ijms-logo

Journal Browser

Journal Browser

Human and Animal Monocytes and Macrophages in Homeostasis and Disease 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (30 September 2021) | Viewed by 38096

Special Issue Editors

Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA
Interests: macrophages; actin cytoskeleton; RhoA pathway; chronic rejection; transplantation; germ cells; Xenopus laevis; development
Special Issues, Collections and Topics in MDPI journals
Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
Interests: embryo development; cell cycle; gene regulation; cancer; stem cells; gonads; genetic diseases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Monocytes and macrophages play fundamental roles in organisms’ homeostasis and inflammatory processes, in both physiological and pathological situations. Tissue-resident macrophages participate in tissue/organ renewal, and by changing their microbicidal properties, they accommodate organism microbiota. In SARS-CoV-2 infection, monocytes and alveolar macrophages are involved in the development of the acute respiratory distress syndrome (ARDS) through the exacerbated secretion of pro-inflammatory factors. The management of this macrophage-derived cytokine storm is of paramount importance during the current COVID-19 pandemic. Another burning issue in which monocytes and macrophages play important roles is diabetes mellitus and the inflammatory processes involved in its etiology. The specialized subpopulation of macrophages, tumor-associated macrophages (TAMs), plays a role in the development and metastasis of cancer. Monocytes and macrophages are also responsible for the chronic rejection and long-term failure of transplanted organs. The efficient fight against these scourges requires a better understanding of the molecular and cellular mechanisms allowing monocytes and macrophages to underreact or overreact in their homeostatic and/or pathogen fighting roles. For this Special Issue, we invite research and review articles on recent progress in physiology and pathology  linked to human and animal monocyte and macrophage functions in homeostasis and diseases.

Prof. Dr. Malgorzata Kloc
Prof. Dr. Jacek Z Kubiak
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • monocytes
  • macrophages
  • inflammation
  • diseases
  • COVID-19
  • diabetes mellitus
  • polarity
  • phagocytosis
  • cytokine secretion
  • chemotaxis

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 10245 KiB  
Article
Blood Bacteria-Free DNA in Septic Mice Enhances LPS-Induced Inflammation in Mice through Macrophage Response
by Warerat Kaewduangduen, Peerapat Visitchanakun, Wilasinee Saisorn, Ariya Phawadee, Charintorn Manonitnantawat, Chirapas Chutimaskul, Paweena Susantitaphong, Patcharee Ritprajak, Naraporn Somboonna, Thanya Cheibchalard, Dhammika Leshan Wannigama, Patipark Kueanjinda and Asada Leelahavanichkul
Int. J. Mol. Sci. 2022, 23(3), 1907; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23031907 - 08 Feb 2022
Cited by 16 | Viewed by 3570
Abstract
Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the [...] Read more.
Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1β), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations. Full article
Show Figures

