ijms-logo

Journal Browser

Journal Browser

Novel Molecular Targets for Cardioprotection: The EU-CARDIOPROTECTION COST Action (CA16225)

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (1 April 2019) | Viewed by 106098

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
1. Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
2. The Hatter Cardiovascular Institute,Institute of Cardiovascular Sciences, University College London, 67 Chenies Mews, London WC1E 6HX, UK
Interests: cardioprotection; myocardial ischemic preconditioning and postconditioning; ischemia-reperfusion injury; mitochondria as targets for cardioprotection; remote ischemic conditioning

E-Mail
Co-Guest Editor
Institute for Biochemistry, Medical Faculty, Justus-Liebig-University, Friedrichstrasse 24, D-35392 Giessen, Germany
Interests: Basic science and clinical research in organ protection against acute ischaemia/reperfudion injury with a special focus on cardiac protection and acute inflammation and remodeling; basic science and translational research in atherosclerosis and chronic inflammation processes

Special Issue Information

Dear Colleagues,

Ischemic heart disease (IHD) is a leading cause of death and disability worldwide. Despite intensive experimental research over the last three to four decades, there is currently no effective therapy for protecting the heart following acute myocardial infarction in order to prevent heart failure—termed cardioprotection. Therefore, novel molecular targets for cardioprotection need to be discovered in order to improve clinical outcomes of IHD patients. This is the overall objective of our newly established EU-CARDIOPROTECTION COST Action (CA16225 http://www.cardioprotection.eu/), which comprises a European network of 100 leading cardioprotection researchers, dedicated to realising the therapeutic potential of novel cardioprotective therapies for patient benefit. This will be achieved through the discovery of novel therapeutic targets and strategies for cardioprotection (such as combination multi-targeted therapies), and investigating the confounding effects of co-morbidities and co-medication on cardioprotection.

Therefore, in this Special Issue of IJMS, we invite you to submit both review and original pre-clinical articles on the topic of cardioprotection with a special focus on novel molecular targets for cardioprotection.

Dr. Ioanna Andreadou
Prof. Derek J Hausenloy
Guest Editors
Dr. Hector A. Cabrera Fuentes
Co-Guest Editor

EU-CARDIOPROTECTION COST Action: CA16225 http://www.cardioprotection.eu/

text

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Mitochondria
  • Reactive oxygen species
  • Cyotprotective signaling pathways
  • Cardioprotection
  • Ischemia-Reperfusion injury
  • Acute myocardial infarction
  • Ischemic preconditioning
  • Ischemic postconditioning
  • Remote ischemic conditioning

Related Special Issue

Published Papers (19 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2071 KiB  
Article
Targeting Mitochondrial Fission Using Mdivi-1 in A Clinically Relevant Large Animal Model of Acute Myocardial Infarction: A Pilot Study
by Sang-Bing Ong, Xiu-Yi Kwek, Khairunnisa Katwadi, Sauri Hernandez-Resendiz, Gustavo E. Crespo-Avilan, Nur Izzah Ismail, Ying-Hsi Lin, En Ping Yap, Song-Yi Lim, K P Myu Mai Ja, Chrishan J.A. Ramachandra, Nicole Tee, Jin Jiat Toh, Winston Shim, Philip Wong, Hector A. Cabrera-Fuentes and Derek J Hausenloy
Int. J. Mol. Sci. 2019, 20(16), 3972; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20163972 - 15 Aug 2019
Cited by 52 | Viewed by 5064
Abstract
Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition [...] Read more.
Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30–40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings. Full article
Show Figures

