ijms-logo

Journal Browser

Journal Browser

Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (30 April 2019) | Viewed by 155550

Special Issue Editors

Special Issue Information

Dear Colleagues, 

Worldwide, the obesity epidemic has resulted in a surge of metabolic abnormalities and diseases stemming from the condition of insulin resistance that accompanies the obesity status. Insulin resistance represents an impaired biological response to insulin stimulation of target tissues, primarily liver, muscle, and adipose tissue. It is recognized as the root for hypertension, dyslipidemia, non alcholic fatty liver disease, policistic ovary syndome, atherosclerosis, and adverse cardiac remodeling/heart failure. Insulin resistance is also risk factor for cancer development. The list of target organs has recently been enlongated, recognizing its role in the pathogenesis of type 2 diabetes associated dementia and Alzheimer's disease (AD), a condition known as Type 3 diabetes (T3D). Furthermore, the impact of environment (e.g., exposure to bacteria or pollutants) on the onset of metabolic abnormalities is becoming evident.

Insulin resistance was first recognized as risk factor for several diseases in late 1990s by a group of investigators from different research backgrounds who joined the European Group for the study of Insulin Resistance (EGIR). Nowdays, in view of this renewed interest in the pathogenetic role of insulin resistance, the EGIR group has been recognized as a study group belonging to the European Association for the Study of Diabetes (EASD).

We invite investigators to contribute either original research articles or review articles focusing on the variety of molecular mechanisms that either contribute to the worsening of insulin resistance in obese patients, or that, triggered by insulin resistance, cause the onset and progression of comorbidities associated with obesity.

Prof. Dr. Melania Manco
Prof. Dr. Amalia Gastaldelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dysregulated fatty acid and/or branched chain amino acids
  • metabolism
  • metabolic inflexibility
  • tissue lipid accumulation, lipotoxicity and lipid mediated cell signaling
  • insulin resistance reversal
  • cancer development
  • low-grade inflammation and/or altered expression, synthesis and degradation and bioavailability of IGF binding proteins
  • environmental chemicals
  • mechanisms of T3D
  • microbiota and antimicrobials modulation
  • endocrine disruptors
  • altered immune system homeostasis

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 4007 KiB  
Article
Adipose Lipolysis Regulates Cardiac Glucose Uptake and Function in Mice under Cold Stress
by Youngshim Choi, Hyunsu Shin, Ziwei Tang, Yute Yeh, Yinyan Ma, Anil K. G. Kadegowda, Huan Wang, Long Jiang, Rakesh K. Arya, Ling Chen, Bingzhong Xue, Hang Shi, Oksana Gavrilova and Liqing Yu
Int. J. Mol. Sci. 2021, 22(24), 13361; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222413361 - 12 Dec 2021
Viewed by 3241
Abstract
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue [...] Read more.
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-β, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction. Full article
Show Figures

Figure 1

21 pages, 3820 KiB  
Article
Liraglutide Treatment Ameliorates Neurotoxicity Induced by Stable Silencing of Pin1
by Marzia Bianchi, Valentina D’Oria, Maria Rita Braghini, Stefania Petrini and Melania Manco
Int. J. Mol. Sci. 2019, 20(20), 5064; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20205064 - 12 Oct 2019
Cited by 14 | Viewed by 3082
Abstract
Post-translational modulation of peptidylprolyl isomerase Pin1 might link impaired glucose metabolism and neurodegeneration, being Pin1 effectors target for the glucagon-Like-Peptide1 analog liraglutide. We tested the hypotheses in Pin1 silenced cells (SH-SY5Y) treated with 2-deoxy-d-glucose (2DG) and methylglyoxal (MG), stressors causing altered [...] Read more.
Post-translational modulation of peptidylprolyl isomerase Pin1 might link impaired glucose metabolism and neurodegeneration, being Pin1 effectors target for the glucagon-Like-Peptide1 analog liraglutide. We tested the hypotheses in Pin1 silenced cells (SH-SY5Y) treated with 2-deoxy-d-glucose (2DG) and methylglyoxal (MG), stressors causing altered glucose trafficking, glucotoxicity and protein glycation. Rescue by liraglutide was investigated. Pin1 silencing caused increased levels of reactive oxygen species, upregulated energy metabolism as suggested by raised levels of total ATP content and mRNA of SIRT1, PGC1α, NRF1; enhanced mitochondrial fission events as supported by raised protein expression of FIS1 and DRP1. 2DG and MG reduced significantly cell viability in all the cell lines. In Pin1 KD clones, 2DG exacerbated altered mitochondrial dynamics causing higher rate of fission events. Liraglutide influenced insulin signaling pathway (GSK3b/Akt); improved cell viability also in cells treated with 2DG; but it did not revert mitochondrial dysfunction in Pin1 KD model. In cells treated with MG, liraglutide enhanced cell viability, reduced ROS levels and cell death (AnnexinV/PI); and trended to reduce anti-apoptotic signals (BAX, BCL2, CASP3). Pin1 silencing mimics neuronal metabolic impairment of patients with impaired glucose metabolism and neurodegeneration. Liraglutide rescues to some extent cellular dysfunctions induced by Pin1 silencing. Full article
Show Figures

