ijms-logo

Journal Browser

Journal Browser

Special Issue "Host–Pathogen Interaction 3.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: 31 March 2022.

Special Issue Editor

Prof. Dr. Andreas Burkovski
E-Mail Website
Guest Editor
Department Biologie, Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
Interests: corynebacteria; host–pathogen interaction; nitrogen control; regulatory networks; secretome analyses; toxins
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Microorganisms can interact with larger organisms in many different ways, e.g., beneficially as symbionts, indifferently as commensals, or harmfully as pathogens. Today, a wide variety of molecular and cell biology tools, including advanced microscopy and -omics techniques, allow us to study these interactions at a molecular level. This Special Issue will deal with all aspects of pathogenic microorganisms (e.g. bacteria, yeasts, and protozoa) and their host organisms. Reviews and research articles focusing on either pathogens or hosts are welcome.

Prof. Dr. Andreas Burkovski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
TmSpz-like Plays a Fundamental Role in Response to E. coli but Not S. aureus or C. albican Infection in Tenebrio molitor via Regulation of Antimicrobial Peptide Production
Int. J. Mol. Sci. 2021, 22(19), 10888; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms221910888 - 08 Oct 2021
Viewed by 351
Abstract
The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses [...] Read more.
The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection. Full article
(This article belongs to the Special Issue Host–Pathogen Interaction 3.0)
Show Figures

Figure 1

Article
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii
Int. J. Mol. Sci. 2021, 22(16), 9077; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22169077 - 23 Aug 2021
Viewed by 457
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction [...] Read more.
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems. Full article
(This article belongs to the Special Issue Host–Pathogen Interaction 3.0)
Show Figures

Figure 1

Back to TopTop