Figure 1

18 pages, 2826 KiB  
Article
Effect of Ischemic Preconditioning and Postconditioning on Exosome-Rich Fraction microRNA Levels, in Relation with Electrophysiological Parameters and Ventricular Arrhythmia in Experimental Closed-Chest Reperfused Myocardial Infarction
by Andreas Spannbauer, Denise Traxler, Dominika Lukovic, Katrin Zlabinger, Johannes Winkler, Alfred Gugerell, Péter Ferdinandy, Derek J. Hausenloy, Noemi Pavo, Maximilian Y. Emmert, Simon P. Hoerstrup, Andras Jakab, Mariann Gyöngyösi and Martin Riesenhuber
Int. J. Mol. Sci. 2019, 20(9), 2140; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20092140 - 30 Apr 2019
Cited by 32 | Viewed by 4353
Abstract
We investigated the antiarrhythmic effects of ischemic preconditioning (IPC) and postconditioning (PostC) by intracardiac electrocardiogram (ECG) and measured circulating microRNAs (miRs) that are related to cardiac conduction. Domestic pigs underwent 90-min. percutaneous occlusion of the mid left anterior coronary artery, followed by reperfusion. [...] Read more.
We investigated the antiarrhythmic effects of ischemic preconditioning (IPC) and postconditioning (PostC) by intracardiac electrocardiogram (ECG) and measured circulating microRNAs (miRs) that are related to cardiac conduction. Domestic pigs underwent 90-min. percutaneous occlusion of the mid left anterior coronary artery, followed by reperfusion. The animals were divided into three groups: acute myocardial infarction (AMI, n = 7), ischemic preconditioning-acute myocardial infarction (IPC-AMI) (n = 9), or AMI-PostC (n = 5). IPC was induced by three 5-min. episodes of repetitive ischemia/reperfusion cycles (rI/R) before AMI. PostC was induced by six 30-s rI/R immediately after induction of reperfusion 90 min after occlusion. Before the angiographic procedure, a NOGA endocardial mapping catheter was placed again the distal anterior ventricular endocardium to record the intracardiac electrogram (R-amplitude, ST-Elevation, ST-area under the curve (AUC), QRS width, and corrected QT time (QTc)) during the entire procedure. An arrhythmia score was calculated. Cardiac MRI was performed after one-month. IPC led to significantly lower ST-elevation, heart rate, and arrhythmia score during ischemia. PostC induced a rapid recovery of R-amplitude, decrease in QTc, and lower arrhythmia score during reperfusion. Slightly higher levels of miR-26 and miR-133 were observed in AMI compared to groups IPC-AMI and AMI-PostC. Significantly lower levels of miR-1, miR-208, and miR-328 were measured in the AMI-PostC group as compared to animals in group AMI and IPC-AMI. The arrhythmia score was not significantly associated with miRNA plasma levels. Cardiac MRI showed significantly smaller infarct size in the IPC-AMI group when compared to the AMI and AMI-PostC groups. Thus, IPC led to better left ventricular ejection fraction at one-month and it exerted antiarrhythmic effects during ischemia, whereas PostC exhibited antiarrhythmic properties after reperfusion, with significant downregulaton of ischemia-related miRNAs. Full article
Show Figures

Figure 1

15 pages, 2168 KiB  
Article
Complementary Role of P2 and Adenosine Receptors in ATP Induced-Anti-Apoptotic Effects Against Hypoxic Injury of HUVECs
by Catherine Feliu, Hélène Peyret, Gael Poitevin, Yoann Cazaubon, Floriane Oszust, Philippe Nguyen, Hervé Millart and Zoubir Djerada
Int. J. Mol. Sci. 2019, 20(6), 1446; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20061446 - 22 Mar 2019
Cited by 17 | Viewed by 4311
Abstract
Background: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. Methods: In a hypoxic model on endothelial cells, we [...] Read more.
Background: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. Methods: In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. Results: Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. Conclusions: These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney. Full article
Show Figures

Graphical abstract

19 pages, 933 KiB  
Article
Sensory Neuropathy Affects Cardiac miRNA Expression Network Targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs
by Péter Bencsik, Krisztina Kiss, Bence Ágg, Júlia A. Baán, Gergely Ágoston, Albert Varga, Kamilla Gömöri, Luca Mendler, Nóra Faragó, Ágnes Zvara, Péter Sántha, László G. Puskás, Gábor Jancsó and Péter Ferdinandy
Int. J. Mol. Sci. 2019, 20(4), 991; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20040991 - 25 Feb 2019
Cited by 16 | Viewed by 4744
Abstract
Background: Here we examined myocardial microRNA (miRNA) expression profile in a sensory neuropathy model with cardiac diastolic dysfunction and aimed to identify key mRNA molecular targets of the differentially expressed miRNAs that may contribute to cardiac dysfunction. Methods: Male Wistar rats were treated [...] Read more.
Background: Here we examined myocardial microRNA (miRNA) expression profile in a sensory neuropathy model with cardiac diastolic dysfunction and aimed to identify key mRNA molecular targets of the differentially expressed miRNAs that may contribute to cardiac dysfunction. Methods: Male Wistar rats were treated with vehicle or capsaicin for 3 days to induce systemic sensory neuropathy. Seven days later, diastolic dysfunction was detected by echocardiography, and miRNAs were isolated from the whole ventricles. Results: Out of 711 known miRNAs measured by miRNA microarray, the expression of 257 miRNAs was detected in the heart. As compared to vehicle-treated hearts, miR-344b, miR-466b, miR-98, let-7a, miR-1, miR-206, and miR-34b were downregulated, while miR-181a was upregulated as validated also by quantitative real time polymerase chain reaction (qRT-PCR). By an in silico network analysis, we identified common mRNA targets (insulin-like growth factor 1 (IGF-1), solute carrier family 2 facilitated glucose transporter member 12 (SLC2a-12), eukaryotic translation initiation factor 4e (EIF-4e), and Unc-51 like autophagy activating kinase 2 (ULK-2)) targeted by at least three altered miRNAs. Predicted upregulation of these mRNA targets were validated by qRT-PCR. Conclusion: This is the first demonstration that sensory neuropathy affects cardiac miRNA expression network targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2, which may contribute to cardiac diastolic dysfunction. These results further support the need for unbiased omics approach followed by in silico prediction and validation of molecular targets to reveal novel pathomechanisms. Full article
Show Figures