Figure 1

13 pages, 1316 KiB  
Article
Mechanism of Action of Inhaled Insulin on Whole Body Glucose Metabolism in Subjects with Type 2 Diabetes Mellitus
by Rucha J. Mehta, Amalia Gastaldelli, Bogdana Balas, Andrea Ricotti, Ralph A. DeFronzo and Devjit Tripathy
Int. J. Mol. Sci. 2019, 20(17), 4230; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20174230 - 29 Aug 2019
Cited by 4 | Viewed by 8043
Abstract
In the current study we investigate the mechanisms of action of short acting inhaled insulin Exubera®, on hepatic glucose production (HGP), plasma glucose and free fatty acid (FFA) concentrations. 11 T2D (Type 2 Diabetes) subjects (age = 53 ± 3 years) were studied [...] Read more.
In the current study we investigate the mechanisms of action of short acting inhaled insulin Exubera®, on hepatic glucose production (HGP), plasma glucose and free fatty acid (FFA) concentrations. 11 T2D (Type 2 Diabetes) subjects (age = 53 ± 3 years) were studied at baseline (BAS) and after 16-weeks of Exubera® treatment. At BAS and after 16-weeks subjects received: measurement of HGP (3-3H-glucose); oral glucose tolerance test (OGTT); and a 24-h plasma glucose (24-h PG) profile. At end of study (EOS) we observed a significant decrease in fasting plasma glucose (FPG, 215 ± 15 to 137 ± 11 mg/dl), 2-hour plasma glucose (2-h PG, 309 ± 9 to 264 ± 11 mg/dl), glycated hemoglobin (HbA1c, 10.3 ± 0.5% to 7.5 ± 0.3%,), mean 24-h PG profile (212 ± 17 to 141 ± 8 mg/dl), FFA fasting (665 ± 106 to 479 ± 61 μM), post-OGTT (433 ± 83 to 239 ± 28 μM), and triglyceride (213 ± 39 to 120 ± 14 mg/dl), while high density cholesterol (HDL-C) increased (35 ± 3 to 47 ± 9 mg/dl). The basal HGP decreased significantly and the insulin secretion/insulin resistance (disposition) index increased significantly. There were no episodes of hypoglycemia and no change in pulmonary function at EOS. After 16-weeks of inhaled insulin Exubera® we observed a marked improvement in glycemic control by decreasing HGP and 24-h PG profile, and decreased FFA and triglyceride concentrations. Full article
Show Figures

Graphical abstract

15 pages, 3675 KiB  
Article
Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover
by Donghwan Kim, Ji-Hye Kim, Young-Ho Kang, Je Seong Kim, Sung-Cheol Yun, Sang-Wook Kang and Youngsup Song
Int. J. Mol. Sci. 2019, 20(14), 3520; https://doi.org/10.3390/ijms20143520 - 18 Jul 2019
Cited by 25 | Viewed by 4174
Abstract
The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present [...] Read more.
The high abundance of mitochondria and the expression of mitochondrial uncoupling protein 1 (UCP1) confer upon brown adipose tissue (BAT) the unique capacity to convert chemical energy into heat at the expense of ATP synthesis. It was long believed that BAT is present only in infants, and so, it was not considered as a potential therapeutic target for metabolic syndrome; however, the discovery of metabolically active BAT in adult humans has re-stimulated interest in the contributions of BAT metabolic regulation and dysfunction to health and disease. Here we demonstrate that brown adipocyte autophagy plays a critical role in the regulation BAT activity and systemic energy metabolism. Mice deficient in brown adipocyte autophagy due to BAT-specific deletion of Atg7—a gene essential for autophagosome generation—maintained higher mitochondrial content due to suppression of mitochondrial clearance and exhibited improved insulin sensitivity and energy metabolism. Autophagy was upregulated in BAT of older mice compared to younger mice, suggesting its involvement in the age-dependent decline of BAT activity and metabolic rate. These findings suggest that brown adipocyte autophagy plays a crucial role in metabolism and that targeting this pathway may be a potential therapeutic strategy for metabolic syndrome. Full article
Show Figures

