ijms-logo

Journal Browser

Journal Browser

Special Issue "Pathophysiology, Molecular Mechanism and Therapeutic Strategies of Lysosomal Storage Disorders (LSD)"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (1 May 2021).

Special Issue Editors

Prof. Dr. Ari Zimran
E-Mail
Guest Editor
1. Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
2. Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
Interests: gaucher unit; lysosomal disorders
Prof. Dr. Shoshana Revel-Vilk
E-Mail
Guest Editor
1. Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
2. Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
Interests: Gaucher disease; pediatric hematology; pediatric thrombosis and hemostasis; platelet disorders

Special Issue Information

Dear Friends and Colleagues,

It gives us a pleasure to invite you to submit a paper to the forthcoming Special Issue of the International Journal of Molecular Sciences (IJMS) on Lysosomal Storage Disorders (LSD).

The IJMS is an open access, peer-reviewed journal with an IF of 4.18, and in the Special Issue on LSD, we welcome any high-quality contribution, which could be research articles from basic science to clinical studies, and we also invite reviews and case studies, with a common purpose to expand the current knowledge in this important area of LSDs. While, as 70 inherited metabolic disorders, they are considered rare, as a group, their incidence is about 1:5000, and they are all the more important given the many different types of underlying lysosomal dysfunction. In addition to the accumulation of the unmetabolized substrate (hence the concept of “storage” disorders), there are a variety of cellular and subcellular abnormalities, including endoplasmic reticulum stress, altered lipid trafficking, autophagy, inflammation, and autoimmune responses. Each of these pathological processes, alone or in combination, may lead to the development of novel therapeutic modalities, some of which have already changed natural history and the lives of patients with various diseases, such as Gaucher, Fabry, MPS and others, and in addition, these new treatments, including gene therapy, may also be of relevance to more common disorders, as we have witnessed from the relationship between Gaucher (both patients and carriers) and Parkinson’s diseases.

We would appreciate the submission of your contributions within the next 3 months, allowing us to get the full issue in print at the first quarter of 2020.

Prof. Ari Zimran
Prof. Shoshana Revel-Vilk
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • LSDs
  • lysosomal storage disorders
  • lysosomal dysfunction
  • endoplasmic reticulum stress
  • altered lipid trafficking
  • autophagy
  • inflammation
  • enzyme therapy
  • substrate reduction
  • pharmacological chaperones
  • gene therapy

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Communication
Accurate Molecular Diagnosis of Gaucher Disease Using Clinical Exome Sequencing as a First-Tier Test
Int. J. Mol. Sci. 2021, 22(11), 5538; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22115538 - 24 May 2021
Viewed by 299
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal disorder due to beta-glucosidase gene (GBA) mutations. The molecular diagnosis of GD is complicated by the presence of recombinant alleles originating from a highly homologous pseudogene. Clinical exome sequencing (CES) is a rapid [...] Read more.
Gaucher disease (GD) is an autosomal recessive lysosomal disorder due to beta-glucosidase gene (GBA) mutations. The molecular diagnosis of GD is complicated by the presence of recombinant alleles originating from a highly homologous pseudogene. Clinical exome sequencing (CES) is a rapid genetic approach for identifying disease-causing mutations. However, copy number variation and recombination events are poorly detected, and further investigations are required to avoid mis-genotyping. The aim of this work was to set-up an integrated strategy for GD patients genotyping using CES as a first-line test. Eight patients diagnosed with GD were analyzed by CES. Five patients were fully genotyped, while three were revealed to be homozygous for mutations that were not confirmed in the parents. Therefore, MLPA (multiplex ligation-dependent probe amplification) and specific long-range PCR were performed, and two recombinant alleles, one of them novel, and one large deletion were identified. Furthermore, an MLPA assay performed in one family resulted in the identification of an additional novel mutation (p.M124V) in a relative, in trans with the known p.N409S mutation. In conclusion, even though CES has become extensively used in clinical practice, our study emphasizes the importance of a comprehensive molecular strategy to provide proper GBA genotyping and genetic counseling. Full article
Show Figures

Figure 1

Article
GCase and LIMP2 Abnormalities in the Liver of Niemann Pick Type C Mice
Int. J. Mol. Sci. 2021, 22(5), 2532; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22052532 - 03 Mar 2021
Viewed by 527
Abstract
The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show [...] Read more.
The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1−/− mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1−/− liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1−/− liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1−/− liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1−/− hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes. Full article
Show Figures