Graphical abstract

24 pages, 5738 KiB  
Article
Exosomal Expression of CXCR4 Targets Cardioprotective Vesicles to Myocardial Infarction and Improves Outcome after Systemic Administration
by Alessandra Ciullo, Vanessa Biemmi, Giuseppina Milano, Sara Bolis, Elisabetta Cervio, Emanuel Tudor Fertig, Mihaela Gherghiceanu, Tiziano Moccetti, Giovanni G. Camici, Giuseppe Vassalli and Lucio Barile
Int. J. Mol. Sci. 2019, 20(3), 468; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20030468 - 22 Jan 2019
Cited by 69 | Viewed by 5064
Abstract
Cell therapy has been evaluated to enhance heart function after injury. Delivered cells mostly act via paracrine mechanisms, including secreted growth factors, cytokines, and vesicles, such as exosomes (Exo). Intramyocardial injection of cardiac-resident progenitor cells (CPC)-derived Exo reduced scarring and improved cardiac function [...] Read more.
Cell therapy has been evaluated to enhance heart function after injury. Delivered cells mostly act via paracrine mechanisms, including secreted growth factors, cytokines, and vesicles, such as exosomes (Exo). Intramyocardial injection of cardiac-resident progenitor cells (CPC)-derived Exo reduced scarring and improved cardiac function after myocardial infarction in rats. Here, we explore a clinically relevant approach to enhance the homing process to cardiomyocytes (CM), which is crucial for therapeutic efficacy upon systemic delivery of Exo. By overexpressing exosomal CXCR4, we increased the efficacy of plasmatic injection of cardioprotective Exo-CPC by increasing their bioavailability to ischemic hearts. Intravenous injection of ExoCXCR4 significantly reduced infarct size and improved left ventricle ejection fraction at 4 weeks compared to ExoCTRL (p < 0.01). Hemodynamic measurements showed that ExoCXCR4 improved dp/dt min, as compared to ExoCTRL and PBS group. In vitro, ExoCXCR4 was more bioactive than ExoCTRL in preventing CM death. This in vitro effect was independent from SDF-1α, as shown by using AMD3100 as specific CXCR4 antagonist. We showed, for the first time, that systemic administration of Exo derived from CXCR4-overexpressing CPC improves heart function in a rat model of ischemia reperfusion injury These data represent a substantial step toward clinical application of Exo-based therapeutics in cardiovascular disease. Full article
Show Figures

Figure 1

19 pages, 3717 KiB  
Article
Transcriptional Alterations by Ischaemic Postconditioning in a Pig Infarction Model: Impact on Microvascular Protection
by Dominika Lukovic, Alfred Gugerell, Katrin Zlabinger, Johannes Winkler, Noemi Pavo, Tamás Baranyai, Zoltán Giricz, Zoltán V. Varga, Martin Riesenhuber, Andreas Spannbauer, Denise Traxler, András Jakab, Rita Garamvölgyi, Örs Petnehazy, Dietmar Pils, Levente Tóth, Rainer Schulz, Péter Ferdinandy and Mariann Gyöngyösi
Int. J. Mol. Sci. 2019, 20(2), 344; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20020344 - 15 Jan 2019
Cited by 10 | Viewed by 4103
Abstract
Although the application of cardioprotective ischaemia/reperfusion (I/R) stimuli after myocardial infarction (MI) is a promising concept for salvaging the myocardium, translation to a clinical scenario has not fulfilled expectations. We have previously shown that in pigs, ischaemic postconditioning (IPostC) reduces myocardial oedema and [...] Read more.
Although the application of cardioprotective ischaemia/reperfusion (I/R) stimuli after myocardial infarction (MI) is a promising concept for salvaging the myocardium, translation to a clinical scenario has not fulfilled expectations. We have previously shown that in pigs, ischaemic postconditioning (IPostC) reduces myocardial oedema and microvascular obstruction (MVO), without influencing myocardial infarct size. In the present study, we analyzed the mechanisms underlying the IPostC-induced microvascular protection by transcriptomic analysis, followed by pathway analysis. Closed-chest reperfused MI was induced by 90 min percutaneous balloon occlusion of the left anterior descending coronary artery, followed by balloon deflation in anaesthetised pigs. Animals were randomised to IPostC (n = 8), MI (non-conditioned, n = 8), or Control (sham-operated, n = 4) groups. After three hours or three days follow-up, myocardial tissue samples were harvested and subjected to RNA-seq analysis. Although the transcriptome analysis revealed similar expression between IPostC and MI in transcripts involved in cardioprotective pathways, we identified gene expression changes responding to IPostC at the three days follow-up. Focal adhesion signaling, downregulated genes participating in cardiomyopathy and activation of blood cells may have critical consequences for microvascular protection. Specific analyses of the gene subsets enriched in the endothelium of the infarcted area, revealed strong deregulation of transcriptional functional clusters, DNA processing, replication and repair, cell proliferation, and focal adhesion, suggesting sustentative function in the endothelial cell layer protection and integrity. The spatial and time-dependent transcriptome analysis of porcine myocardium supports a protective effect of IPostC on coronary microvasculature post-MI. Full article
Show Figures