Graphical abstract

14 pages, 2209 KiB  
Article
Polyalthia Clerodane Diterpene Potentiates Hypoglycemia via Inhibition of Dipeptidyl Peptidase 4
by Po-Kai Huang, Shian-Ren Lin, Jirawat Riyaphan, Yaw-Syan Fu and Ching-Feng Weng
Int. J. Mol. Sci. 2019, 20(3), 530; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20030530 - 27 Jan 2019
Cited by 15 | Viewed by 3383
Abstract
Serine protease dipeptidyl peptidase 4 (DPP-4) is involved in self/non-self-recognition and insulin sensitivity. DPP-4 inhibitors are conventional choices for diabetic treatment; however, side effects such as headache, bronchus infection, and nasopharyngitis might affect the daily lives of diabetic patients. Notably, natural compounds are [...] Read more.
Serine protease dipeptidyl peptidase 4 (DPP-4) is involved in self/non-self-recognition and insulin sensitivity. DPP-4 inhibitors are conventional choices for diabetic treatment; however, side effects such as headache, bronchus infection, and nasopharyngitis might affect the daily lives of diabetic patients. Notably, natural compounds are believed to have a similar efficacy with lower adverse effects. This study aimed to validate the DPP-4 inhibitory activity of clerodane diterpene 16-hydroxycleroda-3,13-dien-15,16-olide (HCD) from Polyalthia longifolia, rutin, quercetin, and berberine, previously selected through molecular docking. The inhibitory potency of natural DPP-4 candidates was further determined by enzymatic, in vitro Caco-2, and ERK/PKA activation in myocyte and pancreatic cells. The hypoglycemic efficacy of the natural compounds was consecutively analyzed by single-dose and multiple-dose administration in diet-induced obese diabetic mice. All the natural-compounds could directly inhibit DPP-4 activity in enzymatic assay and Caco-2 inhibition assay, and HCD showed the highest inhibition of the compounds. HCD down-regulated LPS-induced ERK phosphorylation in myocyte but blocked GLP-1 induced PKA expression. For in vivo tests, HCD showed hypoglycemic efficacy only in single-dose administration. After 28-days administration, HCD exhibited hypolipidemic and hepatoprotective efficacy. These results revealed that HCD performed potential antidiabetic activity via inhibition of single-dose and long-term administrations, and could be a new prospective anti-diabetic drug candidate. Full article
Show Figures

Figure 1

24 pages, 3586 KiB  
Article
Zebrafish Mutants Carrying Leptin a (lepa) Gene Deficiency Display Obesity, Anxiety, Less Aggression and Fear, and Circadian Rhythm and Color Preference Dysregulation
by Gilbert Audira, Sreeja Sarasamma, Jung-Ren Chen, Stevhen Juniardi, Bonifasius Putera Sampurna, Sung-Tzu Liang, Yu-Heng Lai, Geng-Ming Lin, Ming-Chia Hsieh and Chung-Der Hsiao
Int. J. Mol. Sci. 2018, 19(12), 4038; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms19124038 - 13 Dec 2018
Cited by 50 | Viewed by 8395
Abstract
Leptin, a hormone secreted by peripheral adipose tissues, regulates the appetite in animals. Recently, evidence has shown that leptin also plays roles in behavioral response in addition to controlling appetite. In this study, we examined the potential function of leptin on non-appetite behaviors [...] Read more.
Leptin, a hormone secreted by peripheral adipose tissues, regulates the appetite in animals. Recently, evidence has shown that leptin also plays roles in behavioral response in addition to controlling appetite. In this study, we examined the potential function of leptin on non-appetite behaviors in zebrafish model. By using genome editing tool of Transcription activator-like effector nuclease (TALEN), we successfully knocked out leptin a (lepa) gene by deleting 4 bp within coding region to create a premature-translation stop. Morphological and appetite analysis showed the lepa KO fish display a phenotype with obese, good appetite and elevation of Agouti-related peptide (AgRP) and Ghrelin hormones, consistent with the canonical function of leptin in controlling food intake. By multiple behavior endpoint analyses, including novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm, and color preference assay, we found the lepa KO fish display an anxiogenic phenotype showing hyperactivity with rapid swimming, less freezing time, less fear to predator, loose shoaling area forming, and circadian rhythm and color preference dysregulations. Using biochemical assays, melatonin, norepinephrine, acetylcholine and serotonin levels in the brain were found to be significantly reduced in lepa KO fish, while the levels of dopamine, glycine and cortisol in the brain were significantly elevated. In addition, the brain ROS level was elevated, and the anti-oxidative enzyme catalase level was reduced. Taken together, by performing loss-of-function multiple behavior endpoint testing and biochemical analysis, we provide strong evidence for a critical role of lepa gene in modulating anxiety, aggression, fear, and circadian rhythm behaviors in zebrafish for the first time. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