Figure 1

15 pages, 18584 KiB  
Article
Brain-Derived Neurotrophic Factor Suppressed Proinflammatory Cytokines Secretion and Enhanced MicroRNA(miR)-3168 Expression in Macrophages
by Hui-Chun Yu, Hsien-Bin Huang, Hsien-Yu Huang Tseng and Ming-Chi Lu
Int. J. Mol. Sci. 2022, 23(1), 570; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23010570 - 05 Jan 2022
Cited by 8 | Viewed by 2758
Abstract
We investigated the role of brain-derived neurotrophic factor (BDNF) and its signaling pathway in the proinflammatory cytokines production of macrophages. The effects of different concentrations of BDNF on proinflammatory cytokines expression and secretion in U937 cell-differentiated macrophages, and human monocyte-derived macrophages were analyzed [...] Read more.
We investigated the role of brain-derived neurotrophic factor (BDNF) and its signaling pathway in the proinflammatory cytokines production of macrophages. The effects of different concentrations of BDNF on proinflammatory cytokines expression and secretion in U937 cell-differentiated macrophages, and human monocyte-derived macrophages were analyzed using enzyme-linked immunosorbent assay and real-time polymerase chain reaction. The CRISPR-Cas9 system was used to knockout p75 neurotrophin receptor (p75NTR), one of the BDNF receptors. Next-generation sequencing (NGS) was conducted to search for BDNF-regulated microRNA. A very low concentration of BDNF (1 ng/mL) could suppress the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in lipopolysaccharide (LPS)-stimulated macrophages but did not change their mRNA expression. BDNF suppressed IL-1β and IL-6 secretion in human monocyte-derived macrophages. In U937 cells, BDNF suppressed the phosphorylation of JNK and c-Jun. The p75NTR knockout strongly suppressed IL-1β, IL-6, and TNF-α secretion in macrophages and LPS-stimulated macrophages. BDNF regulated the expression of miR-3168 with Ras-related protein Rab-11A as its target. In conclusion, BDNF suppressed proinflammatory cytokines secretion in macrophages and inhibited the phosphorylation of JNK. Knockout of p75NTR suppressed proinflammatory cytokines expression and secretion. BDNF upregulated the expression of miR-3168. The inhibition of p75NTR could be a potential strategy to control inflammation. Full article
Show Figures

Figure 1

16 pages, 1826 KiB  
Article
Captopril Combined with Furosemide or Hydrochlorothiazide Affects Macrophage Functions in Mouse Contact Hypersensitivity Response
by Paweł Bryniarski, Katarzyna Nazimek and Janusz Marcinkiewicz
Int. J. Mol. Sci. 2022, 23(1), 74; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23010074 - 22 Dec 2021
Cited by 6 | Viewed by 3100
Abstract
Hypertension is a chronic disease associated with chronic inflammation involving activated macrophages. Antihypertensive drugs (for example, angiotensin-converting enzyme inhibitors—ACEIs) used in the treatment of hypertension have immunomodulatory properties. On the other hand, the immunological effect of diuretics and combined drugs (diuretics + ACEI) [...] Read more.
Hypertension is a chronic disease associated with chronic inflammation involving activated macrophages. Antihypertensive drugs (for example, angiotensin-converting enzyme inhibitors—ACEIs) used in the treatment of hypertension have immunomodulatory properties. On the other hand, the immunological effect of diuretics and combined drugs (diuretics + ACEI) is unclear. Therefore, we examined the influence of diuretics and combination drugs (ACEI + diuretic) on cellular response (contact hypersensitivity), production of reactive oxygen intermediates (ROIs), and nitric oxide (NO), and the secretion of interleukin-12 (IL-12). CBA mice were administered i.p. captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) for 8 days. On the third day, the mice were administered i.p. mineral oil, and macrophages were collected 5 days later. In the presented results, we show that diuretics administered alone or with captopril increase the generation of ROIs and reduce the formation of NO by macrophages. Moreover, tested drugs inhibit the secretion of IL-12. Diuretics and combined drugs reduce the activity of contact hypersensitivity (both activation and induction phases). Our research shows that the tested drugs modulate the cellular response by influencing the function of macrophages, which is important in assessing the safety of antihypertensive therapy. Full article
Show Figures