Graphical abstract

18 pages, 2940 KiB  
Article
Sevoflurane, Propofol and Carvedilol Block Myocardial Protection by Limb Remote Ischemic Preconditioning
by Youn Joung Cho, Karam Nam, Tae Kyong Kim, Seong Woo Choi, Sung Joon Kim, Derek J Hausenloy and Yunseok Jeon
Int. J. Mol. Sci. 2019, 20(2), 269; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20020269 - 11 Jan 2019
Cited by 34 | Viewed by 4416
Abstract
The effects of remote ischemic preconditioning (RIPC) in cardiac surgery have been inconsistent. We investigated whether anesthesia or beta-blockers interfere with RIPC cardioprotection. Fifty patients undergoing cardiac surgery were randomized to receive limb RIPC (four cycles of 5-min of upper arm cuff inflation/deflation) [...] Read more.
The effects of remote ischemic preconditioning (RIPC) in cardiac surgery have been inconsistent. We investigated whether anesthesia or beta-blockers interfere with RIPC cardioprotection. Fifty patients undergoing cardiac surgery were randomized to receive limb RIPC (four cycles of 5-min of upper arm cuff inflation/deflation) in the awake state (no-anesthesia; n = 17), or under sevoflurane (n = 17) or propofol (n = 16) anesthesia. In a separate crossover study, 11 healthy volunteers received either carvedilol or no medication prior to RIPC. Plasma dialysates were obtained and perfused through an isolated male Sprague–Dawley rat heart subjected to 30-min ischemia/60-min reperfusion, following which myocardial infarct (MI) size was determined. In the cardiac surgery study, pre-RIPC MI sizes were similar among the groups (39.7 ± 4.5% no-anesthesia, 38.9 ± 5.3% sevoflurane, and 38.6 ± 3.6% propofol). However, post-RIPC MI size was reduced in the no-anesthesia group (27.5 ± 8.0%; p < 0.001), but not in the anesthesia groups (35.7 ± 6.9% sevoflurane and 35.8 ± 5.8% propofol). In the healthy volunteer study, there was a reduction in MI size with RIPC in the no-carvedilol group (41.7 ± 4.3% to 30.6 ± 8.5%; p < 0.0001), but not in the carvedilol group (41.0 ± 4.0% to 39.6 ± 5.6%; p = 0.452). We found that the cardioprotective effects of limb RIPC were abolished under propofol or sevoflurane anesthesia and in the presence of carvedilol therapy. Full article
Show Figures

