ijms-logo

Journal Browser

Journal Browser

Advanced Implant Surface Modification and Tissue Engineering

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: closed (15 October 2020) | Viewed by 25796

Special Issue Editor

Special Issue Information

Dear Colleagues,

The latest developments in regenerative medicine of biotechnologies applied to the surface characterization of maxillo-facial implant devices, as well as the advanced materials science, stem cell technologies, and tissue engineering protocols open a new era of biomaterials that are able to improve biological responses and tissue healing in response to tissue damage.

The target of biological and biomechanical effectiveness to new generation materials for dental implants and bone tissue regeneration represents the future orientation of research for the treatment of maxillary defects and oral rehabilitation predictability.

The purpose of this Special Issue, "Advanced Implant Surface Modification and Tissue Engineering", is to present the recent findings in this research area, focusing on the active role played by those components and bio-complexes, their surface features, and the mechanical properties for surgical strategies and bone tissue regeneration procedures.

Particularly, recent research topics, original research papers, short communications, original research manuscripts, and state of the art review articles will be considered for the submission to this Issue.

Prof. Dr. Antonio Scarano
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 16080 KiB  
Article
Graphene-Doped Poly (Methyl-Methacrylate) (Pmma) Implants: A Micro-CT and Histomorphometrical Study in Rabbits
by Antonio Scarano, Tiziana Orsini, Fabio Di Carlo, Luca Valbonetti and Felice Lorusso
Int. J. Mol. Sci. 2021, 22(3), 1441; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031441 - 01 Feb 2021
Cited by 19 | Viewed by 2849
Abstract
Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with [...] Read more.
Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with PMMA as potential materials for dental implant devices. Methods—eighteen adult New Zealand white male rabbits with a mean weight of approx. 3000 g were used in this research. A total of eighteen implants of 3.5 mm diameter and 11 mm length in GD-PMMA and eighteen implants in PMMA were used. The implants were placed into the articular femoral knee joint. The animals were sacrificed after 15, 30 and 60 days and the specimens were evaluated by µCT and histomorphometry. Results—microscopically, all 36 implants, 18 in PMMA and 18 in DG-PMMA were well-integrated into the bone. The implants were in contact with cortical bone along the upper threads, while the lower threads were in contact with either newly formed bone or with marrow spaces. The histomorphometry and µCT evaluation showed that the GP-PMMA and PMMA implants were well osseointegrated and the bone was in direct contact with large portions of the implant surfaces, including the space in the medullary canal. Conclusions—in conclusion, the results suggest that GD-PMMA titanium surfaces enhance osseointegration in rabbit femurs. This encourages further research to obtain GD-PMMA with a greater radiopacity. Also, further in vitro and vivo animal studies are necessary to evaluate a potential clinical usage for dental implant applications. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

13 pages, 6840 KiB  
Article
Healing Pattern Analysis for Dental Implants Using the Mechano-Regulatory Tissue Differentiation Model
by Ming-Jun Li, Pei-Ching Kung, Yuan-Wei Chang and Nien-Ti Tsou
Int. J. Mol. Sci. 2020, 21(23), 9205; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21239205 - 02 Dec 2020
Cited by 6 | Viewed by 1889
Abstract
(1) Background: Our aim is to reveal the influence of the geometry designs on biophysical stimuli and healing patterns. The design guidelines for dental implants can then be provided. (2) Methods: A two-dimensional axisymmetric finite element model was developed based on mechano-regulatory algorithm. [...] Read more.
(1) Background: Our aim is to reveal the influence of the geometry designs on biophysical stimuli and healing patterns. The design guidelines for dental implants can then be provided. (2) Methods: A two-dimensional axisymmetric finite element model was developed based on mechano-regulatory algorithm. The history of tissue differentiation around eight selected implants can be predicted. The performance of the implants was evaluated by bone area (BA), bone-implant contact (BIC); (3) Results: The predicted healing patterns have very good agreement with the experimental observation. Many features observed in literature, such as soft tissues covering on the bone-implant interface; crestal bone loss; the location of bone resorption bumps, were reproduced by the model and explained by analyzing the solid and fluid biophysical stimuli and (4) Conclusions: The results suggested the suitable depth, the steeper slope of the upper flanks, and flat roots of healing chambers can improve the bone ingrowth and osseointegration. The mechanism related to solid and fluid biophysical stimuli were revealed. In addition, the model developed here is efficient, accurate and ready to extend to any geometry of dental implants. It has potential to be used as a clinical application for instant prediction/evaluation of the performance of dental implants. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

