ijms-logo

Journal Browser

Journal Browser

The Mechanism of Action of Food Components in Disease Prevention

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (30 June 2016) | Viewed by 212706

Special Issue Editor

Special Issue Information

Dear Colleagues,

Chronic degenerative diseases continue to increase around the world despite increased nutrition awareness. Obesity and Type II diabetes have reached epidemic proportions in some countries. Despite increasing survival rates, cancer continues to be a social malady and an economic burden. Cancer impacts/has impacted most families in one way or another, and is a tremendous burden on the patient, the family, and society. Increase in cancer is being correlated with alterations in environment, food habits, and life styles. Adoption of a healthy life style can reduce the incidences of cancer development. Cancer has been claimed to be a preventable disease, as ~90% of cancer cases have a lifestyle or environmental related cause for origin, while, only 5-10% have impaired genetics as a causative factor. A diet enriched in fruits, vegetables, and their processed products is known to reduce the incidences of chronic diseases affecting several sites. Similarly, cardiovascular and cerebrovascular diseases can be prevented through an appropriate diet and lifestyle. Diet is a major source for several essential molecules that act in conjunction with antioxidant enzymes, providing protection from deleterious reactive oxygen species (ROS). Examples of these bioactives include vitamins, such as C, E; carotenoids, such as b-carotene (a precursor for vitamin A), lycopene, and xanthophylls; polyphenols (flavonoids, such as quercetin, catechin, naringenin, and anthocyanins that include sugar derivatives of cyanidin, pelargonidin, petunidin, peonidin, and malvidin); and essential minerals, such as Selenium and Zinc (that act as cofactors for essential host pathway enzymes). However, a detailed understanding on the mechanism of action of nutraceuticals leading to disease prevention is needed.

Inflammation is being recognized as the initiation point for several forms of cancer and chronic diseases. Diet- and lifestyle-related risk factors, such as obesity, smoking, environmental pollutants, alcohol, irradiation, high fat diet, etc., are known to be risk factors for cancer. A major link between risk factors and cancer is inflammation. Activation of major inflammatory pathways involving Nf-kB (Nuclear factor kappa B), STAT3, etc., are associated with most cancers. In addition to the modulation of inflammation-related cytokine signalling and gene expression, nutraceuticals act through epigenetic mechanisms, including inhibition of Histone Deacetylases, micro RNAs, and the modulation of CpG methylation of genes related to cancer development. miRNAs became particularly attractive in oncology since they are simple, stable molecules that are easy to detect in tissues and blood circulation. Increasing evidence suggests that miRNAs are involved in broad genomic processes including the regulation of expression of oncogenic and tumor-suppressive genes. As they are widely deregulated in cancer, miRNAs are therapeutic targets and promising diagnostic and prognostic markers of cellular growth, apoptosis, and inflammation. The greatest potential of miRNAs is their use as minimally invasive circulating biomarkers; alone or in combination with other molecules, promising to significantly improve diagnostic and prognostic accuracy of cancer treatments and prevention. Inflammatory genes and miRNAs have causative roles in carcinogenesis, and together they are ideal candidates as therapeutic and prevention targets. Plant polyphenols may deliver their positive effects on health by regulating specific miRNA expression. Mechanism of regulation of selective miRNAs by polyphenols needs to be explored further.Up-regulation of miR-22 expression by curcumin, suppressed the expression of the miR-22 target genes Sp1 and estrogen receptor 1 in human pancreatic cancer cells. Curcumin also reduced miR-21 promoter activity and expression in primary colon cancer. Epigallocatechin gallate (EGCG) is a major green tea polyphenol that acts on cancer miR-16 to mediate apoptotic effects.  Resveratrol modulates the levels of multiple miRNAs targeting genes of TGFβ signaling pathway in SW480 colon cancer cells.

Polyphenols in the diet act in multiple ways that include direct antioxidant action to scavenge cancer initiating free radicals, activation of transcription of cytoprotective enzymes involved in detoxification of xenobiotics, and modulation of signal transduction systems. Antioxidants can activate the Keap1/Nrf2/ARE (Kelch ECH associating protein 1 /NF-E2-related factor 2/Antioxidant Response Elements) pathway resulting in increased expression of phase 2 detoxification enzymes and antioxidant enzymes. Sulphoraphane in broccoli caused cytotoxicity and G2/M arrest in HT-29 colon cancer cells and MCF-7 breast cancer cells. The induction of apoptosis in cancer cells by sulphoraphane involved the activation of Bcl2 proteins Bax and Bak. Sulphoraphane causes inhibition of tubulin polymerization, activation of G2/M kinases and histone deacetylation resulting in cell cycle arrest and apoptosis. These mechanisms may enable sulphoraphane to inhibit carcinogenesis even after initiation. Thus, dietary antioxidants are compelling candidates for use as nutraceuticals to enhance the function of the antioxidant defense system during normal living conditions, thus preventing inflammation and decreasing the chances of developing chronic diseases.

