ijms-logo

Journal Browser

Journal Browser

Special Issue "Optogenetics"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: 31 March 2022.

Special Issue Editor

Prof. Dr. Thomas Knöpfel
E-Mail Website
Guest Editor
1. Laboratory for Neuronal Circuit Dynamics, Imperial College London, London W12 0NN, UK
2. Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
Interests: optogenetics; neuronal circuits; optogenetic tools; optogenetic approaches; serotonin
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Optogenetics can be defined as concepts and methods that are based on the use of light and genetics to manipulate and monitor the activities of defined cell populations. Optogenetic approches have already had a major impact in life sciences, in particular neurosciences, but they are still evolving.

IJMS is a journal of molecular science; thus, pure clinical studies will not be suitable for this journal. Clinical submissions with biomolecular experiments, however, are welcomed.

We invite you to contribute original articles that describe conceptual and methodological advances associated with optogenetic approaches. Review articles describing cutting-edge and emerging optogenetic technologies are also welcome.

Prof. Thomas Knöpfel
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Optogenetic tools
  • Targeting cell classes
  • Targeting subcellular structures
  • Genetically encoded indicators
  • Genetically encoded actuators
  • Optogenetic interference in animal models of diseases

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Modular and Molecular Optimization of a LOV (Light–Oxygen–Voltage)-Based Optogenetic Switch in Yeast
Int. J. Mol. Sci. 2021, 22(16), 8538; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22168538 - 09 Aug 2021
Viewed by 698
Abstract
Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light–oxygen–voltage (FUN-LOV) [...] Read more.
Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light–oxygen–voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call “HAP-LOV”, displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems. Full article
(This article belongs to the Special Issue Optogenetics)
Show Figures

Figure 1

Back to TopTop