ijms-logo

Journal Browser

Journal Browser

Topical Collection "Feature Papers in Molecular Oncology"

A topical collection in International Journal of Molecular Sciences (ISSN 1422-0067). This collection belongs to the section "Molecular Oncology".

Editor

Prof. Dr. Michael Welsh
E-Mail Website
Collection Editor
Department of Medical Cell Biology, Uppsala University Husargatan 3, Box 571, 75123, Uppsala, Sweden
Interests: signal transduction; tumor angiogenesis; tumor immune cell responses; myeloid leukemia; Shb adapter protein

Topical Collection Information

Dear Colleagues,

The special edition “Feature Papers in Molecular Oncology” will comprise important contributions by scholars in the field of cancer biology and Editorial Board members of the IJMS section Molecular Oncology. Their broad expertise will result in a comprehensive array of the latest findings in this field, and we thus encourage submissions of high-quality research articles or reviews. Suitable topics for this special edition include cancer genomics, transcriptomics, proteomics and metabolomics, as well as basic molecular and cell biological mechanisms of apoptosis, the cell cycle, cell–cell interactions, cell migration, and exosomes. The papers on basic molecular mechanisms will be interwoven with studies on the complexity of the cancer niche responsible for promoting cancer expansion and metastasis. Niche components of relevance comprise, among others, the vasculature, immune environment, and fibroblasts, and their related effects on EMT, cell proliferation, cancer cell invasion, and seeding at distant sites, as well as regulating mechanisms suppressing tumor cell expansion. Comprehensive studies of cancer must carry a translational component: for this, bioinformatics is essential. Finally, studies addressing early detection by imaging, biomarkers, and pathology together with novel treatment regimens are also appropriate. We look forward to your submissions to this anticipated collection of exciting, top-quality papers covering the latest findings in the above listed research areas of molecular oncology.

Prof. Dr. Michael Welsh
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (20 papers)

2021

Jump to: 2020, 2019

Article
Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma
Int. J. Mol. Sci. 2021, 22(20), 11160; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222011160 - 16 Oct 2021
Viewed by 189
Abstract
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and [...] Read more.
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC. Full article
Show Figures

Figure 1

Article
Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers
Int. J. Mol. Sci. 2021, 22(20), 10959; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222010959 - 11 Oct 2021
Viewed by 204
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat meat samples and their potential effects on gene expressions related to CRC. Extraction and clean-up of meat samples were performed using QuEChERS method, and PAHs were detected using GC-MS. Nine different PAHs were found in meat samples. Interestingly, roast turkey contained the highest total PAH content, followed by salami meat. Hams of varying levels of smokedness showed a proportional increase of phenanthrene (PHEN), anthracene (ANTH), and fluorene (FLU). Triple-smoked ham samples showed significantly higher levels of these PAHs compared to single-smoked ham. These three PAHs plus benzo[a]pyrene (B[a]P), being detected in three meat samples, were chosen as treatments to investigate in vitro gene expression changes in human colon cells. After PAH treatment, total RNA was extracted and rtPCR was performed, investigating gene expression related to CRC. B[a]P decreased mRNA expression of TP53. In addition, at high concentrations, B[a]P significantly increased KRAS expression. Treatments with 1 µM PHEN, 25 µM, and 10 µM FLU significantly increased KRAS mRNA expression in vitro, implying the potential basis for PAH-induced colorectal carcinogenesis. Opposingly, the ANTH treatment led to increased TP53 and APC expression and decreased KRAS expression, suggesting an anti-carcinogenic effect. To conclude, PAHs are common in ready-to-eat meat samples and are capable of significantly modifying the expression of key genes related to CRC. Full article
Show Figures