Prof. Dr. Gopinadhan Paliyath
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Inflammation
  • Chronic diseases
  • Diet and lifestyle
  • Nutraceuticals and function

Published Papers (29 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

3459 KiB  
Article
Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling
by Angela Wang, Daniel J. Leong, Zhiyong He, Lin Xu, Lidi Liu, Sun Jin Kim, David M. Hirsh, John A. Hardin, Neil J. Cobelli and Hui B. Sun
Int. J. Mol. Sci. 2016, 17(12), 2065; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17122065 - 09 Dec 2016
Cited by 13 | Viewed by 6496
Abstract
Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a [...] Read more.
Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

2424 KiB  
Article
Human Intervention Study to Assess the Effects of Supplementation with Olive Leaf Extract on Peripheral Blood Mononuclear Cell Gene Expression
by Anna Boss, Chi Hsiu-Juei Kao, Pamela M. Murray, Gareth Marlow, Matthew P. G. Barnett and Lynnette R. Ferguson
Int. J. Mol. Sci. 2016, 17(12), 2019; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17122019 - 02 Dec 2016
Cited by 24 | Viewed by 8542
Abstract
Olive leaf extract (OLE) has been used for many years for its putative health benefits, but, to date, scientific evidence for the basis of these effects has been weak. Although recent literature has described a link between ailments such as cardiovascular disease, diabetes [...] Read more.
Olive leaf extract (OLE) has been used for many years for its putative health benefits, but, to date, scientific evidence for the basis of these effects has been weak. Although recent literature has described a link between ailments such as cardiovascular disease, diabetes and cancer and a protective effect of polyphenols in the OLE, the mode of action is still unclear. Here, we describe a double-blinded placebo (PBO)-controlled trial, in which gene expression profiles of peripheral blood mononuclear cells from healthy male volunteers (n = 29) were analysed to identify genes that responded to OLE, following an eight-week intervention with 20 mL daily consumption of either OLE or PBO. Differences between groups were determined using an adjusted linear model. Subsequent analyses indicated downregulation of genes important in inflammatory pathways, lipid metabolism and cancer as a result of OLE consumption. Gene expression was verified by real-time PCR for three genes (EGR1, COX-2 and ID3). The results presented here suggest that OLE consumption may result in health benefits through influencing the expression of genes in inflammatory and metabolic pathways. Future studies with a larger study group, including male and female participants, looking into direct effects of OLE on lipid metabolism and inflammation are warranted. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

911 KiB  
Article
Serum 25(OH) Vitamin D Levels in Polish Women during Pregnancies Complicated by Hypertensive Disorders and Gestational Diabetes
by Piotr Domaracki, Pawel Sadlecki, Grazyna Odrowaz-Sypniewska, Ewa Dzikowska, Pawel Walentowicz, Joanna Siodmiak, Marek Grabiec and Malgorzata Walentowicz-Sadlecka
Int. J. Mol. Sci. 2016, 17(10), 1574; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17101574 - 27 Sep 2016
Cited by 13 | Viewed by 7025
Abstract
Background: An association between the level of vitamin D and the risk of pregnancy-related complications remains unclear. The aim of this study was to examine concentrations of 25(OH) vitamin D in Polish women with normal pregnancies and pregnancies complicated by gestational hypertension, preeclampsia [...] Read more.
Background: An association between the level of vitamin D and the risk of pregnancy-related complications remains unclear. The aim of this study was to examine concentrations of 25(OH) vitamin D in Polish women with normal pregnancies and pregnancies complicated by gestational hypertension, preeclampsia or gestational diabetes mellitus (GDM). Moreover, we analyzed an association between maternal serum 25(OH)D and the risk of gestational hypertension, preeclampsia and GDM. Material and Methods: The study included 207 pregnant women, among them 171 with pregnancy-related complications: gestational hypertension (n = 45), preeclampsia (n = 23) or GDM (n = 103). The control group consisted of 36 women with normal pregnancies. Concentrations of serum 25(OH)D were measured at admission to the hospital prior to delivery Results: Patients with hypertension did not differ significantly from the controls in terms of their serum 25(OH)D concentrations (18.20 vs. 22.10 ng/mL, p = 0.15). Highly significant differences were found in 25(OH)D concentrations of women with preeclampsia and the controls (14.75 vs. 22.10 ng/mL, p = 0.0021). GDM was not associated with significant differences in 25(OH)D concentration. A low level of 25(OH)D turned out to be associated with an increased risk of preeclampsia during pregnancy on both univariate and multivariate regression analysis, and was a significant predictor of this condition on ROC (receiver operating characteristic) analysis (AUC = 0.70, p < 0.01). Conclusions: 25(OH)D deficiency is common among pregnant Polish women. Low concentrations of 25(OH)D may play a role in the etiopathogenesis of preeclampsia. Routine assessment of the 25(OH)D level during pregnancy may be crucial for the identification of women at increased risk of preeclampsia. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