Figure 1

Article
The Interaction of Innate and Adaptive Immunity and Stabilization of Mast Cell Activation in Management of Infusion Related Reactions in Patients with Fabry Disease
Int. J. Mol. Sci. 2020, 21(19), 7213; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21197213 - 29 Sep 2020
Viewed by 674
Abstract
Fabry disease (FD) is an X-linked lysosomal disorder caused by mutations in GLA gene resulting in lack of or faulty α-galactosidase A (α-GalA) enzyme. Enzyme replacement therapy (ERT) with recombinant human α-GalA enzyme (agalsidase) is the standard treatment option for FD. Infusion-related reactions [...] Read more.
Fabry disease (FD) is an X-linked lysosomal disorder caused by mutations in GLA gene resulting in lack of or faulty α-galactosidase A (α-GalA) enzyme. Enzyme replacement therapy (ERT) with recombinant human α-GalA enzyme (agalsidase) is the standard treatment option for FD. Infusion-related reactions (IRRs), with symptoms ranging from rigors, to fever, pain, vomiting, angioedema and diarrhea, are often seen due to immune response against the exogenous enzyme. To elucidate the mechanisms causing the IRRs in FD, eight patients who developed IRRs were investigated. All, except one, tested negative for agalsidase-specific IgE and had normal tryptase levels. Circulating dendritic cells were drastically reduced during IRRs, suggesting possible sequestration to the sites of inflammation. An increase in NK cells and a decrease in T cells were also observed. Cytokines IL-4, IL-8 and TNF-α showed a significant increase, indicating nonspecific degranulation of mast cells. All IRRs were managed successfully using a combination of standard premedications and mast cell stabilizers without any interruption of therapy. Taken together, the results indicate crosstalk between immune cells resulting in IgE-independent mast-cell-specific allergic inflammation. Mast cell stabilizers could be used to control IRRs and for safe reintroduction of agalsidase in patients previously treated with ERT. Full article
Show Figures

Figure 1

Communication
Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer Thinning in Patients with Type-1 Gaucher Disease
Int. J. Mol. Sci. 2020, 21(19), 7027; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21197027 - 24 Sep 2020
Viewed by 762
Abstract
Type-1 Gaucher disease (GD1) is considered to be non- neuronopathic however recent evidence of neurological involvement continues to accumulate. There is limited evidence of retinal abnormalities in GD1. The purpose of this study was to evaluate the retinal findings of patients with GD1. [...] Read more.
Type-1 Gaucher disease (GD1) is considered to be non- neuronopathic however recent evidence of neurological involvement continues to accumulate. There is limited evidence of retinal abnormalities in GD1. The purpose of this study was to evaluate the retinal findings of patients with GD1. Thirty GD1 individuals and 30 healthy volunteers between the ages 40–75 years were prospectively enrolled. Macular and optic nerve optical coherence tomography (OCT) scans of both eyes of each patient were performed and thickness maps were compared between groups. Patients with a known neurodegenerative disease, glaucoma, high myopia and previous intraocular surgeries were excluded. It was shown that patients with GD1 presented with higher incidence of abnormal pRNFL OCT scan and showed significantly thinner areas of pRNFL and macular ganglion cell complex (GCC) when compared to a healthy control population. Changes in retinal thickness were not associated with GD1 genotype, treatment status, disease monitoring biomarker (lyso-Gb1) and severity score index (Zimran SSI). Further investigations are needed to determine whether these findings possess functional visual implications and if retinal thinning may serve as biomarker for the development of future neurodegenerative disease in this population. Full article
Show Figures

Figure 1

Article
Assessing Lysosomal Disorders in the NGS Era: Identification of Novel Rare Variants
Int. J. Mol. Sci. 2020, 21(17), 6355; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21176355 - 01 Sep 2020
Cited by 1 | Viewed by 787
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of genetic disorders with variable degrees of severity and a broad phenotypic spectrum, which may overlap with a number of other conditions. While individually rare, as a group LSDs affect a significant number of patients, [...] Read more.
Lysosomal storage diseases (LSDs) are a heterogeneous group of genetic disorders with variable degrees of severity and a broad phenotypic spectrum, which may overlap with a number of other conditions. While individually rare, as a group LSDs affect a significant number of patients, placing an important burden on affected individuals and their families but also on national health care systems worldwide. Here, we present our results on the use of an in-house customized next-generation sequencing (NGS) panel of genes related to lysosome function as a first-line molecular test for the diagnosis of LSDs. Ultimately, our goal is to provide a fast and effective tool to screen for virtually all LSDs in a single run, thus contributing to decrease the diagnostic odyssey, accelerating the time to diagnosis. Our study enrolled a group of 23 patients with variable degrees of clinical and/or biochemical suspicion of LSD. Briefly, NGS analysis data workflow, followed by segregation analysis allowed the characterization of approximately 41% of the analyzed patients and the identification of 10 different pathogenic variants, underlying nine LSDs. Importantly, four of those variants were novel, and, when applicable, their effect over protein structure was evaluated through in silico analysis. One of the novel pathogenic variants was identified in the GM2A gene, which is associated with an ultra-rare (or misdiagnosed) LSD, the AB variant of GM2 Gangliosidosis. Overall, this case series highlights not only the major advantages of NGS-based diagnostic approaches but also, to some extent, its limitations ultimately promoting a reflection on the role of targeted panels as a primary tool for the prompt characterization of LSD patients. Full article
Show Figures