14 pages, 1416 KiB  
Review
Cardiac Insulin Resistance in Heart Failure: The Role of Mitochondrial Dynamics
by Masao Saotome, Takenori Ikoma, Prottoy Hasan and Yuichiro Maekawa
Int. J. Mol. Sci. 2019, 20(14), 3552; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20143552 - 20 Jul 2019
Cited by 34 | Viewed by 5828
Abstract
Heart failure (HF) frequently coexists with conditions associated with glucose insufficiency, such as insulin resistance and type 2 diabetes mellitus (T2DM), and patients with T2DM have a significantly high incidence of HF. These two closely related diseases cannot be separated on the basis [...] Read more.
Heart failure (HF) frequently coexists with conditions associated with glucose insufficiency, such as insulin resistance and type 2 diabetes mellitus (T2DM), and patients with T2DM have a significantly high incidence of HF. These two closely related diseases cannot be separated on the basis of their treatment. Some antidiabetic drugs failed to improve cardiac outcomes in T2DM patients, despite lowering glucose levels sufficiently. This may be, at least in part, due to a lack of understanding of cardiac insulin resistance. Basic investigations have revealed the significant contribution of cardiac insulin resistance to the pathogenesis and progression of HF; however, there is no clinical evidence of the definition or treatment of cardiac insulin resistance. Mitochondrial dynamics play an important role in cardiac insulin resistance and HF because they maintain cellular homeostasis through energy production, cell survival, and cell proliferation. The innovation of diagnostic tools and/or treatment targeting mitochondrial dynamics is assumed to improve not only the insulin sensitivity of the myocardium and cardiac metabolism, but also the cardiac contraction function. In this review, we summarized the current knowledge on the correlation between cardiac insulin resistance and progression of HF, and discussed the role of mitochondrial dynamics on the pathogenesis of cardiac insulin resistance and HF. We further discuss the possibility of mitochondria-targeted intervention to improve cardiac metabolism and HF. Full article
Show Figures

Figure 1

10 pages, 439 KiB  
Review
Carcinoembryonic Cell Adhesion-Related Molecule 2 Regulates Insulin Secretion and Energy Balance
by Elsaid Salaheldeen, Alexa Jaume and Sonia Michael Najjar
Int. J. Mol. Sci. 2019, 20(13), 3231; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20133231 - 01 Jul 2019
Cited by 1 | Viewed by 2880
Abstract
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule (CEACAM) family of proteins plays a significant role in regulating peripheral insulin action by participating in the regulation of insulin metabolism and energy balance. In light of their differential expression, CEACAM1 regulates chiefly insulin extraction, whereas CEACAM2 [...] Read more.
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule (CEACAM) family of proteins plays a significant role in regulating peripheral insulin action by participating in the regulation of insulin metabolism and energy balance. In light of their differential expression, CEACAM1 regulates chiefly insulin extraction, whereas CEACAM2 appears to play a more important role in regulating insulin secretion and overall energy balance, including food intake, energy expenditure and spontaneous physical activity. We will focus this review on the role of CEACAM2 in regulating insulin metabolism and energy balance with an overarching goal to emphasize the importance of the coordinated regulatory effect of these related plasma membrane glycoproteins on insulin metabolism and action. Full article
Show Figures