Figure 1

18 pages, 3763 KiB  
Article
Novel Potentials of the DPP-4 Inhibitor Sitagliptin against Ischemia-Reperfusion (I/R) Injury in Rat Ex-Vivo Heart Model
by Amin Al-awar, Nikoletta Almási, Renáta Szabó, Istvan Takacs, Zsolt Murlasits, Gergő Szűcs, Szilvia Török, Anikó Pósa, Csaba Varga and Krisztina Kupai
Int. J. Mol. Sci. 2018, 19(10), 3226; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms19103226 - 18 Oct 2018
Cited by 25 | Viewed by 5037
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral anti-diabetic drugs, implicated in pleiotropic secondary cardioprotective effects. The aim of the study was to unveil the unknown and possible cardioprotective targets that can be exerted by sitagliptin (Sitg) against ischemia-reperfusion (I/R) injury. Male [...] Read more.
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral anti-diabetic drugs, implicated in pleiotropic secondary cardioprotective effects. The aim of the study was to unveil the unknown and possible cardioprotective targets that can be exerted by sitagliptin (Sitg) against ischemia-reperfusion (I/R) injury. Male wistar rats received 2 weeks’ Sitg oral treatment of different doses (25, 50, 100, and 150 mg/kg/day), or saline as a Control. Hearts were then isolated and subjected to two different I/R injury protocols: 10 min perfusion, 45 min regional ischemia, and 120 min reperfusion for infarct size (IS) measurement, or: 10 min perfusion, 45 min regional ischemia and 10 min reperfusion for biochemical analysis: nitric oxide synthases (NOSs) and DPP-4 activity, glucagon-like peptide-1 (GLP-1), Calcium, transient receptor potential vanilloid (TRPV)-1 and calcitonin gene-related peptide (CGRP) levels, transient receptor potential canonical (TRPC)-1 and e-NOS protein expression. NOS inhibitor (l-NAME) and TRPV-1 inhibitor (Capsazepine) were utilized to confirm the implication of both signaling mechanisms in DPP-4 inhibition-induced at the level of IS. Findings show that Sitg (50 mg) resulted in significant decrease in IS and DPP-4 activity, and significant increase in GLP-1, NOS activity, e-NOS expression, TRPV-1 level and TRPC-1 expression, compared to controls. Results of CGRP are in line with TRPV-1, as a downstream regulatory effect. NOS system and transient receptor potential (TRP) channels can contribute to DPP-4 inhibition-mediated cardioprotection against I/R injury using Sitagliptin. Full article
Show Figures

Figure 1

18 pages, 8835 KiB  
Article
Upregulation of Myocardial and Vascular Phosphodiesterase 9A in A Model of Atherosclerotic Cardiovascular Disease
by Daniel Priksz, Mariann Bombicz, Balazs Varga, Andrea Kurucz, Rudolf Gesztelyi, Jozsef Balla, Attila Toth, Zoltan Papp, Zoltan Szilvassy and Bela Juhasz
Int. J. Mol. Sci. 2018, 19(10), 2882; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms19102882 - 22 Sep 2018
Cited by 11 | Viewed by 3632
Abstract
Atherosclerosis is strongly associated with cardiac dysfunction and heart failure. Besides microvascular dysfunction and diminishment of the cardiac nitric oxide-Protein Kinase G (NO-PKG) pathway, recent evidence suggests that phosphodiesterase 9A (PDE9A) enzyme has an unfavorable role in pathological changes. Here, we characterized a [...] Read more.
Atherosclerosis is strongly associated with cardiac dysfunction and heart failure. Besides microvascular dysfunction and diminishment of the cardiac nitric oxide-Protein Kinase G (NO-PKG) pathway, recent evidence suggests that phosphodiesterase 9A (PDE9A) enzyme has an unfavorable role in pathological changes. Here, we characterized a rabbit model that shows cardiac dysfunction as a result of an atherogenic diet, and examined the myocardial PDE9A signaling. Rabbits were divided into Control (normal diet) and HC (atherogenic diet) groups. Cardiac function was evaluated by echocardiography. Vascular function was assessed, along with serum biomarkers. Histological stains were conducted, expression of selected proteins and cyclic guanosine monophosphate (cGMP) levels were determined. Signs of diastolic dysfunction were shown in HC animals, along with concentric hypertrophy and interstitial fibrosis. Endothelial function was diminished in HC rabbits, along with marked reduction in the aortic lumen, and increased left ventricle outflow tract (LVOT) pressures. A significant increase was shown in myocardial PDE9A levels in HC animals with unchanged vasodilator-stimulated phosphoprotein (VASP) phosphorylation and cGMP levels. Upregulation of PDE9A may be associated with early stage of cardiac dysfunction in atherosclerotic conditions. Since PDE9A is involved in cGMP degradation and in deactivation of the cardioprotective PKG signaling pathway, it may become an encouraging target for future investigations in atherosclerotic diseases. Full article
Show Figures

