ijms-logo

Journal Browser

Journal Browser

Special Issue "Neuropeptides, Receptors, and Behavior"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 31 July 2021.

Special Issue Editor

Prof. Dr. Erik Johnson
E-Mail Website
Guest Editor
Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
Interests: G protein coupled receptor; neuropeptides; neural circuits; behavior; physiology; circadian

Special Issue Information

Dear Colleague,

A current challenge in the field of neuroscience is to resolve the mechanisms of how signaling events operating within single neurons impact cellular properties, and how such alterations of cellular physiology resonate through neuronal networks, which ultimately regulate behavioral and physiological processes. Such endeavors require comprehensive descriptions of the signals and the receptor molecules that underlie neuronal signaling. Furthermore, anatomical distributions of these transmitters and receptors can be detailed, thereby identifying cellular substrates underlying specific behaviors and physiologies. Consequent to the definition of peptidergic circuits, manipulation of these elements and their biochemical properties and quantifying the impact on behavior become feasible.

This Special Edition focuses on efforts that define the roles of various neuropeptides in different organisms that contribute to a wide variety of behaviors and physiology. Original research articles or reviews of specific neuropeptides are welcome.

Prof. Dr. Erik Johnson
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Neuropeptide
  • G protein coupled receptor
  • Second messengers
  • Cell signaling
  • Adenylate cyclase
  • Heterotrimeric G proteins
  • Neural circuits
  • Endocrine
  • Behavior

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Seasonal Regulation of Metabolism: The Effect of Wintertime Fasting and Autumnal Fattening on Key Central Regulators of Metabolism and the Metabolic Profile of the Raccoon Dog (Nyctereutes Procyonoides)
by , , , , , , , and
Int. J. Mol. Sci. 2021, 22(9), 4965; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22094965 - 07 May 2021
Abstract
Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. [...] Read more.
Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges. Full article
(This article belongs to the Special Issue Neuropeptides, Receptors, and Behavior)
Show Figures

Figure 1

Open AccessArticle
Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices
Int. J. Mol. Sci. 2021, 22(7), 3794; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073794 - 06 Apr 2021
Viewed by 338
Abstract
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways [...] Read more.
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels. Full article
(This article belongs to the Special Issue Neuropeptides, Receptors, and Behavior)
Show Figures

Figure 1

Open AccessArticle
Brain Region-Dependent Effects of Neuropeptide Y on Conditioned Social Fear and Anxiety-Like Behavior in Male Mice
Int. J. Mol. Sci. 2021, 22(7), 3695; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073695 - 02 Apr 2021
Viewed by 370
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that the intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC). In [...] Read more.
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that the intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC). In the present study, we aimed to identify the brain regions that mediate these effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduces the expression of SFC-induced social fear in a brain-region-dependent manner. In more detail, NPY reduced the expression of social fear when administered into the dorsolateral septum (DLS) and central amygdala (CeA), but not when administered into the dorsal hippocampus (DH), medial amygdala (MeA) and basolateral amygdala (BLA). We also investigated whether the reduced expression of social fear might partly be due to a reduced anxiety-like behavior, and showed that NPY exerted anxiolytic-like effects when administered into the DH, DLS, CeA and BLA, but not when administered into the MeA. This study identifies the DLS and the CeA as brain regions mediating the effects of NPY on the expression of social fear and suggests that partly distinct neural circuitries mediate the effects of NPY on the expression of social fear and on anxiety-like behavior. Full article
(This article belongs to the Special Issue Neuropeptides, Receptors, and Behavior)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Leucokinin and Associated Neuropeptides Regulate Multiple Aspects of Physiology and Behavior in Drosophila
Int. J. Mol. Sci. 2021, 22(4), 1940; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22041940 - 16 Feb 2021
Viewed by 436
Abstract
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The [...] Read more.
Leucokinins (LKs) constitute a family of neuropeptides identified in numerous insects and many other invertebrates. LKs act on G-protein-coupled receptors that display only distant relations to other known receptors. In adult Drosophila, 26 neurons/neurosecretory cells of three main types express LK. The four brain interneurons are of two types, and these are implicated in several important functions in the fly’s behavior and physiology, including feeding, sleep–metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. The 22 neurosecretory cells (abdominal LK neurons, ABLKs) of the abdominal neuromeres co-express LK and a diuretic hormone (DH44), and together, these regulate water and ion homeostasis and associated stress as well as food intake. In Drosophila larvae, LK neurons modulate locomotion, escape responses and aspects of ecdysis behavior. A set of lateral neurosecretory cells, ALKs (anterior LK neurons), in the brain express LK in larvae, but inconsistently so in adults. These ALKs co-express three other neuropeptides and regulate water and ion homeostasis, feeding, and drinking, but the specific role of LK is not yet known. This review summarizes Drosophila data on embryonic lineages of LK neurons, functional roles of individual LK neuron types, interactions with other peptidergic systems, and orchestrating functions of LK. Full article
(This article belongs to the Special Issue Neuropeptides, Receptors, and Behavior)
Show Figures

Figure 1

Open AccessReview
Leucokinins: Multifunctional Neuropeptides and Hormones in Insects and Other Invertebrates
Int. J. Mol. Sci. 2021, 22(4), 1531; https://doi.org/10.3390/ijms22041531 - 03 Feb 2021
Cited by 1 | Viewed by 641
Abstract
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding [...] Read more.
Leucokinins (LKs) constitute a neuropeptide family first discovered in a cockroach and later identified in numerous insects and several other invertebrates. The LK receptors are only distantly related to other known receptors. Among insects, there are many examples of species where genes encoding LKs and their receptors are absent. Furthermore, genomics has revealed that LK signaling is lacking in several of the invertebrate phyla and in vertebrates. In insects, the number and complexity of LK-expressing neurons vary, from the simple pattern in the Drosophila larva where the entire CNS has 20 neurons of 3 main types, to cockroaches with about 250 neurons of many different types. Common to all studied insects is the presence or 1–3 pairs of LK-expressing neurosecretory cells in each abdominal neuromere of the ventral nerve cord, that, at least in some insects, regulate secretion in Malpighian tubules. This review summarizes the diverse functional roles of LK signaling in insects, as well as other arthropods and mollusks. These functions include regulation of ion and water homeostasis, feeding, sleep–metabolism interactions, state-dependent memory formation, as well as modulation of gustatory sensitivity and nociception. Other functions are implied by the neuronal distribution of LK, but remain to be investigated. Full article
(This article belongs to the Special Issue Neuropeptides, Receptors, and Behavior)
Show Figures

Figure 1

Back to TopTop