1666 KiB  
Article
A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells
by Arijit Mondal, Tanmoy Guria, Tapan Kumar Maity and Anupam Bishayee
Int. J. Mol. Sci. 2016, 17(10), 1604; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17101604 - 22 Sep 2016
Cited by 17 | Viewed by 5222
Abstract
Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic [...] Read more.
Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus—(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate—against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G2/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

3450 KiB  
Article
Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1
by Yueqi Chen, Jingjing Sun, Ce Dou, Nan Li, Fei Kang, Yuan Wang, Zhen Cao, Xiaochao Yang and Shiwu Dong
Int. J. Mol. Sci. 2016, 17(9), 1516; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17091516 - 20 Sep 2016
Cited by 36 | Viewed by 5946
Abstract
The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated [...] Read more.
The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

9332 KiB  
Article
Convergent Effects of Resveratrol and PYK2 on Prostate Cells
by Andrea Conte, Annamaria Kisslinger, Claudio Procaccini, Simona Paladino, Olimpia Oliviero, Francesca De Amicis, Deriggio Faicchia, Dominga Fasano, Marilena Caputo, Giuseppe Matarese, Giovanna Maria Pierantoni and Donatella Tramontano
Int. J. Mol. Sci. 2016, 17(9), 1542; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17091542 - 13 Sep 2016
Cited by 18 | Viewed by 5734
Abstract
Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase [...] Read more.
Resveratrol, a dietary polyphenol, is under consideration as chemopreventive and chemotherapeutic agent for several diseases, including cancer. However, its mechanisms of action and its effects on non-tumor cells, fundamental to understand its real efficacy as chemopreventive agent, remain largely unknown. Proline-rich tyrosine kinase 2 (PYK2), a non-receptor tyrosine kinase acting as signaling mediator of different stimuli, behaves as tumor-suppressor in prostate. Since, PYK2 and RSV share several fields of interaction, including oxidative stress, we have investigated their functional relationship in human non-transformed prostate EPN cells and in their tumor-prone counterpart EPN-PKM, expressing a PYK2 dead-kinase mutant. We show that RSV has a strong biological activity in both cell lines, decreasing ROS production, inducing morphological changes and reversible growth arrest, and activating autophagy but not apoptosis. Interestingly, the PYK2 mutant increases basal ROS and autophagy levels, and modulates the intensity of RSV effects. In particular, the anti-oxidant effect of RSV is more potent in EPN than in EPN-PKM, whereas its anti-proliferative and pro-autophagic effects are more significant in EPN-PKM. Consistently, PYK2 depletion by RNAi replicates the effects of the PKM mutant. Taken together, our results reveal that PYK2 and RSV act on common cellular pathways and suggest that RSV effects on prostate cells may depend on mutational-state or expression levels of PYK2 that emerges as a possible mediator of RSV mechanisms of action. Moreover, the observation that resveratrol effects are reversible and not associated to apoptosis in tumor-prone EPN-PKM cells suggests caution for its use in humans. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

2605 KiB  
Article
Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP) on HFD/STZ-Induced Nephropathy in Mice
by Yen-Jung Chou, Wei-Chih Kan, Chieh-Min Chang, Yi-Jen Peng, Hsien-Yi Wang, Wen-Chun Yu, Yu-Hsuan Cheng, Yu-Rou Jhang, Hsia-Wei Liu and Jiunn-Jye Chuu
Int. J. Mol. Sci. 2016, 17(9), 1535; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17091535 - 13 Sep 2016
Cited by 38 | Viewed by 7496
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) [...] Read more.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs) have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ)-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP), from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD) plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10–100 kDa, LIOP (300 mg/kg) had progressively increased their sensitivity to glucose (less insulin tolerance), reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR) compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL) incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1), while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF-κB/TGF-β1 signaling pathway in diabetic nephropathy mice. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

