ijms-logo

Journal Browser

Journal Browser

Retinal Degeneration: From Pathophysiology to Therapeutic Approaches 3.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (31 May 2022) | Viewed by 30626

Special Issue Editor

Special Issue Information

Dear Colleagues,

Loss of vision due to retinal degeneration can have monogenic or multifactorial causes. There is an urgent search for cures, treatments and prevention for children as well as adults affected by retinitis pigmentosa, age-related macular degeneration, Usher syndrome and other retinal degenerative diseases. A first retinal gene therapy medicine has recently been approved by regulatory agencies and other studies are ongoing in the clinic, but there are many more retinal disease genes without an available medicine. The retina is well accessible through image-guided surgical intervention including gene therapy and the transplantation of retinal cells. Neural retina and retinal pigment epithelium (RPE) can be generated from induced pluripotent stem cells (hiPSC) and used for pre-clinical studies.

This Special Issue of the International Journal of Molecular Sciences entitled “Retinal Degeneration: From Pathophysiology to Therapeutic Approaches 3.0” will focus on recent insights in this field, including new insights into hereditary disease, human and animal retinal pathology due to gene mutations, retinal inflammation, retinal gene therapy, hiPSC-derived neural retina and RPE, natural history studies on patients, pre-and clinical gene therapy, animal models for hereditary retinal dystrophy, retinal imaging, and submissions dealing with these topics are welcome. According to the Aims and Scope of IJMS, each manuscript needs to include basic studies in biochemistry, molecular biology, or molecular medicine.

Dr. Jan Wijnholds
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hereditary retinal disease
  • retinal inflammation
  • retinal gene augmentation, editing, optogenetics and splice modulation therapy
  • natural history studies of the retina
  • human iPSC-derived retina and retinal pigment epithelium
  • retinal iPSC-derived cell therapy
  • retinal pathology
  • pre- and clinical gene therapy
  • animal models for retinal dystrophy
  • retinal imaging

Related Special Issues

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1871 KiB  
Article
ERG and Behavioral CFF in Light-Damaged Albino Rats
by Glen R. Rubin, Yuquan Wen, Michael S. Loop and Timothy W. Kraft
Int. J. Mol. Sci. 2022, 23(8), 4127; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23084127 - 08 Apr 2022
Cited by 4 | Viewed by 1638
Abstract
The full-field ERG is useful for index rod- or cone-mediated retinal function in rodent models of retinal degeneration. However, the relationship between the ERG response amplitudes and visually guided behavior, such as flicker detection, is not well understood. A comparison of ERG to [...] Read more.
The full-field ERG is useful for index rod- or cone-mediated retinal function in rodent models of retinal degeneration. However, the relationship between the ERG response amplitudes and visually guided behavior, such as flicker detection, is not well understood. A comparison of ERG to behavioral responses in a light-damage model of retinal degeneration allows us to better understand the functional implications of electrophysiological changes. Flicker-ERG and behavioral responses to flicker were used to determine critical flicker frequency (CFF) under scotopic and photopic conditions before and up to 90 d after a 10-day period of low-intensity light damage. Dark- and light-adapted ERG flash responses were significantly reduced after light damage. The a-wave was permanently reduced, while the b-wave amplitude recovered over three weeks after light damage. There was a small, but significant dip in scotopic ERG CFF. Photopic behavioral CFF was slightly lower following light damage. The recovery of the b-wave amplitude and flicker sensitivity demonstrates the plasticity of retinal circuits following photopic injury. Full article
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Cone Photoreceptor Loss in Light-Damaged Albino Rats
by Molly C. Benthal, Alex S. McKeown and Timothy W. Kraft
Int. J. Mol. Sci. 2022, 23(7), 3978; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23073978 - 02 Apr 2022
Cited by 6 | Viewed by 1794
Abstract
We investigated the etiology of decreased cone-driven vision in a light damage (LD) model of retinal degeneration. To induce slow, moderate degeneration, albino rats underwent low-intensity light exposure for 10 days. Electroretinography was utilized to assess physiologic function of the rod- and cone-driven [...] Read more.
We investigated the etiology of decreased cone-driven vision in a light damage (LD) model of retinal degeneration. To induce slow, moderate degeneration, albino rats underwent low-intensity light exposure for 10 days. Electroretinography was utilized to assess physiologic function of the rod- and cone-driven retinal function in LD and control rats. Immunohistochemistry targeting cone arrestin allowed for quantification of cone density and for comparison of the decline in function. Photoreceptor loss was quantified by outer nuclear layer thickness decreases, as observed by optical coherence tomography and histology. The LD rats showed decreased rod- and cone-driven function with partial recovery 30 days after cessation of light exposure. In addition, LD rats showed decreased cone photoreceptor densities in the central retinal region compared to control rats. Our results demonstrate that the loss of cone-driven visual function induced by light damage is at least partially due to the death of cone photoreceptors. Full article
Show Figures

