Journal Browser

Journal Browser

Special Issue "New Mechanisms and Therapeutics in Neurological Diseases"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 31 July 2021.

Special Issue Editor

Prof. Dr. Barbara Mroczko
E-Mail Website
Guest Editor
Department of Neurodegeneration Diagnostics, Department of Biochemical Diagnostics, Medical University of Białystok, Białystok, Poland
Interests: neurodegeneration; neuroinflammation; neurodegenerative diseases; neurodevelopmental disorders; tumor markers; specific proteins
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The term “neurodegenerative diseases” (NDs) collectively defines a group of pathological conditions of the nervous system characterized by the degeneration of neurons. This group of disorders includes different diseases leading to dementia or motor neuron disfunction, resulting in disability. Among them, Alzheimer’s (AD) and Parkinson’s diseases (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) have the greatest importance because of their devastating outcomes and enormous socio-economic impact. Although they have a variegated etiology, increasing role in their pathology is ascribed to neuroinflammatory processes. Neuroinflammation may affect not only neurons but also non-neuronal astrocytes and microglia cells, as well as immune cells entering the nervous system. These cells cooperate in both the damage and the repair of diseased brain tissue. The interactions between cells and the extracellular environment have emerged as new targets for the treatment of neurodegenerative disorders. However, the heterogeneity of the molecular and cellular mechanisms underlying these diseases hinders efforts at slowing down the progression of these diseases and their effective treatment. Moreover, the availability of biomarkers with appropriate sensitivity and specificity that could predict treatment success is very limited.

Inflammatory and infectious diseases of the central nervous system (CNS) may also be involved in the pathogenesis of neurodegeneration. Microbial infection has emerged as new risk factors for NDs, and new evidence supports the universal hypothesis that some bacteria, viruses, and even fungi could be involved not only in brain inflammation but also in neurodegeneration and dementia. The diagnosis of CNS infections and the identification of potential pathogenic pathways of these diseases are also topics of interest for this Special Issue, as well as the therapy and prevention of these diseases, including vaccination.

Studies on malignant primary brain tumors are also welcome. These tumors are a highly heterogeneous group of malignancies, with varied frequency within different age groups. Among them, glioblastoma is the most common and most malignant primary CNS tumor, affecting patients of all ages, from children to adults. Glioblastoma multiforme is an especially fatal tumor type, and only moderate progress has been achieved in its clinical management in the last years.

The goal of this Special Issue is to collect original research manuscripts, short communications, and reviews on the latest advances regarding new mechanisms of and therapeutics for neurological diseases, including neurodegeneration, neuroinflammation, and tumors of the central nervous system.

Topics of interest include (but are not limited to):

  • Biological mechanisms related to neurodegeneration, inflammation, and tumorigenesis within the central nervous system;
  • Neurodegenerative diseases as proteinopathies;
  • Relationship between neurodegeneration and inflammation;
  • New potential biomarkers of Alzheimer’s disease and other neurodegenerative diseases including mild cognitive impairment, multiple sclerosis, Parkinson’s disease, Lewy body dementia, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington’s disease, and prion diseases;
  • Prognostic value of biomarkers of neurodegeneration in the conversion from mild cognitive impairment to fully symptomatic dementia;
  • Cytokines, chemokines, matrix metalloproteinases as prognostic factors in carcinogenesis of CNS malignant tumors;
  • Mediators of inflammation, chemokines, and their receptors as novel tumor markers in malignant tumors of the central nervous system in relation to the histological type of tumors.
  • Relationships between coronavirus diseas 2019 (Covid-19) and neurological diseases

Prof. Dr. Barbara Mroczko
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • neurodegeneration
  • neuroinflammation
  • neurodegenerative diseases
  • neurodevelopmental disorders
  • tumor markers
  • specific proteins

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:


Open AccessReview
The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches
Int. J. Mol. Sci. 2021, 22(9), 4630; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22094630 - 28 Apr 2021
Viewed by 272
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly [...] Read more.
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy. Full article
(This article belongs to the Special Issue New Mechanisms and Therapeutics in Neurological Diseases)
Show Figures

Figure 1

Back to TopTop