Figure 1

Article
Treatment Efficiency in Gaucher Patients Can Reliably Be Monitored by Quantification of Lyso-Gb1 Concentrations in Dried Blood Spots
Int. J. Mol. Sci. 2020, 21(13), 4577; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21134577 - 27 Jun 2020
Cited by 6 | Viewed by 887
Abstract
Gaucher disease (GD) is a lysosomal storage disorder that responds well to enzyme replacement therapy (ERT). Certain laboratory parameters, including blood concentration of glucosylsphingosine (Lyso-Gb1), the lyso-derivate of the common glycolipid glucocerebroside, correlate with clinical improvement and are therefore considered candidate-monitoring biomarkers. Whether [...] Read more.
Gaucher disease (GD) is a lysosomal storage disorder that responds well to enzyme replacement therapy (ERT). Certain laboratory parameters, including blood concentration of glucosylsphingosine (Lyso-Gb1), the lyso-derivate of the common glycolipid glucocerebroside, correlate with clinical improvement and are therefore considered candidate-monitoring biomarkers. Whether they can indicate a reduction or loss of treatment efficiency, however, has not been systematically addressed for obvious reasons. We established and validated measurement of Lyso-Gb1 from dried blood spots (DBSs) by mass spectrometry. We then characterized the assay’s longitudinal performance in 19 stably ERT-treated GD patients by dense monitoring over a 3-year period. The observed level of fluctuation was accounted for in the subsequent development of a unifying data normalization concept. The resulting approach was eventually applied to data from Lyso-Gb1 measurements after an involuntary treatment break for all 19 patients. It enabled separation of the “under treatment” versus “not under treatment” conditions with high sensitivity and specificity. We conclude that Lyso-Gb1 determination from DBSs indicates treatment issues already at an early stage before clinical consequences arise. In addition to its previously shown diagnostic utility, Lyso-Gb1 thereby qualifies as a monitoring biomarker in GD patients. Full article
Show Figures

Graphical abstract

Article
CRISPR/Cas9 Editing for Gaucher Disease Modelling
Int. J. Mol. Sci. 2020, 21(9), 3268; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21093268 - 05 May 2020
Cited by 5 | Viewed by 1316
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the acid β-glucosidase gene (GBA1). Besides causing GD, GBA1 mutations constitute the main genetic risk factor for developing Parkinson’s disease. The molecular basis of neurological manifestations in [...] Read more.
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the acid β-glucosidase gene (GBA1). Besides causing GD, GBA1 mutations constitute the main genetic risk factor for developing Parkinson’s disease. The molecular basis of neurological manifestations in GD remain elusive. However, neuroinflammation has been proposed as a key player in this process. We exploited CRISPR/Cas9 technology to edit GBA1 in the human monocytic THP-1 cell line to develop an isogenic GD model of monocytes and in glioblastoma U87 cell lines to generate an isogenic GD model of glial cells. Both edited (GBA1 mutant) cell lines presented low levels of mutant acid β-glucosidase expression, less than 1% of residual activity and massive accumulation of substrate. Moreover, U87 GBA1 mutant cells showed that the mutant enzyme was retained in the ER and subjected to proteasomal degradation, triggering unfolded protein response (UPR). U87 GBA1 mutant cells displayed an increased production of interleukin-1β, both with and without inflammosome activation, α-syn accumulation and a higher rate of cell death in comparison with wild-type cells. In conclusion, we developed reliable, isogenic, and easy-to-handle cellular models of GD obtained from commercially accessible cells to be employed in GD pathophysiology studies and high-throughput drug screenings. Full article
Show Figures

