ijms-logo

Journal Browser

Journal Browser

Brain-Derived Neurotrophic Factor

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (30 June 2017) | Viewed by 111660

Special Issue Editor


E-Mail Website
Guest Editor
University of California, San Francisco
Interests: Dr. Guiting Lin has conducted research work exploring the effect of brain-derived neurotrophic factor (BDNF) on the regeneration of nitric oxide synthesis (NOS) penile nerves and the neurons in the pelvic ganglia after cavernous nerve transection in rats. The results showed that the BDNF significantly enhanced the regeneration of NOS-containing fibers in the dorsal and intracavernosal nerves. It was also found that BDNF promoted penile nerve regeneration through signal transducer and activator of transcription (STAT), mitogen-activated protein kinases (MAPKs) and protein kinase C (PKC) cellular signaling pathways in the ganglion. Meanwhile, Dr. Lin has applied the rat oligo microarray to screen differential genes related to incontinence in a rat model and the molecular mechanism of female stress urinary incontinence (SUI). Recently, Dr. Guiting Lin has focused on tissue resident stem/progenitor cells and the application of microenergy medicine (MEM) in urology, such as SUI and erectile dysfunction (ED). D
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, “Brain-Derived Neurotrophic Factor”, will cover a selection of recent research topics and current review articles in the field of neuroprotective effects of Brain-Derived Neurotrophic Factor in the central nerve and peripheral nerve system. Experimental papers, up-to-date review articles, and commentaries are all welcome.

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It acts on certain neurons of the central nervous system and the peripheral nervous system, helping to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and synapses. BDNF plays a significant role in neuroprotective effects. BDNF can promote protective pathways and inhibit damaging pathways that contribute to the brain’s neurogenic response by enhancing cell survival. This becomes especially evident following suppression of tropomyosin-related kinase B (TrkB) activity. BDNF recently was found to enhance survival and neuronal differentiation of human neural precursor cells in rat models of auditory neuronal damage. BDNF from bone marrow-derived cells promoted post-injury repair of sciatic nerve in mice. Therefore, BDNF would represent an attractive treatment modality for nerve injuries in addition to peripheral neuropathic disorders, such as diabetes mellitus.

Dr. Guiting Lin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Brain-Derived Neurotrophic Factor (BDNF)
  • Neuroprotection
  • Nerve regeneration
  • Survival and neuronal differentiation
  • Central nerve system
  • Peripheral nerve system
  • Cellular signaling transduction
  • Tropomyosin-related kinase B (TrkB)
  • Clinical trials

Related Special Issue

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

949 KiB  
Communication
Effect of Clotting Duration and Temperature on BDNF Measurement in Human Serum
by Patrizia Amadio, Leonardo Sandrini, Alessandro Ieraci, Elena Tremoli and Silvia Stella Barbieri
Int. J. Mol. Sci. 2017, 18(9), 1987; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18091987 - 15 Sep 2017
Cited by 28 | Viewed by 4353
Abstract
Brain-derived neurothrophic factor (BDNF) is a neurotrophin expressed in different tissues and cells, including neurons, endothelial cells, leukocytes, megakaryocytes and platelets. Modifications of BDNF in plasma and/or in serum are associated with neurodegenerative and psychiatric disorders, cardiovascular diseases, metabolic syndrome and with mortality [...] Read more.
Brain-derived neurothrophic factor (BDNF) is a neurotrophin expressed in different tissues and cells, including neurons, endothelial cells, leukocytes, megakaryocytes and platelets. Modifications of BDNF in plasma and/or in serum are associated with neurodegenerative and psychiatric disorders, cardiovascular diseases, metabolic syndrome and with mortality risk. Indeed, changes in blood levels of BDNF may reflect those of its tissue of origin and/or promote pathological dysfunctions. The measurement of BDNF amount in plasma or in serum has been characterized with particular attention in the impact of different anti-coagulants, clotting duration, temperature (≤21 °C) and delay in blood sample centrifugation as well as in stability of storage. However, the influences of normothermic conditions (37 °C) and of clotting duration on BDNF levels in human serum have not been investigated yet. Here, we showed that time and temperature during serum preparation could be taken into consideration to assess the association and/or impact of BDNF levels in the occurrence of pathological conditions. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