Figure 1

Editorial
The Felicitous Success of the Subsection Molecular Oncology of International Journal of Molecular Sciences
Int. J. Mol. Sci. 2021, 22(13), 6939; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22136939 - 28 Jun 2021
Viewed by 640
Abstract
The evolvement of the newly started subsection IJMS molecular oncology is discussed. The breadth and depth of the journal articles is alluded to. A bright future for this subsection is anticipated, developing into a top tier cancer journal. Full article
Article
Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice
Int. J. Mol. Sci. 2021, 22(11), 5459; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22115459 - 21 May 2021
Cited by 1 | Viewed by 597
Abstract
The Arg–Gly–Asp (RGD) peptide shows a high affinity for αvβ3 integrin, which is overexpressed in new tumor blood vessels and many types of tumor cells. The radiolabeled RGD peptide has been studied for cancer imaging and radionuclide therapy. We have [...] Read more.
The Arg–Gly–Asp (RGD) peptide shows a high affinity for αvβ3 integrin, which is overexpressed in new tumor blood vessels and many types of tumor cells. The radiolabeled RGD peptide has been studied for cancer imaging and radionuclide therapy. We have developed a long-term tumor-targeting peptide DOTA-EB-cRGDfK, which combines a DOTA chelator, a truncated Evans blue dye (EB), a modified linker, and cRGDfK peptide. The aim of this study was to evaluate the potential of indium-111(111In) radiolabeled DOTA-EB-cRGDfK in αvβ3 integrin-expressing tumors. The human glioblastoma cell line U-87 MG was used to determine the in vitro binding affinity of the radiolabeled peptide. The in vivo distribution of radiolabeled peptides in U-87 MG xenografts was investigated by biodistribution, nanoSPECT/CT, pharmacokinetic and excretion studies. The in vitro competition assay showed that 111In-DOTA-EB-cRGDfK had a significant binding affinity to U-87 MG cancer cells (IC50 = 71.7 nM). NanoSPECT/CT imaging showed 111In-DOTA-EB-cRGDfK has higher tumor uptake than control peptides (111In-DOTA-cRGDfK and 111In-DOTA-EB), and there is still a clear signal until 72 h after injection. The biodistribution results showed significant tumor accumulation (27.1 ± 2.7% ID/g) and the tumor to non-tumor ratio was 22.85 at 24 h after injection. In addition, the pharmacokinetics results indicated that the 111In-DOTA-EB-cRGDfK peptide has a long-term half-life (T1/2λz = 77.3 h) and that the calculated absorbed dose was safe for humans. We demonstrated that radiolabeled DOTA-EB-cRGDfK may be a promising agent for glioblastoma tumor imaging and has the potential as a theranostic radiopharmaceutical. Full article
Show Figures

Figure 1

Article
S100A4 Is Involved in Stimulatory Effects Elicited by the FGF2/FGFR1 Signaling Pathway in Triple-Negative Breast Cancer (TNBC) Cells
Int. J. Mol. Sci. 2021, 22(9), 4720; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22094720 - 29 Apr 2021
Cited by 1 | Viewed by 718
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clinical outcome. In recent years, numerous advancements have been made to better understand the biological landscape of TNBC, though appropriate targets still remain to be determined. In the present study, [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clinical outcome. In recent years, numerous advancements have been made to better understand the biological landscape of TNBC, though appropriate targets still remain to be determined. In the present study, we have determined that the expression levels of FGF2 and S100A4 are higher in TNBC with respect to non-TNBC patients when analyzing “The Invasive Breast Cancer Cohort of The Cancer Genome Atlas” (TCGA) dataset. In addition, we have found that the gene expression of FGF2 is positively correlated with S100A4 in TNBC samples. Performing quantitative PCR, Western blot, CRISPR/Cas9 genome editing, promoter studies, immunofluorescence analysis, subcellular fractionation studies, and ChIP assays, we have also demonstrated that FGF2 induces in TNBC cells the upregulation and secretion of S100A4 via FGFR1, along with the ERK1/2–AKT–c-Rel transduction signaling. Using conditioned medium from TNBC cells stimulated with FGF2, we have also ascertained that the paracrine activation of the S100A4/RAGE pathway triggers angiogenic effects in vascular endothelial cells (HUVECs) and promotes the migration of cancer-associated fibroblasts (CAFs). Collectively, our data provide novel insights into the action of the FGF2/FGFR1 axis through S100A4 toward stimulatory effects elicited in TNBC cells. Full article
Show Figures