4865 KiB  
Article
Flavonoids Extracted from Licorice Prevents Colitis-Associated Carcinogenesis in AOM/DSS Mouse Model
by Xiaowei Huo, Dongyu Liu, Li Gao, Liyong Li and Li Cao
Int. J. Mol. Sci. 2016, 17(9), 1343; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17091343 - 24 Aug 2016
Cited by 33 | Viewed by 7321
Abstract
Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated carcinogenesis (CAC). Thus, it is well accepted that ameliorating inflammation creates a potential to achieve an inhibitory effect on CAC. Licorice flavonoids (LFs) possess strong anti-inflammatory [...] Read more.
Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated carcinogenesis (CAC). Thus, it is well accepted that ameliorating inflammation creates a potential to achieve an inhibitory effect on CAC. Licorice flavonoids (LFs) possess strong anti-inflammatory activity, making it possible to investigate its pharmacologic role in suppressing CAC. The purpose of the present study was to evaluate the anti-tumor potential of LFs, and further explore the underlying mechanisms. Firstly, an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model was established and administered with or without LFs for 10 weeks, and then the severity of CAC was examined macroscopically and histologically. Subsequently, the effects of LFs on expression of proteins associated with apoptosis and proliferation, levels of inflammatory cytokine, expression of phosphorylated-Janus kinases 2 (p-Jak2) and phosphorylated-signal transducer and activator of transcription 3 (p-Stat3), and activation of nuclear factor-κB (NFκB) and P53 were assessed. We found that LFs could significantly reduce tumorigenesis induced by AOM/DSS. Further study revealed that LFs treatment substantially reduced activation of NFκB and P53, and subsequently suppressed production of inflammatory cytokines and phosphorylation of Jak2 and Stat3 in AOM/DSS-induced mice. Taken together, LFs treatment alleviated AOM/DSS induced CAC via P53 and NFκB/IL-6/Jak2/Stat3 pathways, highlighting the potential of LFs in preventing CAC. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

2243 KiB  
Article
Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits
by Mariann Bombicz, Daniel Priksz, Balazs Varga, Rudolf Gesztelyi, Attila Kertesz, Peter Lengyel, Peter Balogh, Dezso Csupor, Judit Hohmann, Harjit Pal Bhattoa, David D. Haines and Bela Juhasz
Int. J. Mol. Sci. 2016, 17(8), 1284; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17081284 - 10 Aug 2016
Cited by 15 | Viewed by 5676
Abstract
The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol [...] Read more.
The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol (hypercholesterolemic, HC); (iii) rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT); for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase) in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

4740 KiB  
Article
Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model
by Imène Achour, Anne-Marie Arel-Dubeau, Justine Renaud, Manon Legrand, Everaldo Attard, Marc Germain and Maria-Grazia Martinoli
Int. J. Mol. Sci. 2016, 17(8), 1293; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17081293 - 09 Aug 2016
Cited by 46 | Viewed by 9840
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

6188 KiB  
Article
Moracin C, A Phenolic Compound Isolated from Artocarpus heterophyllus, Suppresses Lipopolysaccharide-Activated Inflammatory Responses in Murine Raw264.7 Macrophages
by Xue Yao, Dang Wu, Ningning Dong, Ping Ouyang, Jiaqian Pu, Qian Hu, Jingyuan Wang, Weiqiang Lu and Jin Huang
Int. J. Mol. Sci. 2016, 17(8), 1199; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17081199 - 25 Jul 2016
Cited by 44 | Viewed by 7624
Abstract
Artocarpus heterophyllus, a popular tropical fruit commonly known as the jackfruit tree, is normally planted in subtropical or tropical areas. Since a variety of phytochemicals isolated from A. heterophyllus have been found to possess potently anti-inflammatory, antiviral and antimalarial activities, researchers have [...] Read more.
Artocarpus heterophyllus, a popular tropical fruit commonly known as the jackfruit tree, is normally planted in subtropical or tropical areas. Since a variety of phytochemicals isolated from A. heterophyllus have been found to possess potently anti-inflammatory, antiviral and antimalarial activities, researchers have devoted much interest to its potential pharmaceutical value. However, the exact mechanism underlying its anti-inflammatory activity is not well characterized. In this study, seven natural products isolated from A. heterophyllus, including 25-Hydroxycycloart-23-en-3-one (HY), Artocarpin (AR), Dadahol A (DA), Morachalcone A (MA), Artoheterophyllin B (AB), Cycloheterophyllin (CY) and Moracin C (MC) were collected. Lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 macrophages were used in this study. Among these compounds, MC significantly inhibited LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release without marked cytotoxicity. Furthermore, MC effectively reduced LPS stimulated up-regulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and serval pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α)). Mechanistic studies revealed that the anti-inflammatory effect of MC was associated with the activation of the mitogen activated protein kinases (MAPKs) (including p38, ERK and JNK) and nuclear factor-κB (NF-κB) pathways, especially reducing the nuclear translocation of NF-κB p65 subunit as revealed by nuclear separation experiment and confocal microscopy. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

4299 KiB  
Article
A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz.) Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells
by Yonglin Chen, Songshan Shi, Huijun Wang, Ning Li, Juan Su, Guixin Chou and Shunchun Wang
Int. J. Mol. Sci. 2016, 17(7), 1015; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17071015 - 28 Jun 2016
Cited by 17 | Viewed by 5955
Abstract
According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against [...] Read more.
According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2) cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 staining, acridine orange (AO) staining, flow cytometry (FCM), and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells’ growth via inducing apoptosis and second gap/mitosis (G2/M) arrest dose-dependently, with a half maximal inhibitory concentration (IC50) value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax) and downregulated B-cell leukemia/lymphoma 2 (Bcl-2) in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose) polymerase (PARP); cytochrome c (Cyt C); tumor protein 53 (p53); survivin; sequestosome 1 (p62); microtubule-associated protein 1 light chain-3B (LC3B); mitogen-activated protein kinase p38 (p38); extracellular regulated protein kinases (ERK); c-Jun N-terminal kinase (JNK); protein kinase B (AKT); and heat shock protein 90 (Hsp90) were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti-hepatocellular carcinoma therapeutic agent in the future. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