Figure 1

Article
Moss-Derived Human Recombinant GAA Provides an Optimized Enzyme Uptake in Differentiated Human Muscle Cells of Pompe Disease
Int. J. Mol. Sci. 2020, 21(7), 2642; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21072642 - 10 Apr 2020
Cited by 4 | Viewed by 1409
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The result of the GAA deficiency is a ubiquitous lysosomal and non-lysosomal accumulation of glycogen. The most affected tissues are heart, skeletal muscle, liver, and [...] Read more.
Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The result of the GAA deficiency is a ubiquitous lysosomal and non-lysosomal accumulation of glycogen. The most affected tissues are heart, skeletal muscle, liver, and the nervous system. Replacement therapy with the currently approved enzyme relies on M6P-mediated endocytosis. However, therapeutic outcomes still leave room for improvement, especially with regard to skeletal muscles. We tested the uptake, activity, and effect on glucose metabolism of a non-phosphorylated recombinant human GAA produced in moss (moss-GAA). Three variants of moss-GAA differing in glycosylation pattern have been analyzed: two with terminal mannose residues in a paucimannosidic (Man3) or high-mannose (Man 5) configuration and one with terminal N-acetylglucosamine residues (GnGn). Compared to alglucosidase alfa the moss-GAA GnGn variant showed increased uptake in differentiated myotubes. Moreover, incubation of immortalized muscle cells of Gaa−/− mice with moss-GAA GnGn led to similarly efficient clearance of accumulated glycogen as with alglucosidase alfa. These initial data suggest that M6P-residues might not always be necessary for the cellular uptake in enzyme replacement therapy (ERT) and indicate the potential of moss-GAA GnGn as novel alternative drug for targeting skeletal muscle in Pompe patients. Full article
Show Figures

Graphical abstract

Article
Immunoglobulin Abnormalities in Gaucher Disease: an Analysis of 278 Patients Included in the French Gaucher Disease Registry
Int. J. Mol. Sci. 2020, 21(4), 1247; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21041247 - 13 Feb 2020
Cited by 3 | Viewed by 934
Abstract
Gaucher disease (GD) is a rare lysosomal autosomal-recessive disorder due to deficiency of glucocerebrosidase; polyclonal gammopathy (PG) and/or monoclonal gammopathy (MG) can occur in this disease. We aimed to describe these immunoglobulin abnormalities in a large cohort of GD patients and to study [...] Read more.
Gaucher disease (GD) is a rare lysosomal autosomal-recessive disorder due to deficiency of glucocerebrosidase; polyclonal gammopathy (PG) and/or monoclonal gammopathy (MG) can occur in this disease. We aimed to describe these immunoglobulin abnormalities in a large cohort of GD patients and to study the risk factors, clinical significance, and evolution. Data for patients enrolled in the French GD Registry were studied retrospectively. The risk factors of PG and/or MG developing and their association with clinical bone events and severe thrombocytopenia, two markers of GD severity, were assessed with multivariable Cox models and the effect of GD treatment on gammaglobulin levels with linear/logarithmic mixed models. Regression of MG and the occurrence of hematological malignancies were described. The 278 patients included (132 males, 47.5%) were followed up during a mean (SD) of 19 (14) years after GD diagnosis. PG occurred in 112/235 (47.7%) patients at GD diagnosis or during follow-up and MG in 59/187 (31.6%). Multivariable analysis retained age at GD diagnosis as the only independent risk factor for MG (> 30 vs. ≤30 years, HR 4.71, 95%CI [2.40–9.27]; p < 0.001). Risk of bone events or severe thrombocytopenia was not significantly associated with PG or MG. During follow-up, non-Hodgkin lymphoma developed in five patients and multiple myeloma in one. MG was observed in almost one third of patients with GD. Immunoglobulin abnormalities were not associated with the disease severity. However, prolonged surveillance of patients with GD is needed because hematologic malignancies may occur. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach
Int. J. Mol. Sci. 2020, 21(16), 5732; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21165732 - 10 Aug 2020
Viewed by 887
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. [...] Read more.
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs. Full article
Show Figures

Figure 1

Review
Lysosomal Storage Disorders Shed Light on Lysosomal Dysfunction in Parkinson’s Disease
Int. J. Mol. Sci. 2020, 21(14), 4966; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21144966 - 14 Jul 2020
Cited by 6 | Viewed by 1349
Abstract
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists [...] Read more.
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists since a number of neurological diseases involve a lysosomal component. Among these is Parkinson’s disease (PD). While heterozygous and homozygous mutations in GBA1 are the highest genetic risk factor for PD, studies performed over the past decade have suggested that lysosomal loss of function is likely involved in PD pathology, since a significant percent of PD patients have a mutation in one or more genes that cause a lysosomal storage disease (LSD). Although the mechanistic connection between the lysosome and PD remains somewhat enigmatic, significant evidence is accumulating that lysosomal dysfunction plays a central role in PD pathophysiology. Thus, lysosomal dysfunction, resulting from mutations in lysosomal genes, may enhance the accumulation of α-synuclein in the brain, which may result in the earlier development of PD. Full article
Show Figures

Figure 1

Back to TopTop