Graphical abstract

16 pages, 2770 KiB  
Article
F13A1 Gene Variant (V34L) and Residual Circulating FXIIIA Levels Predict Short- and Long-Term Mortality in Acute Myocardial Infarction after Coronary Angioplasty
by Lucia Ansani, Jlenia Marchesini, Gabriele Pestelli, Giovanni Andrea Luisi, Giulia Scillitani, Giovanna Longo, Daniela Milani, Maria Luisa Serino, Veronica Tisato and Donato Gemmati
Int. J. Mol. Sci. 2018, 19(9), 2766; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms19092766 - 14 Sep 2018
Cited by 17 | Viewed by 3542
Abstract
Factor XIIIA (FXIIIA) levels are independent predictors of early prognosis after acute myocardial infarction (AMI) and the Valine-to-Leucine (V34L) single nucleotide polymorphism (SNP) seems associated with lower AMI risk. Since the long-term AMI prognosis merits deeper investigation, we performed an observational study evaluating [...] Read more.
Factor XIIIA (FXIIIA) levels are independent predictors of early prognosis after acute myocardial infarction (AMI) and the Valine-to-Leucine (V34L) single nucleotide polymorphism (SNP) seems associated with lower AMI risk. Since the long-term AMI prognosis merits deeper investigation, we performed an observational study evaluating relationships between FXIIIA residual levels, cardiovascular risk-factors, and inherited genetic predispositions. FXIIIA V34L was genotyped in 333 AMI patients and a five-year follow-up was performed. FXIIIA levels assessed at day-zero (d0) and four days after AMI (d4), and conventional risk factors were analyzed, focusing on the development of major adverse cardiovascular events (MACE). FXIIIA assessed at d0 and d4 was also an independent MACE predictor in the long-term follow-up (FXIIIAd0, Odds Ratio (OR) = 3.02, 1.79–5.1, p = 0.013; FXIIIAd4, OR = 4.46, 2.33–8.55, p = 0.0001). FXIIIAd4 showed the strongest MACE association, suggesting that the FXIIIA protective role is maximized when high levels are maintained for longer time. Conversely, FXIIIA levels stratified by V34L predicted MACE at a lesser extent among L34-carriers (Hazard Risk (HR)VV34 = 3.89, 2.19–6.87, p = 0.000003; HRL34-carriers = 2.78, 1.39–5.57, p = 0.0039), and V34L did not predict all MACE, only multiple-MACE occurrence (p = 0.0087). Finally, in survival analysis, heart failure and death differed significantly from stroke and recurrent ischemia (p = 0.0013), with FXIIIA levels appreciably lower in the former (p = 0.05). Overall, genetically-determined FXIIIA levels have a significant long-term prognostic role, suggesting that a pharmacogenetics approach might help to select those AMI patients at risk of poor prognosis in the need of dedicated treatments. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

17 pages, 399 KiB  
Review
Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models
by Andrea Baehr, Nikolai Klymiuk and Christian Kupatt
Int. J. Mol. Sci. 2019, 20(19), 4749; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20194749 - 25 Sep 2019
Cited by 14 | Viewed by 6903
Abstract
Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low [...] Read more.
Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low numbers of therapies that become clinically effective. Evidently, pre-clinical research in its present form does not appear informative of the performance of treatments in the clinic and, even more relevant, it appears that there is hardly any consent about how to improve the predictive capacity of pre-clinical experiments. According to the steadily increasing relevance that pig models have gained in biomedical research in the recent past, we anticipate that research in pigs can be highly predictive for ischemia-reperfusion injury (IRI) therapies as well. Thus, we here describe the significance of pig models in IRI, give an overview about recent developments in evaluating such models by clinically relevant methods and present the latest insight into therapies applied to pigs under IRI. Full article
Show Figures

Figure 1

18 pages, 645 KiB  
Review
Role of Macrophages in Cardioprotection
by Jonathan Yap, Hector A. Cabrera-Fuentes, Jason Irei, Derek J. Hausenloy and William A. Boisvert
Int. J. Mol. Sci. 2019, 20(10), 2474; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20102474 - 19 May 2019
Cited by 44 | Viewed by 5460
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. It is widely known that non-resolving inflammation results in atherosclerotic conditions, which are responsible for a host of downstream pathologies including thrombosis, myocardial infarction (MI), and neurovascular events. Macrophages, as part of the innate [...] Read more.
Cardiovascular diseases are the leading cause of mortality worldwide. It is widely known that non-resolving inflammation results in atherosclerotic conditions, which are responsible for a host of downstream pathologies including thrombosis, myocardial infarction (MI), and neurovascular events. Macrophages, as part of the innate immune response, are among the most important cell types in every stage of atherosclerosis. In this review we discuss the principles governing macrophage function in the healthy and infarcted heart. More specifically, how cardiac macrophages participate in myocardial infarction as well as cardiac repair and remodeling. The intricate balance between phenotypically heterogeneous populations of macrophages in the heart have profound and highly orchestrated effects during different phases of myocardial infarction. In the early “inflammatory” stage of MI, resident cardiac macrophages are replaced by classically activated macrophages derived from the bone marrow and spleen. And while the macrophage population shifts towards an alternatively activated phenotype, the inflammatory response subsides giving way to the “reparative/proliferative” phase. Lastly, we describe the therapeutic potential of cardiac macrophages in the context of cell-mediated cardio-protection. Promising results demonstrate innovative concepts; one employing a subset of yolk sac-derived, cardiac macrophages that have complete restorative capacity in the injured myocardium of neonatal mice, and in another example, post-conditioning of cardiac macrophages with cardiosphere-derived cells significantly improved patient’s post-MI diagnoses. Full article
Show Figures