Graphical abstract

13 pages, 1131 KiB  
Review
The Dualistic Effect of COX-2-Mediated Signaling in Obesity and Insulin Resistance
by Pei-Chi Chan, Min-Tser Liao and Po-Shiuan Hsieh
Int. J. Mol. Sci. 2019, 20(13), 3115; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20133115 - 26 Jun 2019
Cited by 47 | Viewed by 9840
Abstract
Obesity and insulin resistance are two major risk factors for the development of metabolic syndrome, type 2 diabetes and associated cardiovascular diseases (CVDs). Cyclooxygenase (COX), a rate-limiting enzyme responsible for the biosynthesis of prostaglandins (PGs), exists in two isoforms: COX-1, the constitutive form, [...] Read more.
Obesity and insulin resistance are two major risk factors for the development of metabolic syndrome, type 2 diabetes and associated cardiovascular diseases (CVDs). Cyclooxygenase (COX), a rate-limiting enzyme responsible for the biosynthesis of prostaglandins (PGs), exists in two isoforms: COX-1, the constitutive form, and COX-2, mainly the inducible form. COX-2 is the key enzyme in eicosanoid metabolism that converts eicosanoids into a number of PGs, including PGD2, PGE2, PGF, and prostacyclin (PGI2), all of which exert diverse hormone-like effects via autocrine or paracrine mechanisms. The COX-2 gene and immunoreactive proteins have been documented to be highly expressed and elevated in adipose tissue (AT) under morbid obesity conditions. On the other hand, the environmental stress-induced expression and constitutive over-expression of COX-2 have been reported to play distinctive roles under different pathological and physiological conditions; i.e., over-expression of the COX-2 gene in white AT (WAT) has been shown to induce de novo brown AT (BAT) recruitment in WAT and then facilitate systemic energy expenditure to protect mice against high-fat diet-induced obesity. Hepatic COX-2 expression was found to protect against diet-induced steatosis, obesity, and insulin resistance. However, COX-2 activation in the epidydimal AT is strongly correlated with the development of AT inflammation, insulin resistance, and fatty liver in high-fat-diet-induced obese rats. This review will provide updated information regarding the role of COX-2-derived signals in the regulation of energy metabolism and the pathogenesis of obesity and MS. Full article
Show Figures

Figure 1

21 pages, 2268 KiB  
Review
Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play a Role?
by Francesca Cirillo, Cecilia Catellani, Chiara Sartori, Pietro Lazzeroni, Sergio Amarri and Maria Elisabeth Street
Int. J. Mol. Sci. 2019, 20(12), 2922; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20122922 - 14 Jun 2019
Cited by 45 | Viewed by 5326
Abstract
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and [...] Read more.
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and cancer. Herein we report dysregulated miRNAs in obesity both in animal models and in humans, and we also document dysregulated miRNAs in colorectal cancer (CRC), as example of an obesity-related cancer. Some of the described miRNAs are found to be similarly dysregulated both in obesity, insulin resistance (IR), and CRC. Thus, we present miRNAs as a potential molecular link between obesity and CRC onset and development, giving a new perspective on the role of miRNAs in obesity-associated cancers. Full article
Show Figures

Graphical abstract

16 pages, 1352 KiB  
Review
Contribution of Impaired Insulin Signaling to the Pathogenesis of Diabetic Cardiomyopathy
by Mònica Zamora and Josep A. Villena
Int. J. Mol. Sci. 2019, 20(11), 2833; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20112833 - 11 Jun 2019
Cited by 46 | Viewed by 7142
Abstract
Diabetic cardiomyopathy (DCM) has emerged as a relevant cause of heart failure among the diabetic population. Defined as a cardiac dysfunction that develops in diabetic patients independently of other major cardiovascular risks factors, such as high blood pressure and coronary artery disease, the [...] Read more.
Diabetic cardiomyopathy (DCM) has emerged as a relevant cause of heart failure among the diabetic population. Defined as a cardiac dysfunction that develops in diabetic patients independently of other major cardiovascular risks factors, such as high blood pressure and coronary artery disease, the underlying cause of DCMremains to be unveiled. Several pathogenic factors, including glucose and lipid toxicity, mitochondrial dysfunction, increased oxidative stress, sustained activation of the renin-angiotensin system (RAS) or altered calcium homeostasis, have been shown to contribute to the structural and functional alterations that characterize diabetic hearts. However, all these pathogenic mechanisms appear to stem from the metabolic inflexibility imposed by insulin resistance or lack of insulin signaling. This results in absolute reliance on fatty acids for the synthesis of ATP and impairment of glucose oxidation. Glucose is then rerouted to other metabolic pathways, with harmful effects on cardiomyocyte function. Here, we discuss the role that impaired cardiac insulin signaling in diabetic or insulin-resistant individuals plays in the onset and progression of DCM. Full article
Show Figures