Figure 1

Review
Gene Transactivation and Transrepression in MYC-Driven Cancers
Int. J. Mol. Sci. 2021, 22(7), 3458; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073458 - 27 Mar 2021
Cited by 3 | Viewed by 686
Abstract
MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal [...] Read more.
MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors. Full article
Show Figures

Figure 1

Article
ATF3-Induced Mammary Tumors Exhibit Molecular Features of Human Basal-Like Breast Cancer
Int. J. Mol. Sci. 2021, 22(5), 2353; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22052353 - 26 Feb 2021
Viewed by 733
Abstract
Basal-like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem-cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human [...] Read more.
Basal-like breast cancer (BLBC) is an aggressive and deadly subtype of human breast cancer that is highly metastatic, displays stem-cell like features, and has limited treatment options. Therefore, developing and characterizing preclinical mouse models with tumors that resemble BLBC is important for human therapeutic development. ATF3 is a potent oncogene that is aberrantly expressed in most human breast cancers. In the BK5.ATF3 mouse model, overexpression of ATF3 in the basal epithelial cells of the mammary gland produces tumors that are characterized by activation of the Wnt/β-catenin signaling pathway. Here, we used RNA-Seq and microRNA (miRNA) microarrays to better define the molecular features of BK5.ATF3-derived mammary tumors. These analyses showed that these tumors share many characteristics of human BLBC including reduced expression of Rb1, Esr1, and Pgr and increased expression of Erbb2, Egfr, and the genes encoding keratins 5, 6, and 17. An analysis of miRNA expression revealed reduced levels of Mir145 and Mir143, leading to the upregulation of their target genes including both the pluripotency factors Klf4 and Sox2 as well as the cancer stem-cell-related gene Kras. Finally, we show through knock-down experiments that ATF3 may directly modulate MIR145/143 expression. Taken together, our results indicate that the ATF3 mouse mammary tumor model could provide a powerful model to define the molecular mechanisms leading to BLBC, identify the factors that contribute to its aggressiveness, and, ultimately, discover specific genes and gene networks for therapeutic targeting. Full article
Show Figures

Figure 1

Article
Sirtuin 1 and Sirtuin 3 in Granulosa Cell Tumors
Int. J. Mol. Sci. 2021, 22(4), 2047; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22042047 - 19 Feb 2021
Viewed by 543
Abstract
Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN [...] Read more.
Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1–7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets. Full article
Show Figures

Figure 1

Article
Expression of Thomsen–Friedenreich Antigen in Colorectal Cancer and Association with Microsatellite Instability
Int. J. Mol. Sci. 2021, 22(3), 1340; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031340 - 29 Jan 2021
Viewed by 822
Abstract
Microsatellite instability (MSI) is a molecular phenotype due to a deficient DNA mismatch repair (dMMR). In colorectal cancer (CRC), dMMR/MSI is associated with several clinical and histopathological features, influences prognosis, and is a predictive factor of response to therapy. In daily practice, dMMR/MSI [...] Read more.
Microsatellite instability (MSI) is a molecular phenotype due to a deficient DNA mismatch repair (dMMR). In colorectal cancer (CRC), dMMR/MSI is associated with several clinical and histopathological features, influences prognosis, and is a predictive factor of response to therapy. In daily practice, dMMR/MSI profiles are identified by immunohistochemistry and/or multiplex PCR. The Thomsen–Friedenreich (TF) antigen was previously found to be a potential single marker to identify MSI-high gastric cancers. Therefore, in this study, we aimed to disclose a possible association between TF expression and MSI status in CRC. Furthermore, we evaluated the relationship between TF expression and other clinicopathological features, including patient survival. We evaluated the expression of the TF antigen in a cohort of 25 MSI-high and 71 microsatellite stable (MSS) CRCs. No association was observed between the expression of the TF antigen and MSI-high status in CRC. The survival analysis revealed that patients with MSI-high CRC showed improved survival when the TF antigen was expressed. This finding holds promise as it indicates the potential use of the TF antigen as a biomarker of better prognosis in MSI-high CRCs that should be validated in an independent and larger CRC cohort. Full article
Show Figures