Figure 1

18 pages, 3556 KiB  
Article
Interference on Cytosolic DNA Activation Attenuates Sepsis Severity: Experiments on Cyclic GMP–AMP Synthase (cGAS) Deficient Mice
by Peerapat Visitchanakun, Warerat Kaewduangduen, Awirut Chareonsappakit, Paweena Susantitaphong, Prapaporn Pisitkun, Patcharee Ritprajak, Natavudh Townamchai and Asada Leelahavanichkul
Int. J. Mol. Sci. 2021, 22(21), 11450; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222111450 - 23 Oct 2021
Cited by 18 | Viewed by 2999
Abstract
Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis—a life-threatening organ dysfunction due to systemic infection—are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate–adenosine monophosphate (GMP–AMP) synthase) on sepsis is still unclear. Here, experiments on [...] Read more.
Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis—a life-threatening organ dysfunction due to systemic infection—are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate–adenosine monophosphate (GMP–AMP) synthase) on sepsis is still unclear. Here, experiments on cGAS deficient (cGAS-/-) mice were conducted using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection sepsis models and macrophages. Severity of CLP in cGAS-/- mice was less severe than in wildtype (WT) mice, as indicated by mortality, serum LPS, cfDNA, leukopenia, cytokines (TNF-α, IL-6 and IL-10), organ histology (lung, liver and kidney) and spleen apoptosis. With the LPS injection model, serum cytokines in cGAS-/- mice were lower than in WT mice, despite the similar serum cfDNA level. Likewise, in LPS-activated WT macrophages, the expression of several mitochondria-associated genes (as revealed by RNA sequencing analysis) and a profound reduction in mitochondrial parameters, including maximal respiration (determined by extracellular flux analysis), DNA (mtDNA) and mitochondrial abundance (revealed by fluorescent staining), were demonstrated. These data implied the impact of cfDNA resulting from LPS-induced cell injury. In parallel, an additive effect of bacterial DNA on LPS, seen in comparison with LPS alone, was demonstrated in WT macrophages, but not in cGAS-/- cells, as indicated by supernatant cytokines (TNF-α and IL-6), M1 proinflammatory polarization (iNOS and IL-1β), cGAS, IFN-γ and supernatant cyclic GMP–AMP (cGAMP). In conclusion, cGAS activation by cfDNA from hosts (especially mtDNA) and bacteria was found to induce an additive proinflammatory effect on LPS-activated macrophages which was perhaps responsible for the more pronounced sepsis hyperinflammation observed in WT mice compared with the cGAS-/- group. Full article
Show Figures

Figure 1

16 pages, 2300 KiB  
Article
Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response
by Paweł Bryniarski, Katarzyna Nazimek and Janusz Marcinkiewicz
Int. J. Mol. Sci. 2021, 22(21), 11374; https://doi.org/10.3390/ijms222111374 - 21 Oct 2021
Cited by 8 | Viewed by 2207
Abstract
Hypertension is accompanied by the over-activation of macrophages. Diuretics administered alone or in combination with hypotensive drugs may have immunomodulatory effects. Thus, the influence of tested drugs on mouse macrophage-mediated humoral immunity was investigated. Mice were treated intraperitoneally with captopril (5 mg/kg) with [...] Read more.
Hypertension is accompanied by the over-activation of macrophages. Diuretics administered alone or in combination with hypotensive drugs may have immunomodulatory effects. Thus, the influence of tested drugs on mouse macrophage-mediated humoral immunity was investigated. Mice were treated intraperitoneally with captopril (5 mg/kg) with or without hydrochlorothiazide (10 mg/kg) or furosemide (5 mg/kg) by 8 days. Mineral oil-induced peritoneal macrophages were harvested to assess the generation of cytokines in ELISA, and the expression of surface markers was analyzed cytometrically. Macrophages were also pulsed with sheep red blood cells (SRBC) and transferred to naive mice for evaluation of their ability to induce a humoral immune response. Tested drugs increase the expression of surface markers important for the antigen phagocytosis and presentation. SRBC-pulsed macrophages from mice treated with captopril combined with diuretics increased the secretion of antigen-specific antibodies by recipient B cells, while macrophages of mice treated with hydrochlorothiazide or furosemide with captopril increased the number of antigen-specific B cells. Tested drugs alter the macrophage secretory profile in favor of anti-inflammatory cytokines. Our results showed that diuretics with or without captopril modulate the humoral response by affecting the function of macrophages, which has significant translational potential in assessing the safety of antihypertensive therapy. Full article
Show Figures