Figure 1

26 pages, 5128 KiB  
Article
A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction
by Gayle B. Collin, Lanying Shi, Minzhong Yu, Nurten Akturk, Jeremy R. Charette, Lillian F. Hyde, Sonia M. Weatherly, Martin F. Pera, Jürgen K. Naggert, Neal S. Peachey, Patsy M. Nishina and Mark P. Krebs
Int. J. Mol. Sci. 2022, 23(4), 2220; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23042220 - 17 Feb 2022
Cited by 6 | Viewed by 2009
Abstract
Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood–retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, [...] Read more.
Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood–retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5’ splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood–retinal barrier. Full article
Show Figures

Figure 1

13 pages, 2588 KiB  
Article
Genetic Interaction between Mfrp and Adipor1 Mutations Affect Retinal Disease Phenotypes
by Navdeep Gogna, Sonia Weatherly, Fuxin Zhao, Gayle B. Collin, Jai Pinkney, Lisa Stone, Jürgen K. Naggert, Gregory W. Carter and Patsy M. Nishina
Int. J. Mol. Sci. 2022, 23(3), 1615; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23031615 - 30 Jan 2022
Viewed by 2359
Abstract
Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease [...] Read more.
Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis. Full article
Show Figures

Figure 1

23 pages, 3622 KiB  
Article
Photodegradation of Lipofuscin in Suspension and in ARPE-19 Cells and the Similarity of Fluorescence of the Photodegradation Product with Oxidized Docosahexaenoate
by Małgorzata B. Różanowska and Bartosz Różanowski
Int. J. Mol. Sci. 2022, 23(2), 922; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23020922 - 15 Jan 2022
Cited by 5 | Viewed by 2143
Abstract
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages [...] Read more.
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes. Full article
Show Figures

Figure 1

16 pages, 5857 KiB  
Article
Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa
by Tiantian Wang, Jingyu Yao, Lin Jia, Patrice E. Fort and David N. Zacks
Int. J. Mol. Sci. 2022, 23(1), 70; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23010070 - 22 Dec 2021
Cited by 4 | Viewed by 2958
Abstract
Inherited retinal degenerations (IRD) are a leading cause of visual impairment and can result from mutations in any one of a multitude of genes. Mutations in the light-sensing protein rhodopsin (RHO) is a leading cause of IRD with the most common of those [...] Read more.
Inherited retinal degenerations (IRD) are a leading cause of visual impairment and can result from mutations in any one of a multitude of genes. Mutations in the light-sensing protein rhodopsin (RHO) is a leading cause of IRD with the most common of those being a missense mutation that results in substitution of proline-23 with histidine. This variant, also known as P23H-RHO, results in rhodopsin misfolding, initiation of endoplasmic reticulum stress, the unfolded protein response, and activation of cell death pathways. In this study, we investigate the effect of α-crystallins on photoreceptor survival in a mouse model of IRD secondary to P23H-RHO. We find that knockout of either αA- or αB-crystallin results in increased intraretinal inflammation, activation of apoptosis and necroptosis, and photoreceptor death. Our data suggest an important role for the ⍺-crystallins in regulating photoreceptor survival in the P23H-RHO mouse model of IRD. Full article
Show Figures