Figure 1

Review
E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression
Int. J. Mol. Sci. 2021, 22(2), 476; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22020476 - 06 Jan 2021
Cited by 1 | Viewed by 1006
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has [...] Read more.
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ’s dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses. Full article
Show Figures

Graphical abstract

Review
Melatonin as an Oncostatic Molecule Based on Its Anti-Aromatase Role in Breast Cancer
Int. J. Mol. Sci. 2021, 22(1), 438; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22010438 - 04 Jan 2021
Cited by 2 | Viewed by 967
Abstract
Breast cancer is the most common type of cancer. In the developmental stages of breast cancer, estrogens are strongly involved. As estrogen synthesis is regulated by the enzyme aromatase, targeting the activity of this enzyme represents a therapeutic option. The pineal hormone melatonin [...] Read more.
Breast cancer is the most common type of cancer. In the developmental stages of breast cancer, estrogens are strongly involved. As estrogen synthesis is regulated by the enzyme aromatase, targeting the activity of this enzyme represents a therapeutic option. The pineal hormone melatonin may exert a suppressive role on aromatase activity, leading to reduced estrogen biosynthesis. A melatonin-mediated decrease in the expression of aromatase promoters and associated genes would provide suitable evidence of this molecule’s efficacy as an aromatase inhibitor. Furthermore, melatonin intensifies radiation-induced anti-aromatase effects and counteracts the unwanted disadvantages of chemotherapeutic agents. In this manner, this review summarizes the inhibitory role of melatonin in aromatase action, suggesting its role as a possible oncostatic molecule in breast cancer. Full article
Show Figures

Figure 1

2020

Jump to: 2021, 2019

Article
LINC00973 Induces Proliferation Arrest of Drug-Treated Cancer Cells by Preventing p21 Degradation
Int. J. Mol. Sci. 2020, 21(21), 8322; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21218322 - 06 Nov 2020
Cited by 2 | Viewed by 656
Abstract
Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a [...] Read more.
Overcoming drug resistance of cancer cells is the major challenge in molecular oncology. Here, we demonstrate that long non-coding RNA LINC00973 is up-regulated in normal and cancer cells of different origins upon treatment with different chemotherapeutics. Bioinformatics analysis shows that this is a consequence of DNA damage response pathway activation or mitotic arrest. Knockdown of LINC0973 decreases p21 levels, activates cellular proliferation of cancer cells, and suppresses apoptosis of drug-treated cells. We have found that LINC00973 strongly increases p21 protein content, possibly by blocking its degradation. Besides, we have found that ectopic over-expression of LINC00973 inhibits formation of the pro-survival p53-Ser15-P isoform, which preserves chromosome integrity. These results might open a new approach to the development of more efficient anti-cancer drugs. Full article
Show Figures