2935 KiB  
Article
The Actin Cytoskeleton Is Involved in Glial Cell Line-Derived Neurotrophic Factor (GDNF)-Induced Ret Translocation into Lipid Rafts in Dopaminergic Neuronal Cells
by Li Li, Haijing Song, Peipei Mu, Ming Xu, Chaoxia Liu, Ying Wang, Yingsong Qin, Shen Sun, Jin Gao, Ting Wang and Dianshuai Gao
Int. J. Mol. Sci. 2017, 18(9), 1922; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18091922 - 07 Sep 2017
Cited by 3 | Viewed by 3781
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a potential therapeutic factor for Parkinson’s disease (PD), exerts its biological effects through the Ret receptor tyrosine kinase. The redistribution of Ret into lipid rafts substantially influences Ret signaling, but the mechanisms underlying Ret translocation remain unclear. [...] Read more.
Glial cell line-derived neurotrophic factor (GDNF), a potential therapeutic factor for Parkinson’s disease (PD), exerts its biological effects through the Ret receptor tyrosine kinase. The redistribution of Ret into lipid rafts substantially influences Ret signaling, but the mechanisms underlying Ret translocation remain unclear. The purpose of our study was to further explore the signaling mechanisms of GDNF and to determine whether the actin cytoskeleton is involved in the GDNF-induced Ret translocation into lipid rafts. In MN9D dopaminergic neuronal cells, we used density gradient centrifugation and immunofluorescence confocal microscopy to separate and visualize lipid rafts, co-immunoprecipitation to analyze protein-protein interactions, and latrunculin B (Lat B) and jasplakinolide (Jas) to disrupt and enhance the polymerization of the actin cytoskeleton, respectively. The results showed that Ret translocated into lipid rafts and coimmunoprecipitated with actin in response to GDNF treatment. After Lat B or Jas treatment, the Ret–F-actin association induced by GDNF was impaired or enhanced respectively and then the levels of Ret translocated into lipid rafts were correspondingly inhibited or promoted. These data indicate that actin polymerization and cytoskeletal remodeling are integral to GDNF-induced cell signaling in dopaminergic cells and define a new role of the actin cytoskeleton in promoting Ret redistribution into lipid rafts. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

2479 KiB  
Article
Salivary Gland Derived BDNF Overexpression in Mice Exerts an Anxiolytic Effect
by Juri Saruta, Masahiro To, Masahiro Sugimoto, Yuko Yamamoto, Tomoko Shimizu, Yusuke Nakagawa, Hiroko Inoue, Ichiro Saito and Keiichi Tsukinoki
Int. J. Mol. Sci. 2017, 18(9), 1902; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18091902 - 05 Sep 2017
Cited by 16 | Viewed by 5666
Abstract
Brain-derived neurotrophic factor (BDNF) is abundant in the hippocampus and plays critical roles in memory and synapse formation, as well as exerting antidepressant-like effects in psychiatric disorders. We previously reported that BDNF is expressed in salivary glands and affects blood BDNF content. However, [...] Read more.
Brain-derived neurotrophic factor (BDNF) is abundant in the hippocampus and plays critical roles in memory and synapse formation, as well as exerting antidepressant-like effects in psychiatric disorders. We previously reported that BDNF is expressed in salivary glands and affects blood BDNF content. However, the function of salivary BDNF remains unclear. The aim of this study was to generate transgenic mice overexpressing BDNF in the salivary glands. Hence, we used the Lama construct (hemagglutinin (HA)-tagged mouse Bdnf cDNA) to specifically express BDNF in mouse salivary glands. Compared with control mice, Bdnf-HA transgenic mice showed increased blood BDNF and expressed salivary BDNF-HA. Molecular analysis revealed enhanced hippocampal BDNF levels and activation of the BDNF receptor, tyrosine kinase B (TrkB), in transgenic mice. In both the open field and elevated-plus maze tests, transgenic mice showed anxiolytic-like behavioral effects compared with control or sialoadenectomized mice. Among downstream components of the BDNF-TrkB signaling pathway, metabolic activation of the γ-aminobutyric acid (GABA) synthetic pathway was found, including higher levels of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1). Thus, we have established a transgenic mouse expressing BDNF in the parotid gland that may be useful to examine the hippocampal effects of salivary BDNF. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Graphical abstract