Figure 1

15 pages, 789 KiB  
Review
Mitochondrial Activity and Skeletal Muscle Insulin Resistance in Kidney Disease
by Jane E. Carré and Charles Affourtit
Int. J. Mol. Sci. 2019, 20(11), 2751; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20112751 - 05 Jun 2019
Cited by 29 | Viewed by 6615
Abstract
Insulin resistance is a key feature of the metabolic syndrome, a cluster of medical disorders that together increase the chance of developing type 2 diabetes and cardiovascular disease. In turn, type 2 diabetes may cause complications such as diabetic kidney disease (DKD). Obesity [...] Read more.
Insulin resistance is a key feature of the metabolic syndrome, a cluster of medical disorders that together increase the chance of developing type 2 diabetes and cardiovascular disease. In turn, type 2 diabetes may cause complications such as diabetic kidney disease (DKD). Obesity is a major risk factor for developing systemic insulin resistance, and skeletal muscle is the first tissue in susceptible individuals to lose its insulin responsiveness. Interestingly, lean individuals are not immune to insulin resistance either. Non-obese, non-diabetic subjects with chronic kidney disease (CKD), for example, exhibit insulin resistance at the very onset of CKD, even before clinical symptoms of renal failure are clear. This uraemic insulin resistance contributes to the muscle weakness and muscle wasting that many CKD patients face, especially during the later stages of the disease. Bioenergetic failure has been associated with the loss of skeletal muscle insulin sensitivity in obesity and uraemia, as well as in the development of kidney disease and its sarcopenic complications. In this mini review, we evaluate how mitochondrial activity of different renal cell types changes during DKD progression, and discuss the controversial role of oxidative stress and mitochondrial reactive oxygen species in DKD. We also compare the involvement of skeletal muscle mitochondria in uraemic and obesity-related muscle insulin resistance. Full article
Show Figures

Graphical abstract

14 pages, 1543 KiB  
Review
Metabolomics of Type 1 and Type 2 Diabetes
by Borros Arneth, Rebekka Arneth and Mohamed Shams
Int. J. Mol. Sci. 2019, 20(10), 2467; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20102467 - 18 May 2019
Cited by 148 | Viewed by 21723
Abstract
Type 1 and type 2 diabetes mellitus (DM) are chronic diseases that affect nearly 425 million people worldwide, leading to poor health outcomes and high health care costs. High-throughput metabolomics screening can provide vital insight into the pathophysiological pathways of DM and help [...] Read more.
Type 1 and type 2 diabetes mellitus (DM) are chronic diseases that affect nearly 425 million people worldwide, leading to poor health outcomes and high health care costs. High-throughput metabolomics screening can provide vital insight into the pathophysiological pathways of DM and help in managing its effects. The primary aim of this study was to contribute to the understanding and management of DM by providing reliable evidence of the relationships between metabolites and type 1 diabetes (T1D) and metabolites and type 2 diabetes (T2D). Information for the study was obtained from the PubMed, MEDLINE, and EMBASE databases, and leads to additional articles that were obtained from the reference lists of the studies examined. The results from the selected studies were used to assess the relationships between diabetes (T1D and/or T2D) and metabolite markers—such as glutamine, glycine, and aromatic amino acids—in patients. Seventy studies were selected from the three databases and from the reference lists in the records retrieved. All studies explored associations between various metabolites and T1D or T2D. This review identified several plasma metabolites associated with T2D prediabetes and/or T1D and/or T2D in humans. The evidence shows that metabolites such as glucose, fructose, amino acids, and lipids are typically altered in individuals with T1D and T2D. These metabolites exhibit significant predictive associations with T2D prediabetes, T1D, and/or T2D. The current review suggests that changes in plasma metabolites can be identified by metabolomic techniques and used to identify and analyze T1D and T2D biomarkers. The results of the metabolomic studies can be used to help create effective interventions for managing these diseases. Full article
Show Figures