Graphical abstract

Article
Inhibiting P2Y12 in Macrophages Induces Endoplasmic Reticulum Stress and Promotes an Anti-Tumoral Phenotype
Int. J. Mol. Sci. 2020, 21(21), 8177; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21218177 - 31 Oct 2020
Cited by 6 | Viewed by 945
Abstract
The P2Y12 receptor is an adenosine diphosphate responsive G protein-coupled receptor expressed on the surface of platelets and is the pharmacologic target of several anti-thrombotic agents. In this study, we use liver samples from mice with cirrhosis and hepatocellular carcinoma to show that [...] Read more.
The P2Y12 receptor is an adenosine diphosphate responsive G protein-coupled receptor expressed on the surface of platelets and is the pharmacologic target of several anti-thrombotic agents. In this study, we use liver samples from mice with cirrhosis and hepatocellular carcinoma to show that P2Y12 is expressed by macrophages in the liver. Using in vitro methods, we show that inhibition of P2Y12 with ticagrelor enhances tumor cell phagocytosis by macrophages and induces an anti-tumoral phenotype. Treatment with ticagrelor also increases the expression of several actors of the endoplasmic reticulum (ER) stress pathways, suggesting activation of the unfolded protein response (UPR). Inhibiting the UPR with tauroursodeoxycholic acid (Tudca) diminishes the pro-phagocytotic effect of ticagrelor, thereby indicating that P2Y12 mediates macrophage function through activation of ER stress pathways. This could be relevant in the pathogenesis of chronic liver disease and cancer, as macrophages are considered key players in these inflammation-driven pathologies. Full article
Show Figures

Figure 1

Article
Cancer-Associated Fibroblasts Differentiated by Exosomes Isolated from Cancer Cells Promote Cancer Cell Invasion
Int. J. Mol. Sci. 2020, 21(21), 8153; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21218153 - 31 Oct 2020
Cited by 3 | Viewed by 773
Abstract
Cancer-associated fibroblasts (CAFs) in the cancer microenvironment play an essential role in metastasis. Differentiation of endothelial cells into CAFs is induced by cancer cell-derived exosomes secreted from cancer cells that transfer molecular signals to surrounding cells. Differentiated CAFs facilitate migration of cancer cells [...] Read more.
Cancer-associated fibroblasts (CAFs) in the cancer microenvironment play an essential role in metastasis. Differentiation of endothelial cells into CAFs is induced by cancer cell-derived exosomes secreted from cancer cells that transfer molecular signals to surrounding cells. Differentiated CAFs facilitate migration of cancer cells to different regions through promoting extracellular matrix (ECM) modifications. However, in vitro models in which endothelial cells exposed to cancer cell-derived exosomes secreted from various cancer cell types differentiate into CAFs or a microenvironmentally controlled model for investigating cancer cell invasion by CAFs have not yet been studied. In this study, we propose a three-dimensional in vitro cancer cell invasion model for real-time monitoring of the process of forming a cancer invasion site through CAFs induced by exosomes isolated from three types of cancer cell lines. The invasiveness of cancer cells with CAFs induced by cancer cell-derived exosomes (eCAFs) was significantly higher than that of CAFs induced by cancer cells (cCAFs) through physiological and genetic manner. In addition, different genetic tendencies of the invasion process were observed in the process of invading cancer cells according to CAFs. Our 3D microfluidic platform helps to identify specific interactions among multiple factors within the cancer microenvironment and provides a model for cancer drug development. Full article
Show Figures

Graphical abstract

Article
CD163 as a Biomarker in Colorectal Cancer: The Expression on Circulating Monocytes and Tumor-Associated Macrophages, and the Soluble Form in the Blood
Int. J. Mol. Sci. 2020, 21(16), 5925; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21165925 - 18 Aug 2020
Cited by 3 | Viewed by 1019
Abstract
The macrophage-associated molecule CD163 has been reported as a prognostic biomarker in different cancer types, but its role in colorectal cancer (CRC) is unclear. We studied CD163 in the tumor microenvironment and circulation of patients with CRC in relation to clinicopathological parameters. An [...] Read more.
The macrophage-associated molecule CD163 has been reported as a prognostic biomarker in different cancer types, but its role in colorectal cancer (CRC) is unclear. We studied CD163 in the tumor microenvironment and circulation of patients with CRC in relation to clinicopathological parameters. An enzyme-linked immunosorbent assay (ELISA) was used to measure the serum sCD163 levels and multiparameter flow cytometry was used to study the peripheral blood monocytes and their CD163 expression in CRC patients (N = 78) and healthy donors (N = 50). The distribution of tumor-associated macrophages (TAMs) was studied in primary colorectal tumors with multiplex immunofluorescence. We showed that CRC patients with above-median sCD163 level had a shorter overall survival (OS, p = 0.035) as well as disease-free survival (DFS, p = 0.005). The above-median sCD163 remained significantly associated with a shorter DFS in the multivariate analysis (p = 0.049). Moreover, a shorter OS was observed in CRC patients with an above-median total monocyte percentage (p = 0.007). The number and phenotype of the stromal and intraepithelial TAMs in colorectal tumors were not associated with clinical outcome. In conclusion, sCD163 and monocytes in the circulation may be potential prognostic biomarkers in CRC patients, whereas TAMs in the tumor showed no association with clinical outcome. Thus, our results emphasize the importance of the innate systemic immune response in CRC disease progression. Full article
Show Figures