3459 KiB  
Article
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.
by Małgorzata Kłósek, Anna Mertas, Wojciech Król, Dagmara Jaworska, Jan Szymszal and Ewelina Szliszka
Int. J. Mol. Sci. 2016, 17(6), 837; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17060837 - 22 Jun 2016
Cited by 45 | Viewed by 6154
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a [...] Read more.
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

4271 KiB  
Article
Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells
by So Young Park, Soo Jin Kwon, Soon Sung Lim, Jin-Kyu Kim, Ki Won Lee and Jung Han Yoon Park
Int. J. Mol. Sci. 2016, 17(6), 934; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17060934 - 14 Jun 2016
Cited by 35 | Viewed by 7319
Abstract
Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human [...] Read more.
Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

1812 KiB  
Article
Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways
by Vandhana Muralidharan-Chari, Jaehan Kim, Ahlam Abuawad, Mubeena Naeem, Huadong Cui and Shaker A. Mousa
Int. J. Mol. Sci. 2016, 17(4), 474; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17040474 - 30 Mar 2016
Cited by 18 | Viewed by 7592
Abstract
Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of [...] Read more.
Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased (“pure”) THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ’s ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

1037 KiB  
Article
Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis
by Michal Korinek, Vitthal D. Wagh, I-Wen Lo, Yu-Ming Hsu, Hsue-Yin Hsu, Tsong-Long Hwang, Yang-Chang Wu, Yuan-Bin Cheng, Bing-Hung Chen and Fang-Rong Chang
Int. J. Mol. Sci. 2016, 17(3), 398; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17030398 - 21 Mar 2016
Cited by 24 | Viewed by 7479
Abstract
The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated [...] Read more.
The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

11219 KiB  
Article
Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function
by Horacio Cardenas, Daniel Arango, Courtney Nicholas, Silvia Duarte, Gerard J. Nuovo, Wei He, Oliver H. Voss, M. Elba Gonzalez-Mejia, Denis C. Guttridge, Erich Grotewold and Andrea I. Doseff
Int. J. Mol. Sci. 2016, 17(3), 323; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17030323 - 01 Mar 2016
Cited by 71 | Viewed by 7041
Abstract
The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, [...] Read more.
The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors’ accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

2125 KiB  
Article
Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest
by Han Jin Cho, Do Young Lim, Gyoo Taik Kwon, Ji Hee Kim, Zunnan Huang, Hyerim Song, Yoon Sin Oh, Young-Hee Kang, Ki Won Lee, Zigang Dong and Jung Han Yoon Park
Int. J. Mol. Sci. 2016, 17(2), 264; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17020264 - 22 Feb 2016
Cited by 21 | Viewed by 6812
Abstract
Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate [...] Read more.
Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

2041 KiB  
Article
Astaxanthin, a Carotenoid, Stimulates Immune Responses by Enhancing IFN-γ and IL-2 Secretion in Primary Cultured Lymphocytes in Vitro and ex Vivo
by Kuan-Hung Lin, Kao-Chang Lin, Wan-Jung Lu, Philip-Aloysius Thomas, Thanasekaran Jayakumar and Joen-Rong Sheu
Int. J. Mol. Sci. 2016, 17(1), 44; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17010044 - 29 Dec 2015
Cited by 67 | Viewed by 6986
Abstract
Astaxanthin, a potent antioxidant carotenoid, plays a major role in modulating the immune response. In this study, we examined the immunomodulatory effects of astaxanthin on cytokine production in primary cultured lymphocytes both in vitro and ex vivo. Direct administration of astaxanthin (70–300 [...] Read more.
Astaxanthin, a potent antioxidant carotenoid, plays a major role in modulating the immune response. In this study, we examined the immunomodulatory effects of astaxanthin on cytokine production in primary cultured lymphocytes both in vitro and ex vivo. Direct administration of astaxanthin (70–300 nM) did not produce cytotoxicity in lipopolysaccharide (LPS, 100 µg/ mL)- or concanavalin A (Con A, 10 µg/ mL)-activated lymphocytes, whereas astaxanthin alone at 300 nM induced proliferation of splenic lymphocytes (p < 0.05) in vitro. Although astaxanthin, alone or with Con A, had no apparent effect on interferon (INF-γ) and interleukin (IL-2) production in primary cultured lymphocytes, it enhanced LPS-induced INF-γ production. In an ex vivo experiment, oral administration of astaxanthin (0.28, 1.4 and 7 mg/kg/day) for 14 days did not cause alterations in the body or spleen weights of mice and also was not toxic to lymphocyte cells derived from the mice. Moreover, treatment with astaxanthin significantly increased LPS-induced lymphocyte proliferation ex vivo but not Con A-stimulated lymphocyte proliferation ex vivo. Enzyme linked immunosorbent assay (ELISA) analysis revealed that administration of astaxanthin significantly enhanced INF-γ production in response to both LPS and Con A stimulation, whereas IL-2 production increased only in response to Con A stimulation. Also, astaxanthin treatment alone significantly increased IL-2 production in lymphocytes derived from mice, but did not significantly change production of INF-γ. These findings suggest that astaxanthin modulates lymphocytic immune responses in vitro, and that it partly exerts its ex vivo immunomodulatory effects by increasing INF-γ and IL-2 production without inducing cytotoxicity. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