Figure 1

22 pages, 13648 KiB  
Article
MERTK+/hi M2c Macrophages Induced by Baicalin Alleviate Non-Alcoholic Fatty Liver Disease
by Junior, Yin-Siew Lai, Huyen Thi Nguyen, Farrah P. Salmanida and Ko-Tung Chang
Int. J. Mol. Sci. 2021, 22(19), 10604; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms221910604 - 30 Sep 2021
Cited by 16 | Viewed by 4316
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. An accumulation of fat, followed by inflammation, is the major cause of NAFLD progression. During inflammation, macrophages are the most abundant immune cells recruited to the site of injury. [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. An accumulation of fat, followed by inflammation, is the major cause of NAFLD progression. During inflammation, macrophages are the most abundant immune cells recruited to the site of injury. Macrophages are classified into “proinflammatory” M1 macrophages, and “anti-inflammatory” M2 macrophages. In NAFLD, M1 macrophages are the most prominent macrophages that lead to an excessive inflammatory response. Previously, we found that baicalin could polarize macrophages into anti-inflammatory M2c subtype macrophages with an increased level of MERTK expression. Several studies have also shown a strong correlation between MERTK expression and cholesterol efflux, efferocytosis, as well as phagocytosis capability. Therefore, in this study, we aim to elucidate the potential and efficacy of mononuclear-cell (MNC)-derived MERTK+/hi M2c macrophages induced by baicalin as a cell-based therapy for NAFLD treatment. In our results, we have demonstrated that a MERTK+/hi M2c macrophage injection to NAFLD mice contributes to an increased level of serum HDL secretion in the liver, a decline in the circulating CD4+CD25 and CD8+CD25 T cells and lowers the total NAFLD pathological score by lessening the inflammation, necrosis, and fibrosis. In the liver, profibrotic COL1A1 and FN, proinflammation TNFα, as well as the regulator of lipid metabolism PPARɣ expression, were also downregulated after injection. In parallel, the transcriptomic profiles of the injected MERTK+/hi M2c macrophages showed that the various genes directly or indirectly involved in NAFLD progression (e.g., SERPINE1, FADS2) were also suppressed. Downregulation of cytokines and inflammation-associated genes, such as CCR5, may promote a pro-resolving milieu in the NAFLD liver. Altogether, cell-based therapy using MERTK+/hi M2c macrophages is promising, as it ameliorates NAFLD in mice. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Hsp70 Interacts with the TREM-1 Receptor Expressed on Monocytes and Thereby Stimulates Generation of Cytotoxic Lymphocytes Active against MHC-Negative Tumor Cells
by Tatiana N. Sharapova, Elena A. Romanova, Olga K. Ivanova, Denis V. Yashin and Lidia P. Sashchenko
Int. J. Mol. Sci. 2021, 22(13), 6889; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22136889 - 26 Jun 2021
Cited by 14 | Viewed by 2332
Abstract
The search for and analysis of new ligands for innate immunity receptors are of special significance for understanding the regulatory mechanisms of immune response. Here we show that the major heat shock protein 70 (Hsp70) can bind to and activate TREM-1, the innate [...] Read more.
The search for and analysis of new ligands for innate immunity receptors are of special significance for understanding the regulatory mechanisms of immune response. Here we show that the major heat shock protein 70 (Hsp70) can bind to and activate TREM-1, the innate immunity receptor expressed on monocytes. The Hsp70–TREM-1 interaction activates expression of TNFα and IFNγ mRNAs in monocytes and stimulates IL-2 secretion by PBMCs. Moreover, incubation of PBMCs with Hsp70 leads to an appearance of cytotoxic lymphocyte subpopulations active against the MHC-negative tumor cells. In addition, both the CD4+ T-lymphocytes and CD14+ monocytes are necessary for the Hsp70 signal transduction and a consequent activation of the cytotoxic lymphocytes. We believe that data presented in this study will broaden the views on the involvement of Hsp70 in the antitumor immunity. Full article
Show Figures

