the transcripts of several key enzymes affecting lignin monomer synthesis in phenylalanine pathway were upregulated. Our results shed light on the physiological and molecular mechanisms of aluminum stress tolerance in N. cadamba. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

26 pages, 2193 KiB  
Article
Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage
by Hongbing Li, Yulin Li, Qingbo Ke, Sang-Soo Kwak, Suiqi Zhang and Xiping Deng
Int. J. Mol. Sci. 2020, 21(23), 9174; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21239174 - 01 Dec 2020
Cited by 30 | Viewed by 3156
Abstract
Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, [...] Read more.
Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration and differential accumulation of proteins in the roots of sorghum (Sorghum bicolor) inbred line BT×623 response to Polyethylene Glycol (PEG)-induced drought stress at the seedling stage. Drought stress (up to 24 h after PEG treatment) resulted in increased accumulation of reactive oxygen species (ROS) and subsequent lipid peroxidation. The proline content was increased in drought-stressed plants. The physiological mechanism of sorghum root response to drought was attributed to the elimination of harmful free radicals and to the alleviation of oxidative stress via the synergistic action of antioxidant enzymes, such as superoxide dismutase, peroxidase, and polyphenol oxidase. The high-resolution proteome map demonstrated significant variations in about 65 protein spots detected on Coomassie Brilliant Blue-stained 2-DE gels. Of these, 52 protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) representing 49 unique proteins; the levels of 43 protein spots were increased, and 22 were decreased under drought condition. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and energy metabolism, antioxidant and defense response, protein synthesis/processing/degradation, transcriptional regulation, amino acid biosynthesis, and nitrogen metabolism, which contribute jointly to the molecular mechanism of outstanding drought tolerance in sorghum plants. Analysis of protein expression patterns and physiological analysis revealed that proteins associated with changes in energy usage; osmotic adjustment; ROS scavenging; and protein synthesis, processing, and proteolysis play important roles in maintaining root growth under drought stress. This study provides new insight for better understanding of the molecular basis of drought stress responses, aiming to improve plant drought tolerance for enhanced yield. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

17 pages, 3342 KiB  
Article
Nitric Oxide Signal, Nitrogen Metabolism, and Water Balance Affected by γ-Aminobutyric Acid (GABA) in Relation to Enhanced Tolerance to Water Stress in Creeping Bentgrass
by Mingyan Tang, Zhou Li, Ling Luo, Bizhen Cheng, Youzhi Zhang, Weihang Zeng and Yan Peng
Int. J. Mol. Sci. 2020, 21(20), 7460; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21207460 - 10 Oct 2020
Cited by 29 | Viewed by 2690
Abstract
γ-Aminobutyric acid (GABA) plays an important role in regulating stress tolerance in plants. Purposes of this study was to determine the effect of an exogenous supply of GABA on tolerance to water stress in creeping bentgrass (Agrostis stolonifera), and further reveal [...] Read more.
γ-Aminobutyric acid (GABA) plays an important role in regulating stress tolerance in plants. Purposes of this study was to determine the effect of an exogenous supply of GABA on tolerance to water stress in creeping bentgrass (Agrostis stolonifera), and further reveal the GABA-induced key mechanisms related to water balance, nitrogen (N) metabolism and nitric oxide (NO) production in response to water stress. Plants were pretreated with or without 0.5 mM GABA solution in the roots for 3 days, and then subjected to water stress induced by −0.52 MPa polyethylene glycol 6000 for 12 days. The results showed that water stress caused leaf water deficit, chlorophyll (Chl) loss, oxidative damage (increases in superoxide anion, hydrogen peroxide, malondialdehyde, and protein carbonyl content), N insufficiency, and metabolic disturbance. However, the exogenous addition of GABA significantly increased endogenous GABA content, osmotic adjustment and antioxidant enzyme activities (superoxide dismutase, catalase, dehydroascorbate reductase, glutathione reductase and monodehydroascorbate reductase), followed by effectively alleviating water stress damage, including declines in oxidative damage, photoinhibition, and water and Chl loss. GABA supply not only provided more available N, but also affected N metabolism through activating nitrite reductase and glutamine synthetase activities under water stress. The supply of GABA did not increase glutamate content and glutamate decarboxylase activity, but enhanced glutamate dehydrogenase activity, which might indicate that GABA promoted the conversion and utilization of glutamate for maintaining Chl synthesis and tricarboxylic acid cycle when creeping bentgrass underwent water stress. In addition, GABA-induced NO production, depending on nitrate reductase and NO-associated protein pathways, could be associated with the enhancement of antioxidant defense. Current findings reveal the critical role of GABA in regulating signal transduction and metabolic homeostasis in plants under water-limited condition. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