2424 KiB  
Article
Experimental Autoimmune Encephalomyelitis (EAE)-Induced Elevated Expression of the E1 Isoform of Methyl CpG Binding Protein 2 (MeCP2E1): Implications in Multiple Sclerosis (MS)-Induced Neurological Disability and Associated Myelin Damage
by Tina Khorshid Ahmad, Ting Zhou, Khaled AlTaweel, Claudia Cortes, Ryan Lillico, Ted Martin Lakowski, Kiana Gozda and Michael Peter Namaka
Int. J. Mol. Sci. 2017, 18(6), 1254; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18061254 - 12 Jun 2017
Cited by 9 | Viewed by 6594
Abstract
Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has [...] Read more.
Multiple sclerosis (MS) is a chronic neurological disease characterized by the destruction of central nervous system (CNS) myelin. At present, there is no cure for MS due to the inability to repair damaged myelin. Although the neurotrophin brain derived neurotrophic factor (BDNF) has a beneficial role in myelin repair, these effects may be hampered by the over-expression of a transcriptional repressor isoform of methyl CpG binding protein 2 (MeCP2) called MeCP2E1. We hypothesize that following experimental autoimmune encephalomyelitis (EAE)-induced myelin damage, the immune system induction of the pathogenic MeCP2E1 isoform hampers the myelin repair process by repressing BDNF expression. Using an EAE model of MS, we identify the temporal gene and protein expression changes of MeCP2E1, MeCP2E2 and BDNF. The expression changes of these key biological targets were then correlated with the temporal changes in neurological disability scores (NDS) over the entire disease course. Our results indicate that MeCP2E1 mRNA levels are elevated in EAE animals relative to naïve control (NC) and active control (AC) animals during all time points of disease progression. Our results suggest that the EAE-induced elevations in MeCP2E1 expression contribute to the repressed BDNF production in the spinal cord (SC). The sub-optimal levels of BDNF result in sustained NDS and associated myelin damage throughout the entire disease course. Conversely, we observed no significant differences in the expression patterns displayed for the MeCP2E2 isoform amongst our experimental groups. However, our results demonstrate that baseline protein expression ratios between the MeCP2E1 versus MeCP2E2 isoforms in the SC are higher than those identified within the dorsal root ganglia (DRG). Thus, the DRG represents a more conducive environment than that of the SC for BDNF production and transport to the CNS to assist in myelin repair. Henceforth, the sub-optimal BDNF levels we report in the SC may arise from the elevated MeCP2E1 vs. MeCP2E2 ratio in the SC that creates a more hostile environment thereby preventing local BDNF production. At the level of transcript, we demonstrate that EAE-induces the pathological enhanced expression of MeCP2E1 that contributes to enhanced NDS during the entire disease course. Thus, the pathological induction of the MeCP2E1 isoform contributes to the disruption of the normal homeostatic signaling equilibrium network that exists between cytokines, neurotrophins and chemokines that regulate the myelin repair process by repressing BDNF. Our research suggests that the elevated ratio of MeCP2E1 relative to MeCP2E2 may be a useful diagnostic marker that clinicians can utilize to determine the degree of neurological disability with associated myelin damage. The elevated MeCP2E1 vs. MeCP2E2 ratios (E1/E2) in the SC prevent BDNF from reaching optimal levels required for myelin repair. Thus, the lower E1/E2 ratios in the DRG, allow the DRG to serve as a weak secondary compensatory mechanism for enhanced production and delivery of BDNF to the SC to try to assist in myelin repair. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Graphical abstract