Figure 1

23 pages, 8266 KiB  
Article
RNA-Seq Analysis Reveals an Essential Role of the Tyrosine Metabolic Pathway and Inflammation in Myopia-Induced Retinal Degeneration in Guinea Pigs
by Ling Zeng, Xiaoning Li, Jian Liu, Hong Liu, Heping Xu and Zhikuan Yang
Int. J. Mol. Sci. 2021, 22(22), 12598; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222212598 - 22 Nov 2021
Cited by 20 | Viewed by 3235
Abstract
Myopia is the second leading cause of visual impairment globally. Myopia can induce sight-threatening retinal degeneration and the underlying mechanism remains poorly defined. We generated a model of myopia-induced early-stage retinal degeneration in guinea pigs and investigated the mechanism of action. Methods: The [...] Read more.
Myopia is the second leading cause of visual impairment globally. Myopia can induce sight-threatening retinal degeneration and the underlying mechanism remains poorly defined. We generated a model of myopia-induced early-stage retinal degeneration in guinea pigs and investigated the mechanism of action. Methods: The form-deprivation-induced myopia (FDM) was induced in the right eyes of 2~3-week-old guinea pigs using a translucent balloon for 15 weeks. The left eye remained untreated and served as a self-control. Another group of untreated age-matched animals was used as naïve controls. The refractive error and ocular biometrics were measured at 3, 7, 9, 12 and 15 weeks post-FDM induction. Visual function was evaluated by electroretinography. Retinal neurons and synaptic structures were examined by confocal microscopy of immunolabelled retinal sections. The total RNAs were extracted from the retinas and processed for RNA sequencing analysis. Results: The FDM eyes presented a progressive axial length elongation and refractive error development. After 15 weeks of intervention, the average refractive power was −3.40 ± 1.85 D in the FDM eyes, +2.94 ± 0.59 D and +2.69 ± 0.56 D in the self-control and naïve control eyes, respectively. The a-wave amplitude was significantly lower in FDM eyes and these eyes had a significantly lower number of rods, secretagogin+ bipolar cells, and GABAergic amacrine cells in selected retinal areas. RNA-seq analysis showed that 288 genes were upregulated and 119 genes were downregulated in FDM retinas compared to naïve control retinas. In addition, 152 genes were upregulated and 12 were downregulated in FDM retinas compared to self-control retinas. The KEGG enrichment analysis showed that tyrosine metabolism, ABC transporters and inflammatory pathways were upregulated, whereas tight junction, lipid and glycosaminoglycan biosynthesis were downregulated in FDM eyes. Conclusions: The long-term (15-week) FDM in the guinea pig models induced an early-stage retinal degeneration. The dysregulation of the tyrosine metabolism and inflammatory pathways may contribute to the pathogenesis of myopia-induced retinal degeneration. Full article
Show Figures

Figure 1

14 pages, 5847 KiB  
Article
Tofacitinib Ameliorates Retinal Vascular Leakage in a Murine Model of Diabetic Retinopathy with Type 2 Diabetes
by Eimear M. Byrne, María Llorián-Salvador, Timothy J. Lyons, Mei Chen and Heping Xu
Int. J. Mol. Sci. 2021, 22(21), 11876; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222111876 - 02 Nov 2021
Cited by 4 | Viewed by 2423
Abstract
We have previously reported that inhibition of the Janus kinase 1 (JAK1) signaling ameliorates IL-17A-mediated blood-retinal barrier (BRB) dysfunction. Higher levels of IL-17A have been observed in the blood and intraocular fluids in patients with diabetic retinopathy (DR), in particular those with diabetic [...] Read more.
We have previously reported that inhibition of the Janus kinase 1 (JAK1) signaling ameliorates IL-17A-mediated blood-retinal barrier (BRB) dysfunction. Higher levels of IL-17A have been observed in the blood and intraocular fluids in patients with diabetic retinopathy (DR), in particular those with diabetic macular oedema. This study aimed to understand whether JAK1 inhibition could prevent BRB dysfunction in db/db mice, a model of type 2 diabetes (T2D). An in vitro study showed that high glucose treatment disrupted the junctional distribution of claudin-5 in bEnd3 cells and ZO-1 in ARPE19 cells and that tofacitinib citrate treatment prevented high glucose-mediated tight junction disruption. Albumin leakage, accompanied by increased levels of the phosphorylated form of JAK1 (pJAK1), was observed in three-month-old db/db mice. Treatment of two-and-a-half-month-old db/db mice with tofacitinib citrate for two weeks significantly reduced retinal albumin leakage and reduced pJAK1 expression. pJAK1 expression was also detected in human DR retina. Our results suggest that JAK1 inhibition can ameliorate BRB dysfunction in T2D, and JAK1 inhibitors such as tofacitinib citrate may be re-purposed for the management of diabetic macular oedema. Full article
Show Figures