22 pages, 3936 KiB  
Article
Transcriptional and Metabolic Profiling of Potato Plants Expressing a Plastid-Targeted Electron Shuttle Reveal Modulation of Genes Associated to Drought Tolerance by Chloroplast Redox Poise
by Juan J. Pierella Karlusich, Rocío C. Arce, Fahimeh Shahinnia, Sophia Sonnewald, Uwe Sonnewald, Matias D. Zurbriggen, Mohammad-Reza Hajirezaei and Néstor Carrillo
Int. J. Mol. Sci. 2020, 21(19), 7199; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21197199 - 29 Sep 2020
Cited by 12 | Viewed by 3055
Abstract
Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative [...] Read more.
Water limitation represents the main environmental constraint affecting crop yield worldwide. Photosynthesis is a primary drought target, resulting in over-reduction of the photosynthetic electron transport chain and increased production of reactive oxygen species in plastids. Manipulation of chloroplast electron distribution by introducing alternative electron transport sinks has been shown to increase plant tolerance to multiple environmental challenges including hydric stress, suggesting that a similar strategy could be used to improve drought tolerance in crops. We show herein that the expression of the cyanobacterial electron shuttle flavodoxin in potato chloroplasts protected photosynthetic activities even at a pre-symptomatic stage of drought. Transcriptional and metabolic profiling revealed an attenuated response to the adverse condition in flavodoxin-expressing plants, correlating with their increased stress tolerance. Interestingly, 5–6% of leaf-expressed genes were affected by flavodoxin in the absence of drought, representing pathways modulated by chloroplast redox status during normal growth. About 300 of these genes potentially contribute to stress acclimation as their modulation by flavodoxin proceeds in the same direction as their drought response in wild-type plants. Tuber yield losses under chronic water limitation were mitigated in flavodoxin-expressing plants, indicating that the flavoprotein has the potential to improve major agronomic traits in potato. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

26 pages, 5359 KiB  
Article
Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms
by Katarzyna Lechowicz, Izabela Pawłowicz, Dawid Perlikowski, Magdalena Arasimowicz-Jelonek, Sara Blicharz, Aleksandra Skirycz, Adam Augustyniak, Robert Malinowski, Marcin Rapacz and Arkadiusz Kosmala
Int. J. Mol. Sci. 2020, 21(16), 5639; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21165639 - 06 Aug 2020
Cited by 6 | Viewed by 2904
Abstract
Lolium multiflorum/Festuca arundinacea introgression forms have been proved several times to be good models to identify key components of grass metabolism involved in the mechanisms of tolerance to water deficit. Here, for the first time, a relationship between photosynthetic and antioxidant capacities with [...] Read more.
Lolium multiflorum/Festuca arundinacea introgression forms have been proved several times to be good models to identify key components of grass metabolism involved in the mechanisms of tolerance to water deficit. Here, for the first time, a relationship between photosynthetic and antioxidant capacities with respect to drought tolerance of these forms was analyzed in detail. Two closely related L. multiflorum/F. arundinacea introgression forms distinct in their ability to re-grow after cessation of prolonged water deficit in the field were selected and subjected to short-term drought in pots to dissect precisely mechanisms of drought tolerance in this group of plants. The studies revealed that the form with higher drought tolerance was characterized by earlier and higher accumulation of abscisic acid, more stable cellular membranes, and more balanced reactive oxygen species metabolism associated with a higher capacity of the antioxidant system under drought conditions. On the other hand, both introgression forms revealed the same levels of stomatal conductance, CO2 assimilation, and consequently, intrinsic water use efficiency under drought and recovery conditions. However, simultaneous higher adjustment of the Calvin cycle to water deficit and reduced CO2 availability, with respect to the accumulation and activity of plastid fructose-1,6-bisphosphate aldolase, were clearly visible in the form with higher drought tolerance. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 1530 KiB  
Review
Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants
by Vishvanathan Marthandan, Rathnavel Geetha, Karunanandham Kumutha, Vellaichamy Gandhimeyyan Renganathan, Adhimoolam Karthikeyan and Jegadeesan Ramalingam
Int. J. Mol. Sci. 2020, 21(21), 8258; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21218258 - 04 Nov 2020
Cited by 127 | Viewed by 12055
Abstract
Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance [...] Read more.
Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants)
Show Figures

Figure 1

Back to TopTop