3649 KiB  
Article
Stability of BDNF in Human Samples Stored Up to 6 Months and Correlations of Serum and EDTA-Plasma Concentrations
by Maryna Polyakova, Haiko Schlögl, Julia Sacher, Maren Schmidt-Kassow, Jochen Kaiser, Michael Stumvoll, Jürgen Kratzsch and Matthias L. Schroeter
Int. J. Mol. Sci. 2017, 18(6), 1189; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18061189 - 03 Jun 2017
Cited by 37 | Viewed by 8233
Abstract
Brain-derived neurotrophic factor (BDNF), an important neural growth factor, has gained growing interest in neuroscience, but many influencing physiological and analytical aspects still remain unclear. In this study we assessed the impact of storage time at room temperature, repeated freeze/thaw cycles, and storage [...] Read more.
Brain-derived neurotrophic factor (BDNF), an important neural growth factor, has gained growing interest in neuroscience, but many influencing physiological and analytical aspects still remain unclear. In this study we assessed the impact of storage time at room temperature, repeated freeze/thaw cycles, and storage at −80 °C up to 6 months on serum and ethylenediaminetetraacetic acid (EDTA)-plasma BDNF. Furthermore, we assessed correlations of serum and plasma BDNF concentrations in two independent sets of samples. Coefficients of variations (CVs) for serum BDNF concentrations were significantly lower than CVs of plasma concentrations (n = 245, p = 0.006). Mean serum and plasma concentrations at all analyzed time points remained within the acceptable change limit of the inter-assay precision as declared by the manufacturer. Serum and plasma BDNF concentrations correlated positively in both sets of samples and at all analyzed time points of the stability assessment (r = 0.455 to rs = 0.596; p < 0.004). In summary, when considering the acceptable change limit, BDNF was stable in serum and in EDTA-plasma up to 6 months. Due to a higher reliability, we suggest favoring serum over EDTA-plasma for future experiments assessing peripheral BDNF concentrations. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Graphical abstract

3439 KiB  
Article
Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (mOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels—An Ex Vivo Study
by Agnieszka Śmieszek, Zuzanna Stręk, Katarzyna Kornicka, Jakub Grzesiak, Christine Weiss and Krzysztof Marycz
Int. J. Mol. Sci. 2017, 18(4), 872; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18040872 - 20 Apr 2017
Cited by 52 | Viewed by 6364
Abstract
Metformin, the popular anti-diabetic drug was shown to exert multiple biological effects. The most recent metformin gained attention as an agent that mobilizes endogenous progenitor cells and enhances regenerative potential of organisms, for example by promoting neurogenesis. In the present study, we examined [...] Read more.
Metformin, the popular anti-diabetic drug was shown to exert multiple biological effects. The most recent metformin gained attention as an agent that mobilizes endogenous progenitor cells and enhances regenerative potential of organisms, for example by promoting neurogenesis. In the present study, we examined the role of metformin on mouse olfactory ensheathing cells (mOECs) derived from animals receiving metformin for eight weeks at a concentration equal to 2.8 mg/day. The mOECs expanded ex vivo were characterized in terms of their cellular phenotype, morphology, proliferative activity, viability and accumulation of oxidative stress factors. Moreover, we determined the mRNA and protein levels of brain-derived neurotrophic factor (BDNF), distinguishing the secretion of BDNF by mOECs in cultures and circulating serum levels of BDNF. The mOECs used in the experiment were glial fibrillary acidic protein (GFAP) and p75 neurotrophin receptor (p75NTR) positive and exhibited both astrocyte-like and non-myelin Schwann cell-like morphologies. Our results revealed that the proliferation of OECs derived from mice treated with metformin was lowered, when compared to control group. Simultaneously, we noted increased cell viability, reduced expression of markers associated with cellular senescence and a decreased amount of reactive oxygen species. We observed increased mRNA expression of BDNF and its down-stream genes. Obtained results indicate that metformin may exert antioxidant, anti-apoptotic and senolytic action on OECs expanded ex vivo. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Graphical abstract

34698 KiB  
Article
Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells
by Chiu-Yen Chung, Martin Hsiu-Chu Lin, I-Neng Lee, Tsong-Hai Lee, Ming-Hsueh Lee and Jen-Tsung Yang
Int. J. Mol. Sci. 2017, 18(3), 663; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030663 - 19 Mar 2017
Cited by 17 | Viewed by 6536
Abstract
Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing [...] Read more.
Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

554 KiB  
Article
BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort
by Nesli Avgan, Heidi G. Sutherland, Lauren K. Spriggens, Chieh Yu, Omar Ibrahim, Claire Bellis, Larisa M. Haupt, David H. K. Shum and Lyn R. Griffiths
Int. J. Mol. Sci. 2017, 18(3), 655; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030655 - 17 Mar 2017
Cited by 18 | Viewed by 8363
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant [...] Read more.
Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Graphical abstract