2717 KiB  
Article
Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria
by Shu-Yuan Chiou, Choi-Lan Ha, Pei-Shan Wu, Chiu-Ling Yeh, Ying-Shan Su, Man-Po Li and Ming-Jiuan Wu
Int. J. Mol. Sci. 2015, 16(12), 29522-29541; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161226184 - 10 Dec 2015
Cited by 8 | Viewed by 5952
Abstract
Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and [...] Read more.
Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

3707 KiB  
Article
Calycosin Suppresses RANKL-Mediated Osteoclastogenesis through Inhibition of MAPKs and NF-κB
by Gui-Hua Quan, Hongbing Wang, Jinjin Cao, Yuxin Zhang, Donglin Wu, Qisheng Peng, Ning Liu and Wan-Chun Sun
Int. J. Mol. Sci. 2015, 16(12), 29496-29507; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161226179 - 10 Dec 2015
Cited by 47 | Viewed by 5914
Abstract
Calycosin, an isoflavonoid phytoestrogen, isolated from Radix Astragali, was reported to possess anti-tumor, anti-inflammation, and osteogenic properties, but its impact on osteoclast differentiation remains unclear. In this study, we examined the effects of calycosin on osteoclastogenesis induced by RANKL. The results showed [...] Read more.
Calycosin, an isoflavonoid phytoestrogen, isolated from Radix Astragali, was reported to possess anti-tumor, anti-inflammation, and osteogenic properties, but its impact on osteoclast differentiation remains unclear. In this study, we examined the effects of calycosin on osteoclastogenesis induced by RANKL. The results showed that calycosin significantly inhibited RANKL-induced osteoclast formation from primary bone marrow macrophages (BMMs). Calycosin also dose-dependently suppressed the formation of bone resorption pits by mature osteoclasts. In addition, the expression of osteoclatogenesis-related genes, including cathepsin K (CtsK), tartrate-resistant acid phosphatase (TRAP), and MMP-9, was significantly inhibited by calycosin. Furthermore, the results indicated that calycosin down-regulated the expression levels of NFATc1 and c-Fos through suppressing the activation of NF-κB and MAPKs. Our results indicate that calycosin has an inhibitory role in the bone loss by preventing osteoclast formation, as well as its bone resorptive activity. Therefore, calycosin may be useful as a therapeutic reagent for bone loss-associated diseases. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

2765 KiB  
Article
Resveratrol Protects against Helicobacter pylori-Associated Gastritis by Combating Oxidative Stress
by Xiaolin Zhang, Anmin Jiang, Banghua Qi, Zhongyou Ma, Youyi Xiong, Jinfeng Dou and Jianfei Wang
Int. J. Mol. Sci. 2015, 16(11), 27757-27769; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161126061 - 20 Nov 2015
Cited by 55 | Viewed by 7227
Abstract
Helicobacter pylori (H. pylori)-induced oxidative stress has been shown to play a very important role in the inflammation of the gastric mucosa and increases the risk of developing gastric cancer. Resveratrol has many biological functions and activities, including antioxidant and anti-inflammatory [...] Read more.
Helicobacter pylori (H. pylori)-induced oxidative stress has been shown to play a very important role in the inflammation of the gastric mucosa and increases the risk of developing gastric cancer. Resveratrol has many biological functions and activities, including antioxidant and anti-inflammatory effect. The purpose of this study was to probe whether resveratrol inhibits H. pylori-induced gastric inflammation and to elucidate the underlying mechanisms of any effect in mice. A mouse model of H. pylori infection was established via oral inoculation with H. pylori. After one week, mice were administered resveratrol (100 mg/kg body weight/day) orally for six weeks. The mRNA and protein levels of iNOS and IL-8 were assessed using RT-PCR, Western blot and ELISA. The expression levels of IκBα and phosphorylated IκBα (which embodies the level and activation of NF-κB), Heme Oxygenase-1 (HO-1; a potent antioxidant enzyme) and nuclear factor-erythroid 2 related factor 2 (Nrf2) were determined using Western blot, and lipid peroxide (LPO) level and myeloperoxidase (MPO) activity were examined using an MPO colorimetric activity assay, thiobarbituric acid reaction, and histological-grade using HE staining of the gastric mucosa. The results showed that resveratrol improved the histological infiltration score and decreased LPO level and MPO activity in the gastric mucosa. Resveratrol down-regulated the H. pylori-induced mRNA transcription and protein expression levels of IL-8 and iNOS, suppressed H. pylori-induced phosphorylation of IκBα, and increased the levels of HO-1 and Nrf2. In conclusion, resveratrol treatment exerted significant effects against oxidative stress and inflammation in H. pylori-infected mucosa through the suppression of IL-8, iNOS, and NF-κB, and moreover through the activation of the Nrf2/HO-1 pathway. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