18 pages, 10513 KiB  
Article
Fibroblast Interaction with Different Abutment Surfaces: In Vitro Study
by Luigi Canullo, Tullio Genova, Esperanza Gross Trujillo, Guillermo Pradies, Sara Petrillo, Maurizio Muzzi, Stefano Carossa and Federico Mussano
Int. J. Mol. Sci. 2020, 21(6), 1919; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21061919 - 11 Mar 2020
Cited by 21 | Viewed by 3450
Abstract
Background: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft [...] Read more.
Background: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft tissue healing. Methods: Grade 5 titanium discs with four different surface topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment. Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. Results: Qualitative observation of the surfaces performed at the SEM was in accordance with the anticipated features. Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min, all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on treated samples were more spread with broad lamellipodia. However, these differences in spreading behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface in combination with a treatment that favored a greater cellular adhesion. Conclusions: Data showed potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation to early-stage cell adhesion. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

16 pages, 9034 KiB  
Article
Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques
by Brian E. Grottkau, Zhixin Hui, Yang Yao and Yonggang Pang
Int. J. Mol. Sci. 2020, 21(1), 315; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21010315 - 02 Jan 2020
Cited by 21 | Viewed by 4984
Abstract
Fused deposit modeling (FDM) 3D printing technology cannot generate scaffolds with high porosity while maintaining good integrity, anatomical-surface detail, or high surface area-to-volume ratio (S/V). Solvent casting and particulate leaching (SCPL) technique generates scaffolds with high porosity and high S/V. However, it is [...] Read more.
Fused deposit modeling (FDM) 3D printing technology cannot generate scaffolds with high porosity while maintaining good integrity, anatomical-surface detail, or high surface area-to-volume ratio (S/V). Solvent casting and particulate leaching (SCPL) technique generates scaffolds with high porosity and high S/V. However, it is challenging to generate complex-shaped scaffolds; and solvent, particle and residual water removal are time consuming. Here we report techniques surmounting these problems, successfully generating a highly porous scaffold with the anatomical-shape characteristics of a human femur by polylactic acid polymer (PLA) and PLA-hydroxyapatite (HA) casting and salt leaching. The mold is water soluble and is easily removable. By perfusing with ethanol, water, and dry air sequentially, the solvent, salt, and residual water were removed 20 fold faster than utilizing conventional methods. The porosities are uniform throughout the femoral shaped scaffold generated with PLA or PLA-HA. Both scaffolds demonstrated good biocompatibility with the pre-osteoblasts (MC3T3-E1) fully attaching to the scaffold within 8 h. The cells demonstrated high viability and proliferation throughout the entire time course. The HA-incorporated scaffolds demonstrated significantly higher compressive strength, modulus and osteoinductivity as evidenced by higher levels of alkaline-phosphatase activity and calcium deposition. When 3D printing a 3D model at 95% porosity or above, our technology preserves integrity and surface detail when compared with FDM-generated scaffolds. Our technology can also generate scaffolds with a 31 fold larger S/V than FDM. We have developed a technology that is a versatile tool in creating personalized, patient-specific bone graft scaffolds efficiently with high porosity, good scaffold integrity, high anatomical-shaped surface detail and large S/V. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