3442 KiB  
Article
Neuropeptide VGF Promotes Maturation of Hippocampal Dendrites That Is Reduced by Single Nucleotide Polymorphisms
by Joseph Behnke, Aneesha Cheedalla, Vatsal Bhatt, Maysa Bhat, Shavonne Teng, Alicia Palmieri, Charles Christian Windon, Smita Thakker-Varia and Janet Alder
Int. J. Mol. Sci. 2017, 18(3), 612; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030612 - 11 Mar 2017
Cited by 19 | Viewed by 7912
Abstract
The neuropeptide VGF (non-acronymic) is induced by brain-derived neurotrophic factor and promotes hippocampal neurogenesis, as well as synaptic activity. However, morphological changes induced by VGF have not been elucidated. Developing hippocampal neurons were exposed to VGF through bath application or virus-mediated expression in [...] Read more.
The neuropeptide VGF (non-acronymic) is induced by brain-derived neurotrophic factor and promotes hippocampal neurogenesis, as well as synaptic activity. However, morphological changes induced by VGF have not been elucidated. Developing hippocampal neurons were exposed to VGF through bath application or virus-mediated expression in vitro. VGF-derived peptide, TLQP-62, enhanced dendritic branching, and outgrowth. Furthermore, VGF increased dendritic spine density and the proportion of immature spines. Spine formation was associated with increased synaptic protein expression and co-localization of pre- and postsynaptic markers. Three non-synonymous single nucleotide polymorphisms (SNPs) were selected in human VGF gene. Transfection of N2a cells with plasmids containing these SNPs revealed no relative change in protein expression levels and normal protein size, except for a truncated protein from the premature stop codon, E525X. All three SNPs resulted in a lower proportion of N2a cells bearing neurites relative to wild-type VGF. Furthermore, all three mutations reduced the total length of dendrites in developing hippocampal neurons. Taken together, our results suggest VGF enhances dendritic maturation and that these effects can be altered by common mutations in the VGF gene. The findings may have implications for people suffering from psychiatric disease or other conditions who may have altered VGF levels. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

200 KiB  
Article
Blood Biomarkers Predict the Cognitive Effects of Aripiprazole in Patients with Acute Schizophrenia
by Hikaru Hori, Reiji Yoshimura, Asuka Katsuki, Kiyokazu Atake, Ryohei Igata, Yuki Konishi, Hiroki Beppu and Hirotaka Tominaga
Int. J. Mol. Sci. 2017, 18(3), 568; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030568 - 06 Mar 2017
Cited by 12 | Viewed by 5552
Abstract
Aripiprazole has been reported to exert variable effects on cognitive function in patients with schizophrenia. Therefore, in the present study, we evaluated biological markers, clinical data, and psychiatric symptoms in order to identify factors that influence cognitive function in patients with schizophrenia undergoing [...] Read more.
Aripiprazole has been reported to exert variable effects on cognitive function in patients with schizophrenia. Therefore, in the present study, we evaluated biological markers, clinical data, and psychiatric symptoms in order to identify factors that influence cognitive function in patients with schizophrenia undergoing aripiprazole treatment. We evaluated cognitive function in 51 patients with schizophrenia using Brief Assessment of Cognition in Schizophrenia (BACS), as well as background information, psychiatric symptoms, plasma catecholamine metabolites—homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG)—, and serum brain-derived neurotrophic factor (BDNF). Multivariate analyses were performed in order to identify factors independently associated with cognitive function. Brain-derived neurotrophic factor levels, number of hospitalizations, and MHPG levels were associated with verbal memory and learning. Total hospitalization period and MHPG levels were associated with working memory. Age at first hospitalization and education were associated with motor speed. The number of hospital admissions, Positive and Negative Syndrome Scale negative subscale scores (PANSS-N), MHPG levels, BDNF levels, and Drug-Induced Extrapyramidal Symptoms Scale (DIEPSS) scores were associated with verbal fluency. Homovanillic acid and MHPG levels, duration of illness, and PANSS-N scores were associated with attention and processing speed. Brain-derived neurotrophic factor and MHPG levels were associated with executive function. These results suggest that treatment of psychiatric symptoms and cognitive dysfunction may be improved in patients treated with aripiprazole by controlling for these contributing factors. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
3894 KiB  
Article
Low-Intensity Extracorporeal Shock Wave Therapy Enhances Brain-Derived Neurotrophic Factor Expression through PERK/ATF4 Signaling Pathway
by Bohan Wang, Hongxiu Ning, Amanda B. Reed-Maldonado, Jun Zhou, Yajun Ruan, Tie Zhou, Hsun Shuan Wang, Byung Seok Oh, Lia Banie, Guiting Lin and Tom F. Lue
Int. J. Mol. Sci. 2017, 18(2), 433; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18020433 - 16 Feb 2017
Cited by 46 | Viewed by 6062
Abstract
Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann [...] Read more.
Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury. The result indicated that BDNF were significantly increased by the Li-ESWT after nerve injury, as well as the expression of BDNF in Schwann cells (SCs, RT4-D6P2T) in vitro. Li-ESWT activated the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α), and enhanced activating transcription factor 4 (ATF4) in an energy-dependent manner. In addition, GSK2656157—an inhibitor of PERK—effectively inhibited the effect of Li-ESWT on the phosphorylation of PERK, eIF2α, and the expression of ATF4. Furthermore, silencing ATF4 dramatically attenuated the effect of Li-ESWT on the expression of BDNF, but had no effect on hypoxia-inducible factor (HIF)1α or glial cell-derived neurotrophic factor (GDNF) in Schwann cells. In conclusion, our findings shed new light on the underlying mechanisms by which Li-ESWT may stimulate the expression of BDNF through activation of PERK/ATF4 signaling pathway. This information may help to refine the use of Li-ESWT to further improve its clinical efficacy. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