Graphical abstract

14 pages, 1020 KiB  
Review
Use of Multifactorial Treatments to Address the Challenge of Translating Experimental Myocardial Infarct Reduction Strategies
by Julie L. Horton and Jitka Virag
Int. J. Mol. Sci. 2019, 20(6), 1449; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20061449 - 22 Mar 2019
Cited by 6 | Viewed by 3522
Abstract
Myocardial tissue damage that occurs during an ischemic event leads to a spiraling deterioration of cardiac muscle structural and functional integrity. Reperfusion is the only known efficacious strategy and is the most commonly used treatment to reduce injury and prevent remodeling. However, timing [...] Read more.
Myocardial tissue damage that occurs during an ischemic event leads to a spiraling deterioration of cardiac muscle structural and functional integrity. Reperfusion is the only known efficacious strategy and is the most commonly used treatment to reduce injury and prevent remodeling. However, timing is critical, and the procedure is not always feasible for a variety of reasons. The complex molecular basis for cardioprotection has been studied for decades but formulation of a viable therapeutic that can significantly attenuate myocardial injury remains elusive. In this review, we address barriers to the development of a fruitful approach that will substantially improve the prognosis of those suffering from this widespread and largely unmitigated disease. Furthermore, we proffer that ephrinA1, a candidate molecule that satisfies many of the important criteria discussed, possesses robust potential to overcome these hurdles and thus offers protection that surpasses the limitations currently observed. Full article
Show Figures

Figure 1

18 pages, 982 KiB  
Review
Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction
by Nicola Potere, Marco Giuseppe Del Buono, Giampaolo Niccoli, Filippo Crea, Stefano Toldo and Antonio Abbate
Int. J. Mol. Sci. 2019, 20(3), 544; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20030544 - 28 Jan 2019
Cited by 21 | Viewed by 6149
Abstract
Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of [...] Read more.
Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of the reperfusion injury salvage kinase (RISK) pathway. The data from preclinical studies with non-selective and selective LRP1 agonists are promising, showing a large therapeutic window for intervention to reduce infarct size after ischemia-reperfusion. A pilot clinical trial with plasma derived α1-antitrypsin (AAT), a naturally occurring LRP1 agonist, supports the translational value of LRP1 as a novel therapeutic target for cardioprotection. A phase I study with a selective LRP1 agonist has been completed showing no toxicity. These findings may open the way to early phase clinical studies with pharmacologic LRP1 activation in patients with acute myocardial infarction (AMI). Full article
Show Figures

Figure 1

13 pages, 1112 KiB  
Review
Post-Genomic Methodologies and Preclinical Animal Models: Chances for the Translation of Cardioprotection to the Clinic
by Lina Badimon, Guiomar Mendieta, Soumaya Ben-Aicha and Gemma Vilahur
Int. J. Mol. Sci. 2019, 20(3), 514; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20030514 - 25 Jan 2019
Cited by 8 | Viewed by 3570
Abstract
Although many cardioprotective strategies have demonstrated benefits in animal models of myocardial infarction, they have failed to demonstrate cardioprotection in the clinical setting highlighting that new therapeutic target and treatment strategies aimed at reducing infarct size are urgently needed. Completion of the Human [...] Read more.
Although many cardioprotective strategies have demonstrated benefits in animal models of myocardial infarction, they have failed to demonstrate cardioprotection in the clinical setting highlighting that new therapeutic target and treatment strategies aimed at reducing infarct size are urgently needed. Completion of the Human Genome Project in 2001 fostered the post-genomic research era with the consequent development of high-throughput “omics” platforms including transcriptomics, proteomics, and metabolomics. Implementation of these holistic approaches within the field of cardioprotection has enlarged our understanding of ischemia/reperfusion injury with each approach capturing a different angle of the global picture of the disease. It has also contributed to identify potential prognostic/diagnostic biomarkers and discover novel molecular therapeutic targets. In this latter regard, “omic” data analysis in the setting of ischemic conditioning has allowed depicting potential therapeutic candidates, including non-coding RNAs and molecular chaperones, amenable to pharmacological development. Such discoveries must be tested and validated in a relevant and reliable myocardial infarction animal model before moving towards the clinical setting. Moreover, efforts should also focus on integrating all “omic” datasets rather than working exclusively on a single “omic” approach. In the following manuscript, we will discuss the power of implementing “omic” approaches in preclinical animal models to identify novel molecular targets for cardioprotection of interest for drug development. Full article
Show Figures