Figure 1

Review
Computer-Aided Ligand Discovery for Estrogen Receptor Alpha
Int. J. Mol. Sci. 2020, 21(12), 4193; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21124193 - 12 Jun 2020
Cited by 9 | Viewed by 1444
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects [...] Read more.
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery. Full article
Show Figures

Figure 1

Article
Smoking-Mediated Upregulation of the Androgen Pathway Leads to Increased SARS-CoV-2 Susceptibility
Int. J. Mol. Sci. 2020, 21(10), 3627; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103627 - 21 May 2020
Cited by 22 | Viewed by 2283
Abstract
The COVID-19 pandemic is marked by a wide range of clinical disease courses, ranging from asymptomatic to deadly. There have been many studies seeking to explore the correlations between COVID-19 clinical outcomes and various clinical variables, including age, sex, race, underlying medical problems, [...] Read more.
The COVID-19 pandemic is marked by a wide range of clinical disease courses, ranging from asymptomatic to deadly. There have been many studies seeking to explore the correlations between COVID-19 clinical outcomes and various clinical variables, including age, sex, race, underlying medical problems, and social habits. In particular, the relationship between smoking and COVID-19 outcome is controversial, with multiple conflicting reports in the current literature. In this study, we aim to analyze how smoking may affect the SARS-CoV-2 infection rate. We analyzed sequencing data from lung and oral epithelial samples obtained from The Cancer Genome Atlas (TCGA). We found that the receptor and transmembrane protease necessary for SARS-CoV-2 entry into host cells, ACE2 and TMPRSS2, respectively, were upregulated in smoking samples from both lung and oral epithelial tissue. We then explored the mechanistic hypothesis that smoking may upregulate ACE2 expression through the upregulation of the androgen pathway. ACE2 and TMPRSS2 upregulation were both correlated to androgen pathway enrichment and the specific upregulation of central pathway regulatory genes. These data provide a potential model for the increased susceptibility of smoking patients to COVID-19 and encourage further exploration into the androgen and tobacco upregulation of ACE2 to understand the potential clinical ramifications. Full article
Show Figures

Figure 1

Review
SMAD4 and the TGFβ Pathway in Patients with Pancreatic Ductal Adenocarcinoma
Int. J. Mol. Sci. 2020, 21(10), 3534; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103534 - 16 May 2020
Cited by 12 | Viewed by 1269
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide. PDAC is an aggressive disease with an 11-month median overall survival and a five-year survival of less than 5%. Incidence of PDAC is constantly increasing and is predicted to become [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide. PDAC is an aggressive disease with an 11-month median overall survival and a five-year survival of less than 5%. Incidence of PDAC is constantly increasing and is predicted to become the second leading cause of cancer in Western countries within a decade. Despite research and therapeutic development, current knowledge about PDAC molecular mechanisms still needs improvements and it seems crucial to identify novel therapeutic targets. Genomic analyses of PDAC revealed that transforming growth factor β (TGFβ) signaling pathways are modified and the SMAD4 gene is altered in 47% and 60% of cases, respectively, highlighting their major roles in PDAC development. TGFβ can play a dual role in malignancy depending on the context, sometimes as an inhibitor and sometimes as an inducer of tumor progression. TGFβ signaling was identified as a potent inducer of epithelial-to-mesenchymal transition (EMT), a process that confers migratory and invasive properties to epithelial cells during cancer. Therefore, aberrant TGFβ signaling and EMT are linked to promoting PDAC aggressiveness. TGFβ and SMAD pathways were extensively studied but the mechanisms leading to cancer promotion and development still remain unclear. This review aims to describe the complex role of SMAD4 in the TGFβ pathway in patients with PDAC. Full article
Show Figures