Figure 1

13 pages, 16702 KiB  
Article
Deficiency of Lipin2 Results in Enhanced NF-κB Signaling and Osteoclast Formation in RAW-D Murine Macrophages
by Asami Watahiki, Seira Hoshikawa, Mitsuki Chiba, Hiroshi Egusa, Satoshi Fukumoto and Hiroyuki Inuzuka
Int. J. Mol. Sci. 2021, 22(6), 2893; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22062893 - 12 Mar 2021
Cited by 3 | Viewed by 2263
Abstract
Lipin2 is a phosphatidate phosphatase that plays critical roles in fat homeostasis. Alterations in Lpin2, which encodes lipin2, cause the autoinflammatory bone disorder Majeed syndrome. Lipin2 limits lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. However, little is known about the precise molecular mechanisms [...] Read more.
Lipin2 is a phosphatidate phosphatase that plays critical roles in fat homeostasis. Alterations in Lpin2, which encodes lipin2, cause the autoinflammatory bone disorder Majeed syndrome. Lipin2 limits lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. However, little is known about the precise molecular mechanisms underlying its anti-inflammatory function. In this study, we attempted to elucidate the molecular link between the loss of lipin2 function and autoinflammatory bone disorder. Using a Lpin2 knockout murine macrophage cell line, we showed that lipin2 deficiency enhances innate immune responses to LPS stimulation through excessive activation of the NF-κB signaling pathway, partly because of TAK1 signaling upregulation. Lipin2 depletion also enhanced RANKL-mediated osteoclastogenesis and osteoclastic resorption activity accompanied by NFATc1 dephosphorylation and increased nuclear accumulation. These results suggest that lipin2 suppresses the development of autoinflammatory bone disorder by fine-tuning proinflammatory responses and osteoclastogenesis in macrophages. Therefore, this study provides insights into the molecular pathogenesis of monogenic autoinflammatory bone disorders and presents a potential therapeutic intervention. Full article
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1575 KiB  
Review
The Unique Phenotype of Lipid-Laden Macrophages
by Marco van Eijk and Johannes M. F. G. Aerts
Int. J. Mol. Sci. 2021, 22(8), 4039; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22084039 - 14 Apr 2021
Cited by 26 | Viewed by 5879
Abstract
Macrophages are key multi-talented cells of the innate immune system and are equipped with receptors involved in damage and pathogen recognition with connected immune response guiding signaling systems. In addition, macrophages have various systems that are involved in the uptake of extracellular and [...] Read more.
Macrophages are key multi-talented cells of the innate immune system and are equipped with receptors involved in damage and pathogen recognition with connected immune response guiding signaling systems. In addition, macrophages have various systems that are involved in the uptake of extracellular and intracellular cargo. The lysosomes in macrophages play a central role in the digestion of all sorts of macromolecules and the entry of nutrients to the cytosol, and, thus, the regulation of endocytic processes and autophagy. Simplistically viewed, two macrophage phenotype extremes exist. On one end of the spectrum, the classically activated pro-inflammatory M1 cells are present, and, on the other end, alternatively activated anti-inflammatory M2 cells. A unique macrophage population arises when lipid accumulation occurs, either caused by flaws in the catabolic machinery, which is observed in lysosomal storage disorders, or as a result of an acquired condition, which is found in multiple sclerosis, obesity, and cardiovascular disease. The accompanying overload causes a unique metabolic activation phenotype, which is discussed here, and, consequently, a unifying phenotype is proposed. Full article
Show Figures

Figure 1

22 pages, 1301 KiB  
Review
Beyond “Big Eaters”: The Versatile Role of Alveolar Macrophages in Health and Disease
by Miriam Hetzel, Mania Ackermann and Nico Lachmann
Int. J. Mol. Sci. 2021, 22(7), 3308; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073308 - 24 Mar 2021
Cited by 19 | Viewed by 7366
Abstract
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill [...] Read more.
Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders. Full article
Show Figures

Figure 1

Back to TopTop