17 pages, 4540 KiB  
Article
The Antithrombotic Function of Sphingosine-1-Phosphate on Human Adipose-Stem-Cell-Recellularized Tissue Engineered Vascular Graft In Vitro
by Chih-Hsun Lin, Jen-Her Lu, Kai Hsia, Hsinyu Lee, Chao-Ling Yao and Hsu Ma
Int. J. Mol. Sci. 2019, 20(20), 5218; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20205218 - 21 Oct 2019
Cited by 5 | Viewed by 2837
Abstract
Adipose stem cells (ASCs) show potential in the recellularization of tissue engineerined vascular grafts (TEVGs). However, whether sphingosine-1-phosphate (S1P) could further enhance the adhesion, proliferation, and antithrombosis of ASCs on decellularized vascular scaffolds is unknown. This study investigated the effect of S1P on [...] Read more.
Adipose stem cells (ASCs) show potential in the recellularization of tissue engineerined vascular grafts (TEVGs). However, whether sphingosine-1-phosphate (S1P) could further enhance the adhesion, proliferation, and antithrombosis of ASCs on decellularized vascular scaffolds is unknown. This study investigated the effect of S1P on the recellularization of TEVGs with ASCs. Human ASCs were derived from lipoaspirate. Scaffolds were derived from human umbilical arteries (HUAs) with treatment of 0.1% sodium dodecyl sulfate (SDS) for 48 h (decellularized HUAs; DHUAs). The adhesion, proliferation, and antithrombotic functions (kinetic clotting time and platelet adhesion) of ASCs on DHUAs with S1P or without S1P were evaluated. The histology and DNA examination revealed a preserved structure and the elimination of the nuclear component more than 95% in HUAs after decellularizaiton. Human ASCs (hASCs) showed CD29(+), CD73(+), CD90(+), CD105(+), CD31(–), CD34(–), CD44(–), HLA-DR(–), and CD146(–) while S1P-treated ASCs showed marker shifting to CD31(+). In contrast to human umbilical vein endothelial cells (HUVECs), S1P didn’t significantly increase proliferation of ASCs on DHUAs. However, the kinetic clotting test revealed prolonged blood clotting in S1P-treated ASC-recellularized DHUAs. S1P also decreased platelet adhesion on ASC-recellularized DHUAs. In addition, S1P treatment increased the syndecan-1 expression of ASCs. TEVG reconstituted with S1P and ASC-recellularized DHUAs showed an antithrombotic effect in vitro. The preliminary results showed that ASCs could adhere to DHUAs and S1P could increase the antithrombotic effect on ASC-recellularized DHUAs. The antithrombotic effect is related to ASCs exhibiting an endothelial-cell-like function and preventing of syndecan-1 shedding. A future animal study is warranted to prove this novel method. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

9 pages, 1267 KiB  
Article
A New Strategy Against Peri-Implantitis: Antibacterial Internal Coating
by Francesco Carinci, Dorina Lauritano, Carlo Alberto Bignozzi, Daniele Pazzi, Valentina Candotto, Paulo Santos de Oliveira and Antonio Scarano
Int. J. Mol. Sci. 2019, 20(16), 3897; https://doi.org/10.3390/ijms20163897 - 09 Aug 2019
Cited by 117 | Viewed by 5561
Abstract
The bacterial biofilm formation in the oral cavity and the microbial activity around the implant tissue represent a potential factor on the interface between bone and implant fixture that could induce an inflammatory phenomenon and generate an increased risk for mucositis and peri-implantitis. [...] Read more.
The bacterial biofilm formation in the oral cavity and the microbial activity around the implant tissue represent a potential factor on the interface between bone and implant fixture that could induce an inflammatory phenomenon and generate an increased risk for mucositis and peri-implantitis. The aim of the present clinical trial was to investigate the bacterial quality of a new antibacterial coating of the internal chamber of the implant in vivo at six months. The PIXIT implant (Edierre srl, Genova Italy) is prepared by coating the implant with an alcoholic solution containing polysiloxane oligomers and chlorhexidine gluconate at 1%. A total of 15 healthy patients (60 implants) with non-contributory past medical history (nine women and six men, all non-smokers, mean age of 53 years, ranging from 45–61 years) were scheduled to receive bilateral fixed prostheses or crown restorations supported by an implant fixture. No adverse effects and no implant failure were reported at four months. All experimental sites showed a good soft tissue healing at the experimental point times and no local evidence of inflammation was observed. Real-Time Polymerase Chain Reaction (PCR) analysis on coated and uncoated implants showed a decrease of the bacterial count in the internal part of the implant chamber. The mean of total bacteria loading (TBL) detected in each PCR reaction was lower in treated implants (81,038 units/reaction) compared to untreated implants (90,057 units/reaction) (p < 0.01). The polymeric chlorhexydine coating of the internal chamber of the implant showed the ability to control the bacterial loading at the level of the peri-implant tissue. Moreover, the investigation demonstrated that the coating is able to influence also the quality of the microbiota, in particular on the species involved in the pathogenesis of peri-implantitis that are involved with a higher risk of long-term failure of the dental implant restoration. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