Figure 1

Article
Studies of Non-Protective Autophagy Provide Evidence that Recovery from Therapy-Induced Senescence is Independent of Early Autophagy
Int. J. Mol. Sci. 2020, 21(4), 1427; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21041427 - 20 Feb 2020
Cited by 7 | Viewed by 1012
Abstract
Autophagy and senescence, predominant responses that may dictate cell fate after chemotherapy or radiation, often occur in tandem. Cells in states of senescence and/or autophagy are frequently growth arrested. We have previously reported that tumor cells induced into senescence by therapy can re-emerge [...] Read more.
Autophagy and senescence, predominant responses that may dictate cell fate after chemotherapy or radiation, often occur in tandem. Cells in states of senescence and/or autophagy are frequently growth arrested. We have previously reported that tumor cells induced into senescence by therapy can re-emerge from the growth-arrested state, a phenomenon termed proliferative recovery. The current work shows that, while tumor cells collaterally induced into senescence and autophagy by etoposide, doxorubicin, or radiation undergo proliferative recovery, neither pharmacological nor genetic inhibition of early autophagy alter the extent of senescence or the ability of cells to recover from senescence. These findings confirm and extend our previous observations, essentially dissociating senescence from autophagy, and further indicate that re-emergence from senescence does not appear to be facilitated by or dependent on autophagy. Our results also provide additional evidence for the promotion of the non-protective form of autophagy by both chemotherapeutic drugs and radiation, which may complicate current efforts to inhibit autophagy for therapeutic benefit. Full article
Show Figures

Figure 1

2019

Jump to: 2021, 2020

Article
Detection of Loss of Heterozygosity in cfDNA of Advanced EGFR- or KRAS-Mutated Non-Small-Cell Lung Cancer Patients
Int. J. Mol. Sci. 2020, 21(1), 66; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21010066 - 20 Dec 2019
Cited by 3 | Viewed by 902
Abstract
Liquid biopsy is currently approved for management of epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) patients. However, one unanswered question is whether the rate of cell-free DNA (cfDNA)-negative samples is due to technical limitations rather than to tumor genetic [...] Read more.
Liquid biopsy is currently approved for management of epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) patients. However, one unanswered question is whether the rate of cell-free DNA (cfDNA)-negative samples is due to technical limitations rather than to tumor genetic characteristics. Using four microsatellite markers that map specific chromosomal loci often lost in lung cancer, we conducted a pilot study to investigate whether other alterations, such as loss of heterozygosity (LOH), could be detected in EGFR-negative cfDNA. We analyzed EGFR-mutated NSCLC patients (n = 24) who were positive or negative for EGFR mutations in cfDNA and compared the results with a second cohort of 24 patients bearing KRAS-mutated cancer, which served as a representative control population not exposed to targeted therapy. The results showed that in EGFR-negative post-tyrosine-kinase-inhibitor (TKI) cfDNAs, LOH frequency was significantly higher than in both pre- and post-TKI EGFR-positive cfDNAs. By contrast, no association between KRAS status in cfDNA and number of LOH events was found. In conclusion, our study indicates the feasibility of detecting LOH events in cfDNA from advanced NSCLC and suggests LOH analysis as a new candidate molecular assay to integrate mutation-specific assays. Full article
Show Figures

Figure 1

Back to TopTop