ijms-logo

Journal Browser

Journal Browser

Special Issue "Recent Advances in Biological Functions of Platelet"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 31 July 2021.

Special Issue Editor

Dr. Isabella Russo
E-Mail Website
Guest Editor
Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
Interests: platelets function; nitric oxide; haemostasis; thrombosis; anti-platelet drugs; platelet dysfunction in metabolic diseases
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Platelets, best known as primary mediators of hemostasis and thrombosis, are a critical component of blood vessel walls. As secretory cells, platelets can release multiple substances from storage granules, biomediators, and membrane vesicles, influencing both physiological and pathophysiological processes. Conversely, platelets can uptake plasma and cellular components, influencing platelet responsiveness. The analysis of platelet function through the development of powerful imaging techniques, as well as the identification of cells and new molecules that regulate their activation and aggregation within vessels, are instrumental in order to better understand the mechanisms through which platelets protect or damage organisms. These analyses provide useful information for studying the pathogenesis of many disease states.

This Special Issue of the International Journal of Molecular Sciences, titled “Recent Advances in Biological Functions of Platelets”, will focus on recent advances in platelet function research, such as platelet action or the release of substances or micro-particles containing platelet miRNA, enzymes, proteins, and small molecules with roles in healthy conditions and as drivers of immunity, inflammation, angiogenesis, and tumor growth. Contributions on these and related topics are welcome, including original research and reviews. We particularly welcome submissions from postdocs, PhD students, and young researchers.

Dr. Isabella Russo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • platelet microparticles
  • thrombosis
  • inflammation
  • oxidative stress
  • antiplatelet drug
  • signal transduction
  • immunity
  • tumor growth

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Age-Dependent Control of Collagen-Dependent Platelet Responses by Thrombospondin-1—Comparative Analysis of Platelets from Neonates, Children, Adolescents, and Adults
Int. J. Mol. Sci. 2021, 22(9), 4883; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22094883 - 05 May 2021
Viewed by 196
Abstract
Platelet function is developmentally regulated. Healthy neonates do not spontaneously bleed, but their platelets are hypo-reactive to several agonists. The mechanisms underlying immature platelet function in neonates are incompletely understood. This critical issue remains challenging for the establishment of age-specific reference ranges. In [...] Read more.
Platelet function is developmentally regulated. Healthy neonates do not spontaneously bleed, but their platelets are hypo-reactive to several agonists. The mechanisms underlying immature platelet function in neonates are incompletely understood. This critical issue remains challenging for the establishment of age-specific reference ranges. In this study, we evaluated platelet reactivity of five pediatric age categories, ranging from healthy full-term neonates up to adolescents (11–18 years) in comparison to healthy adults (>18 years) by flow cytometry. We confirmed that platelet hypo-reactivity detected by fibrinogen binding, P-selectin, and CD63 surface expression was most pronounced in neonates compared to other pediatric age groups. However, maturation of platelet responsiveness varied with age, agonist, and activation marker. In contrast to TRAP and ADP, collagen-induced platelet activation was nearly absent in neonates. Granule secretion markedly remained impaired at least up to 10 years of age compared to adults. We show for the first time that neonatal platelets are deficient in thrombospondin-1, and exogenous platelet-derived thrombospondin-1 allows platelet responsiveness to collagen. Platelets from all pediatric age groups normally responded to the C-terminal thrombospondin-1 peptide RFYVVMWK. Thus, thrombospondin-1 deficiency of neonatal platelets might contribute to the relatively impaired response to collagen, and platelet-derived thrombospondin-1 may control distinct collagen-induced platelet responses. Full article
(This article belongs to the Special Issue Recent Advances in Biological Functions of Platelet)
Show Figures

Figure 1

Open AccessArticle
Phenotypic and Functional Consequences of PLT Binding to Monocytes and Its Association with Clinical Features in SLE
Int. J. Mol. Sci. 2021, 22(9), 4719; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22094719 - 29 Apr 2021
Viewed by 207
Abstract
Platelets (PLTs) can modulate the immune system through the release of soluble mediators or through interaction with immune cells. Monocytes are the main immune cells that bind with PLTs, and this interaction is increased in several inflammatory and autoimmune conditions, including systemic lupus [...] Read more.
Platelets (PLTs) can modulate the immune system through the release of soluble mediators or through interaction with immune cells. Monocytes are the main immune cells that bind with PLTs, and this interaction is increased in several inflammatory and autoimmune conditions, including systemic lupus erythematosus (SLE). Our aim was to characterize the phenotypic and functional consequences of PLT binding to monocytes in healthy donors (HD) and in SLE and to relate it to the pathogenesis of SLE. We analyzed the phenotypic and functional features of monocytes with non-activated and activated bound PLTs by flow cytometry. We observed that monocytes with bound PLTs and especially those with activated PLTs have an up-regulated HLA-DR, CD86, CD54, CD16 and CD64 expression. Monocytes with bound PLTs also have an increased capacity for phagocytosis, though not for efferocytosis. In addition, monocytes with bound PLTs have increased IL-10, but not TNF-α, secretion. The altered phenotypic and functional features are comparable in SLE and HD monocytes and in bound PLTs. However, the percentages of monocytes with bound PLTs are significantly higher in SLE patients and are associated with undetectable levels of anti-dsDNA antibodies and hematuria, and with normal C3 and albumin/creatinine levels. Our results suggest that PLTs have a modulatory influence on monocytes and that this effect may be highlighted by an increased binding of PLTs to monocytes in autoimmune conditions. Full article
(This article belongs to the Special Issue Recent Advances in Biological Functions of Platelet)
Show Figures

Figure 1

Back to TopTop