Figure 1

23 pages, 983 KiB  
Review
Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications
by Michele Longo, Federica Zatterale, Jamal Naderi, Luca Parrillo, Pietro Formisano, Gregory Alexander Raciti, Francesco Beguinot and Claudia Miele
Int. J. Mol. Sci. 2019, 20(9), 2358; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20092358 - 13 May 2019
Cited by 808 | Viewed by 41560
Abstract
Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in [...] Read more.
Obesity is a critical risk factor for the development of type 2 diabetes (T2D), and its prevalence is rising worldwide. White adipose tissue (WAT) has a crucial role in regulating systemic energy homeostasis. Adipose tissue expands by a combination of an increase in adipocyte size (hypertrophy) and number (hyperplasia). The recruitment and differentiation of adipose precursor cells in the subcutaneous adipose tissue (SAT), rather than merely inflating the cells, would be protective from the obesity-associated metabolic complications. In metabolically unhealthy obesity, the storage capacity of SAT, the largest WAT depot, is limited, and further caloric overload leads to the fat accumulation in ectopic tissues (e.g., liver, skeletal muscle, and heart) and in the visceral adipose depots, an event commonly defined as “lipotoxicity.” Excessive ectopic lipid accumulation leads to local inflammation and insulin resistance (IR). Indeed, overnutrition triggers uncontrolled inflammatory responses in WAT, leading to chronic low-grade inflammation, therefore fostering the progression of IR. This review summarizes the current knowledge on WAT dysfunction in obesity and its associated metabolic abnormalities, such as IR. A better understanding of the mechanisms regulating adipose tissue expansion in obesity is required for the development of future therapeutic approaches in obesity-associated metabolic complications. Full article
Show Figures

Figure 1

17 pages, 1690 KiB  
Review
Role of Cannabinoid Receptor Type 1 in Insulin Resistance and Its Biological Implications
by Arulkumar Nagappan, Jooyeon Shin and Myeong Ho Jung
Int. J. Mol. Sci. 2019, 20(9), 2109; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20092109 - 29 Apr 2019
Cited by 35 | Viewed by 6376
Abstract
Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and [...] Read more.
Endogenous cannabinoids (ECs) are lipid-signaling molecules that specifically bind to cannabinoid receptor types 1 and 2 (CB1R and CB2R) and are highly expressed in central and many peripheral tissues under pathological conditions. Activation of hepatic CB1R is associated with obesity, insulin resistance, and impaired metabolic function, owing to increased energy intake and storage, impaired glucose and lipid metabolism, and enhanced oxidative stress and inflammatory responses. Additionally, blocking peripheral CB1R improves insulin sensitivity and glucose metabolism and also reduces hepatic steatosis and body weight in obese mice. Thus, targeting EC receptors, especially CB1R, may provide a potential therapeutic strategy against obesity and insulin resistance. There are many CB1R antagonists, including inverse agonists and natural compounds that target CB1R and can reduce body weight, adiposity, and hepatic steatosis, and those that improve insulin sensitivity and reverse leptin resistance. Recently, the use of CB1R antagonists was suspended due to adverse central effects, and this caused a major setback in the development of CB1R antagonists. Recent studies, however, have focused on development of antagonists lacking adverse effects. In this review, we detail the important role of CB1R in hepatic insulin resistance and the possible underlying mechanisms, and the therapeutic potential of CB1R targeting is also discussed. Full article
Show Figures