17 pages, 2309 KiB  
Article
Comparative Study between Laser Light Stereo-Lithography 3D-Printed and Traditionally Sintered Biphasic Calcium Phosphate Scaffolds by an Integrated Morphological, Morphometric and Mechanical Analysis
by Carlo Mangano, Francesco Mangano, Luigi Gobbi, Oleg Admakin, Satoshi Iketani and Alessandra Giuliani
Int. J. Mol. Sci. 2019, 20(13), 3118; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20133118 - 26 Jun 2019
Cited by 12 | Viewed by 3034
Abstract
In dental districts, successful bone regeneration using biphasic calcium phosphate materials was recently explored. The present study aimed to perform a comparative study between 3D-printed scaffolds produced by laser light stereo-lithography (SLA) and traditionally sintered biphasic calcium phosphate scaffolds by an integrated morphological, [...] Read more.
In dental districts, successful bone regeneration using biphasic calcium phosphate materials was recently explored. The present study aimed to perform a comparative study between 3D-printed scaffolds produced by laser light stereo-lithography (SLA) and traditionally sintered biphasic calcium phosphate scaffolds by an integrated morphological, morphometric and mechanical analysis. Methods: Biphasic calcium phosphate (30% HA/70% β-TCP) samples, produced by SLA-3D-printing or by traditional sintering methods, were tested. The experimental sequence included: (1) Microtomography (microCT) analyses, to serve as control-references for the 3D morphometric analysis; (2) loading tests in continuous mode, with compression up to fracture, to reconstruct their mechanical characteristics; and (3) microCT of the same samples after the loading tests, for the prediction of the morphometric changes induced by compressive loading of the selected materials. All the biomaterials were also studied by complementary scanning electron microscopy to evaluate fracture regions and surfaces. Results: The characterization of the 3D mineralized microarchitecture showed that the SLA-3D-printed biomaterials offer performances comparable to and in some cases better than the traditionally sintered ones, with higher mean thickness of struts and pores. Interestingly, the SLA-3D-printed samples had a higher ultimate strength than the sintered ones, with a smaller plastic region. Moreover, by SEM observation, it was observed that fractures in the SLA-3D-printed samples were localized in the structure nodes or on the external shells of the rods, while all the traditionally sintered samples revealed a ductile fracture surface. Conclusions: The reduction of the region of plastic deformation in the SLA-3D-printed samples with respect to traditionally sintered biomaterials is expected to positively influence, in vivo, the cell adhesion. Both microCT and SEM imaging revealed that the studied biomaterials exhibit a structure more similar to human jaw than the sintered biomaterials. Full article
(This article belongs to the Special Issue Advanced Implant Surface Modification and Tissue Engineering)
Show Figures

Figure 1

Back to TopTop