Figure 1

20 pages, 1502 KiB  
Review
The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury
by Rebekka Vibjerg Jensen, Ioanna Andreadou, Derek J. Hausenloy and Hans Erik Bøtker
Int. J. Mol. Sci. 2019, 20(2), 404; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20020404 - 18 Jan 2019
Cited by 40 | Viewed by 6844
Abstract
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in [...] Read more.
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury. Experimental cellular and animal models, and also human studies, have demonstrated that protection against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the principal mechanisms underlying tissue protection against IR injury and the associated immediate elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of inflammatory and heat shock responses, and interference with established cardioprotective pathways. O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is activated by mechanical conditioning strategies. Full article
Show Figures

Figure 1

34 pages, 3316 KiB  
Review
New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease
by Andreas Daiber, Ning Xia, Sebastian Steven, Matthias Oelze, Alina Hanf, Swenja Kröller-Schön, Thomas Münzel and Huige Li
Int. J. Mol. Sci. 2019, 20(1), 187; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20010187 - 07 Jan 2019
Cited by 158 | Viewed by 11152
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of [...] Read more.
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation. Full article
Show Figures

Figure 1

19 pages, 858 KiB  
Review
Beyond a Measure of Liver Function—Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients
by Ming-Tsun Tsai and Der-Cherng Tarng
Int. J. Mol. Sci. 2019, 20(1), 117; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms20010117 - 29 Dec 2018
Cited by 26 | Viewed by 12642
Abstract
Bilirubin is a well-known neurotoxin in newborn infants; however, current evidence has shown that a higher serum bilirubin concentration in physiological ranges is associated with a lower risk for the development and progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD) [...] Read more.
Bilirubin is a well-known neurotoxin in newborn infants; however, current evidence has shown that a higher serum bilirubin concentration in physiological ranges is associated with a lower risk for the development and progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD) in adults. The protective mechanisms of bilirubin in CVD, CKD, and associated mortality may be ascribed to its antioxidant and anti-inflammatory properties. Bilirubin further improves insulin sensitivity, reduces low-density lipoprotein cholesterol levels and inhibits platelet activation in at-risk individuals. These effects are expected to maintain normal vascular homeostasis and thus reduce the incidence of CKD and the risks of cardiovascular complications and death. In this review, we highlight the recent advances in the biological actions of bilirubin in the pathogenesis of CVD and CKD progression, and further propose that targeting bilirubin metabolism could be a potential approach to ameliorate morbidity and mortality in CKD patients. Full article
Show Figures

Graphical abstract

19 pages, 1667 KiB  
Review
Temporal Frame of Immune Cell Infiltration during Heart Failure Establishment: Lessons from Animal Models
by David Brenes-Castro, Elena C. Castillo, Eduardo Vázquez-Garza, Guillermo Torre-Amione and Gerardo García-Rivas
Int. J. Mol. Sci. 2018, 19(12), 3719; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms19123719 - 22 Nov 2018
Cited by 16 | Viewed by 4221
Abstract
Heart failure (HF) is a cardiovascular syndrome characterized by maladaptive changes with an underlying inflammatory mediated pathogenesis. Nevertheless, current therapy is aimed at the heart workload and neurohormonal axis; thus, prognosis remains poor. To continue improving treatment, we rely on murine models for [...] Read more.
Heart failure (HF) is a cardiovascular syndrome characterized by maladaptive changes with an underlying inflammatory mediated pathogenesis. Nevertheless, current therapy is aimed at the heart workload and neurohormonal axis; thus, prognosis remains poor. To continue improving treatment, we rely on murine models for a better understanding of HF pathophysiology. Among them, pressure overload HF (PO-HF) animal models are a common strategy. Development of PO-HF is characterized by monocyte infiltration, which orchestrates a cascade of events leading to sustained inflammation and maladaptive changes. Here, we divide the PO-HF model progression into four phases and describe the inflammatory, structural, and gene expression profiles. This division is relevant due to its similarities with clinical hypertensive heart disease progression to HF. Evidence shows improvement in hemodynamic and other local parameters by altering the inflammatory response in a specific immune response at a specific point of time. Thus, it is relevant to focus on the time-dependent immune response interaction in order to provide more effective therapy. This review summarizes the pathogenesis of PO-HF murine models, highlighting the inflammatory events in a time frame view. By this approach, we expect to provide researchers with a better understanding of the intertwining time-dependent events that occur in PO-HF. Full article
Show Figures

Graphical abstract

Back to TopTop