Figure 1

17 pages, 3561 KiB  
Article
Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy
by Martial Mbefo, Adeline Berger, Karine Schouwey, Xavier Gérard, Corinne Kostic, Avigail Beryozkin, Dror Sharon, Hélène Dolfuss, Francis Munier, Hoai Viet Tran, Maarten van Lohuizen, William A. Beltran and Yvan Arsenijevic
Int. J. Mol. Sci. 2021, 22(17), 9331; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22179331 - 28 Aug 2021
Cited by 5 | Viewed by 2339
Abstract
Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death [...] Read more.
Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD. Full article
Show Figures

Figure 1

18 pages, 4544 KiB  
Article
AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not C3-Knockout
by Blanca Chinchilla and Rosario Fernandez-Godino
Int. J. Mol. Sci. 2021, 22(15), 8183; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22158183 - 30 Jul 2021
Cited by 4 | Viewed by 2067
Abstract
The Bruch’s membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is [...] Read more.
The Bruch’s membrane (BrM) is a five-layered extracellular matrix (ECM) that supports the retinal pigment epithelium (RPE). Normal age-related changes in the BrM may lead to RPE cell damage and ultimately to the onset and progression of age-related macular degeneration (AMD), which is the most common cause of visual loss among the elderly. A role for the complement system in AMD pathology has been established, but the disease mechanisms are poorly understood, which hampers the design of efficient therapies to treat millions of patients. In an effort to identify the mechanisms that lead from normal aging to pathology, we have developed a cell-based model using complement deficient human induced pluripotent stem cell (iPSC)-derived RPE cells cultured on an AMD-like ECM that mimics BrM. The data present evidence that changes in the ECM result in loss of differentiation and promote epithelial mesenchymal transition (EMT) of healthy RPE cells. This pathological process is mediated by complement activation and involves the formation of a randomly oriented collagen meshwork that drives the dedifferentiation of the RPE monolayer. Genetic ablation of complement component 3 has a protective effect against EMT but does not prevent the abnormal deposition of collagens. These findings offer new insights into the sequence of events that initiate AMD and may guide the design of efficient therapies to treat this disease with unmet medical needs. Full article
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 5608 KiB  
Review
Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options
by Alicia A. Brunet, Alan R. Harvey and Livia S. Carvalho
Int. J. Mol. Sci. 2022, 23(2), 726; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23020726 - 10 Jan 2022
Cited by 8 | Viewed by 2715
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease [...] Read more.
Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options. Full article
Show Figures

Figure 1

18 pages, 1145 KiB  
Review
Small Leucine-Rich Proteoglycans (SLRPs) in the Retina
by Shermaine W. Y. Low, Thomas B. Connor, Iris S. Kassem, Deborah M. Costakos and Shyam S. Chaurasia
Int. J. Mol. Sci. 2021, 22(14), 7293; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22147293 - 07 Jul 2021
Cited by 14 | Viewed by 3648
Abstract
Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the [...] Read more.
Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the pathophysiology of retinal diseases. One potential component is the family of structural proteins called small leucine-rich proteoglycans (SLRPs). SLRPs are crucial in many fundamental biological processes involved in the maintenance of retinal homeostasis. They are present within the extracellular matrix (ECM) of connective and vascular tissues and contribute to tissue organization and modulation of cell growth. They play a vital role in cell–matrix interactions in many upstream signaling pathways involved in fibrillogenesis and angiogenesis. In this comprehensive review, we describe the expression patterns and function of SLRPs in the retina, including Biglycan and Decorin from class I; Fibromodulin, Lumican, and a Proline/arginine-rich end leucine-rich repeat protein (PRELP) from class II; Opticin and Osteoglycin/Mimecan from class III; and Chondroadherin (CHAD), Tsukushi and Nyctalopin from class IV. Full article
Show Figures

Figure 1

Back to TopTop