Review

Jump to: Research

1670 KiB  
Review
Epigenetic Regulation of BDNF Gene during Development and Diseases
by Kuan-Wei Chen and Linyi Chen
Int. J. Mol. Sci. 2017, 18(3), 571; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030571 - 06 Mar 2017
Cited by 50 | Viewed by 6148
Abstract
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different [...] Read more.
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE). Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

388 KiB  
Review
More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy
by Shang-Der Chen, Chia-Lin Wu, Wei-Chao Hwang and Ding-I Yang
Int. J. Mol. Sci. 2017, 18(3), 545; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030545 - 03 Mar 2017
Cited by 169 | Viewed by 10493
Abstract
In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in [...] Read more.
In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

1747 KiB  
Review
Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies
by Gonzalo S. Tejeda and Margarita Díaz-Guerra
Int. J. Mol. Sci. 2017, 18(2), 268; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18020268 - 28 Jan 2017
Cited by 87 | Viewed by 18283
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant [...] Read more.
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Graphical abstract

727 KiB  
Review
The Efficacy of Non-Pharmacological Interventions on Brain-Derived Neurotrophic Factor in Schizophrenia: A Systematic Review and Meta-Analysis
by Kenji Sanada, Iñaki Zorrilla, Yusuke Iwata, Cristina Bermúdez-Ampudia, Ariel Graff-Guerrero, Mónica Martínez-Cengotitabengoa and Ana González-Pinto
Int. J. Mol. Sci. 2016, 17(10), 1766; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17101766 - 24 Oct 2016
Cited by 28 | Viewed by 6433
Abstract
Several studies have investigated the relationship between non-pharmacological interventions (NPIs) and peripheral brain-derived neurotrophic factor (BDNF) in schizophrenia patients. We conducted a systematic review and meta-analysis to review the efficacy of NPIs on peripheral serum and plasma BDNF in subjects with schizophrenia (including [...] Read more.
Several studies have investigated the relationship between non-pharmacological interventions (NPIs) and peripheral brain-derived neurotrophic factor (BDNF) in schizophrenia patients. We conducted a systematic review and meta-analysis to review the efficacy of NPIs on peripheral serum and plasma BDNF in subjects with schizophrenia (including schizoaffective disorder). Meta-analyses were conducted to examine the effects of NPIs on blood BDNF levels by using the standardized mean differences (SMDs) between the intervention groups and controls. In total, six randomized controlled trials with 289 participants were included. Of them, five studies used exercise, physical training or diet products. One study used cognitive training. Overall, the BDNF levels in the NPI group increased significantly compared with the control groups (SMD = 0.95, 95% confidence interval (CI) = 0.07 to 1.83, p = 0.03). Subgroup analyses indicated beneficial effects of a non-exercise intervention on peripheral BDNF levels (SMD = 0.41, 95% CI = 0.08 to 0.74, p = 0.01). Meta-regression analyses showed that the completion rate influenced the variation in SMD (p = 0.01). Despite insufficient evidence to draw a conclusion, our results suggest that use of NPIs as adjunctive treatments, specifically non-exercise interventions, may affect positively serum or plasma BDNF in patients with schizophrenia. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

Back to TopTop