1868 KiB  
Article
Borneol Depresses P-Glycoprotein Function by a NF-κB Signaling Mediated Mechanism in a Blood Brain Barrier in Vitro Model
by Xiang Fan, Lijuan Chai, Han Zhang, Yuefei Wang, Boli Zhang and Xiumei Gao
Int. J. Mol. Sci. 2015, 16(11), 27576-27588; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161126051 - 18 Nov 2015
Cited by 63 | Viewed by 7304
Abstract
P-glycoprotein (P-gp) on brain microvascular endothelial cells (BMECs) that form the blood brain barrier (BBB), influences transportation of substances between blood and brain. The objective of this study was to characterize the effects of borneol on P-gp efflux function on BBB and explore [...] Read more.
P-glycoprotein (P-gp) on brain microvascular endothelial cells (BMECs) that form the blood brain barrier (BBB), influences transportation of substances between blood and brain. The objective of this study was to characterize the effects of borneol on P-gp efflux function on BBB and explore the potential mechanisms. We established an in vitro BBB model comprised of rat BMECs and astrocytes to measure the effects of borneol on the known P-gp substrates transport across BBB, and examined the function and expression of P-gp in BMECs and the signaling pathways regulating P-gp expression. Borneol increased intracellular accumulation of Rhodamine 123, enhanced verapamil and digoxin across the BBB in vitro model, and depressed mdr1a mRNA and P-gp expression. Borneol could activate nuclear factor-κB (NF-κB) and inhibition of NF-κB with MG132 (carbobenzoxy-Leu-Leu-leucinal) and SN50 (an inhibitory peptide) obscuring the P-gp decreases induced by borneol. These data suggested that borneol depresses P-gp function in BMECs by a NF-κB signaling medicated mechanism in a BBB in vitro model. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

3980 KiB  
Article
Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells
by Carmen Lammi, Chiara Zanoni and Anna Arnoldi
Int. J. Mol. Sci. 2015, 16(11), 27362-27370; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161126029 - 16 Nov 2015
Cited by 55 | Viewed by 7761
Abstract
Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). [...] Read more.
Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

6251 KiB  
Article
Protective Effects of Alisma orientale Extract against Hepatic Steatosis via Inhibition of Endoplasmic Reticulum Stress
by Min-Kyung Jang, Yu-Ran Han, Jeong Soo Nam, Chang Woo Han, Byung Joo Kim, Han-Sol Jeong, Ki-Tae Ha and Myeong Ho Jung
Int. J. Mol. Sci. 2015, 16(11), 26151-26165; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161125944 - 02 Nov 2015
Cited by 40 | Viewed by 7072
Abstract
Endoplasmic reticulum (ER) stress is associated with the pathogenesis of hepatic steatosis. Alisma orientale Juzepzuk is a traditional medicinal herb for diuretics, diabetes, hepatitis, and inflammation. In this study, we investigated the protective effects of methanol extract of the tuber of Alisma orientale [...] Read more.
Endoplasmic reticulum (ER) stress is associated with the pathogenesis of hepatic steatosis. Alisma orientale Juzepzuk is a traditional medicinal herb for diuretics, diabetes, hepatitis, and inflammation. In this study, we investigated the protective effects of methanol extract of the tuber of Alisma orientale (MEAO) against ER stress-induced hepatic steatosis in vitro and in vivo. MEAO inhibited the tunicamycin-induced increase in luciferase activity of ER stress-reporter constructs containing ER stress response element and ATF6 response element. MEAO significantly inhibited tunicamycin-induced ER stress marker expression including GRP78, CHOP, and XBP-1 in tunicamycin-treated Human hepatocellular carcinoma (HepG2) cells and the livers of tunicamycin-injected mice. It also inhibited tunicamycin-induced accumulation of cellular triglyceride. Similar observations were made under physiological ER stress conditions such as in palmitate (PA)-treated HepG2 cells and the livers of high-fat diet (HFD)-induced obese mice. MEAO repressed hepatic lipogenic gene expression in PA-treated HepG2 cells and the livers of HFD obese mice. Furthermore, MEAO repressed very low-density lipoprotein receptor (VLDLR) expression and improved ApoB secretion in the livers of tunicamycin-injected mice or HFD obese mice as well as in tunicamycin or PA-treated HepG2 cells. Alismol, a guaiane-type sesquiterpenes in Alisma orientale, inhibited GRP78 expression in tunicamycin-treated HepG2 cells. In conclusion, MEAO attenuates ER stress and prevents hepatic steatosis pathogenesis via inhibition of expression of the hepatic lipogenic genes and VLDLR, and enhancement of ApoB secretion. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