Figure 1

12 pages, 1178 KiB  
Review
Gangliosides Contribute to Vascular Insulin Resistance
by Norihiko Sasaki, Yoko Itakura and Masashi Toyoda
Int. J. Mol. Sci. 2019, 20(8), 1819; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20081819 - 12 Apr 2019
Cited by 13 | Viewed by 4797
Abstract
Insulin in physiological concentrations is important to maintain vascular function. Moreover, vascular insulin resistance contributes to vascular impairment. In the elderly, other factors including hypertension, dyslipidemia, and chronic inflammation amplify senescence of vascular endothelial and smooth muscle cells. In turn, senescence increases the [...] Read more.
Insulin in physiological concentrations is important to maintain vascular function. Moreover, vascular insulin resistance contributes to vascular impairment. In the elderly, other factors including hypertension, dyslipidemia, and chronic inflammation amplify senescence of vascular endothelial and smooth muscle cells. In turn, senescence increases the risk for vascular-related diseases such as arteriosclerosis, diabetes, and Alzheimer’s disease. Recently, it was found that GM1 ganglioside, one of the glycolipids localized on the cell membrane, mediates vascular insulin resistance by promoting senescence and/or inflammatory stimulation. First, it was shown that increased GM1 levels associated with aging/senescence contribute to insulin resistance in human aortic endothelial cells (HAECs). Second, the expression levels of gangliosides were monitored in HAECs treated with different concentrations of tumor necrosis factor-alpha (TNFα) for different time intervals to mimic in vivo acute or chronic inflammatory conditions. Third, the levels of insulin signaling-related molecules were monitored in HAECs after TNFα treatment with or without inhibitors of ganglioside synthesis. In this review, we summarize the molecular mechanisms of insulin resistance in aged/senescent and TNFα-stimulated endothelial cells mediated by gangliosides and highlight the possible roles of gangliosides in vascular insulin resistance-related diseases. Full article
Show Figures

Figure 1

16 pages, 506 KiB  
Review
Molecular Mechanisms of Hypothalamic Insulin Resistance
by Hiraku Ono
Int. J. Mol. Sci. 2019, 20(6), 1317; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20061317 - 15 Mar 2019
Cited by 62 | Viewed by 7238
Abstract
Insulin exists in the central nervous system, where it executes two important functions in the hypothalamus: the suppression of food intake and the improvement of glucose metabolism. Recent studies have shown that both are exerted robustly in rodents and humans. If intact, these [...] Read more.
Insulin exists in the central nervous system, where it executes two important functions in the hypothalamus: the suppression of food intake and the improvement of glucose metabolism. Recent studies have shown that both are exerted robustly in rodents and humans. If intact, these functions exert beneficial effects on obesity and diabetes, respectively. Disruption of both occurs due to a condition known as hypothalamic insulin resistance, which is caused by obesity and the overconsumption of saturated fat. An enormous volume of literature addresses the molecular mechanisms of hypothalamic insulin resistance. IKKβ and JNK are major players in the inflammation pathway, which is activated by saturated fatty acids that induce hypothalamic insulin resistance. Two major tyrosine phosphatases, PTP-1B and TCPTP, are upregulated in chronic overeating. They dephosphorylate the insulin receptor and insulin receptor substrate proteins, resulting in hypothalamic insulin resistance. Prolonged hyperinsulinemia with excessive nutrition activates the mTOR/S6 kinase pathway, thereby enhancing IRS-1 serine phosphorylation to induce hypothalamic insulin resistance. Other mechanisms associated with this condition include hypothalamic gliosis and disturbed insulin transport into the central nervous system. Unveiling the precise molecular mechanisms involved in hypothalamic insulin resistance is important for developing new ways of treating obesity and type 2 diabetes. Full article
Show Figures

Figure 1

11 pages, 895 KiB  
Review
Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66Shc
by Stefano Ciciliot and Gian Paolo Fadini
Int. J. Mol. Sci. 2019, 20(4), 985; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20040985 - 24 Feb 2019
Cited by 16 | Viewed by 4298
Abstract
Initially reported as a longevity-related protein, the 66 kDa isoform of the mammalian Shc1 locus has been implicated in several metabolic pathways, being able to act both as an adaptor protein and as a redox enzyme capable of generating reactive oxygen species (ROS) [...] Read more.
Initially reported as a longevity-related protein, the 66 kDa isoform of the mammalian Shc1 locus has been implicated in several metabolic pathways, being able to act both as an adaptor protein and as a redox enzyme capable of generating reactive oxygen species (ROS) when it localizes to the mitochondrion. Ablation of p66Shc has been shown to be protective against obesity and the insurgence of insulin resistance, but not all the studies available in the literature agree on these points. This review will focus in particular on the role of p66Shc in the modulation of glucose homeostasis, obesity, body temperature, and respiration/energy expenditure. In view of the obesity and diabetes epidemic, p66Shc may represent a promising therapeutic target with enormous implications for human health. Full article
Show Figures

Figure 1

Back to TopTop