Review

Jump to: Research

720 KiB  
Review
Functional Components of Carob Fruit: Linking the Chemical and Biological Space
by Vlasios Goulas, Evgenios Stylos, Maria V. Chatziathanasiadou, Thomas Mavromoustakos and Andreas G. Tzakos
Int. J. Mol. Sci. 2016, 17(11), 1875; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17111875 - 10 Nov 2016
Cited by 105 | Viewed by 12623
Abstract
The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, [...] Read more.
The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation’s capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob’s natural components are presented in this review. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

1400 KiB  
Review
Plant Polyphenols as Chemopreventive Agents for Lung Cancer
by Madumani Amararathna, Michael R. Johnston and H. P. Vasantha Rupasinghe
Int. J. Mol. Sci. 2016, 17(8), 1352; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17081352 - 19 Aug 2016
Cited by 83 | Viewed by 10595
Abstract
Lung cancer may be prevented by a diet rich in fruits and vegetables as they are enriched with dietary antioxidant polyphenols, such as flavonoids, proanthocyanidins, lignans, stilbenes, and phenolic acids. Dietary polyphenols exert a wide range of beneficial biological functions beyond their antioxidative [...] Read more.
Lung cancer may be prevented by a diet rich in fruits and vegetables as they are enriched with dietary antioxidant polyphenols, such as flavonoids, proanthocyanidins, lignans, stilbenes, and phenolic acids. Dietary polyphenols exert a wide range of beneficial biological functions beyond their antioxidative properties and are involved in regulation of cell survival pathways leading to anticarcinogenic and antimutagenic functions. There are sufficient evidence from in vitro, in vivo, and epidemiological studies to suggest that the dietary intervention of polyphenols in cancer prevention, including the chemopreventive ability of dietary polyphenols, act against lung carcinogens. Cohort and epidemiological studies in selected risk populations have evaluated clinical effects of polyphenols. Polyphenols have demonstrated three major actions: antioxidative activity, regulation of phase I and II enzymes, and regulation of cell survival pathways against lung carcinogenesis. They have also shown an inverse association of lung cancer occurrences among high risk populations who consumed considerable amounts of fruits and vegetables in their daily diet. In in vitro cell culture experimental models, polyphenols bind with electrophilic metabolites from carcinogens, inactivate cellular oxygen radicals, prevent membrane lipid peroxidation and DNA oxidative damage, and adduct formation. Further, polyphenols enhance the detoxifying enzymes such as the phase II enzymes, glutathione transferases and glucuronosyl transferases. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

1251 KiB  
Review
Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine
by Tsutomu Sasaki, Sho Matsui and Tadahiro Kitamura
Int. J. Mol. Sci. 2016, 17(7), 1081; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17071081 - 07 Jul 2016
Cited by 14 | Viewed by 6892
Abstract
Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body’s homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is [...] Read more.
Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body’s homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is necessary to prevent and treat obesity. N-methyl-d-aspartate (NMDA) receptor is a post-synaptic glutamate receptor and is important for excitatory neurotransmission. It is expressed throughout the nervous system, and is important for long-term potentiation. It requires both ligand (glutamate) and co-agonist (d-serine or glycine) for efficient opening of the channel to allow calcium influx. d-serine is contained in fermented foods and marine invertebrates, and brain d-serine level is maintained by synthesis in vivo and supply from food and gut microbiota. Although the NMDA receptor has been reported to take part in the central regulation of appetite, the role of d-serine had not been addressed. We recently reported that exogenous d-serine administration can suppress appetite and alter food preference. In this review, we will discuss how NMDA receptor and its co-agonist d-seine participate in the control of appetite and food preference, and elaborate on how this system could possibly be manipulated to suppress obesity. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Figure 1

766 KiB  
Review
The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer
by Alessio Molfino, Maria Ida Amabile, Massimo Monti, Stefano Arcieri, Filippo Rossi Fanelli and Maurizio Muscaritoli
Int. J. Mol. Sci. 2016, 17(4), 505; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17040505 - 05 Apr 2016
Cited by 21 | Viewed by 8004
Abstract
Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries [...] Read more.
Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Show Figures

Graphical abstract

Back to TopTop