ijms-logo

Journal Browser

Journal Browser

Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (31 October 2021) | Viewed by 31112

Special Issue Editor

Special Issue Information

Dear Colleagues,

The formation of a plasma membrane was an evolutionary important achievement to attain a controlled and protected cellular milieu. However, at the same time, the presence of a plasma membrane constituted a problem because it is impermeable to charged substances and impedes free exchange of molecules, such as nutrients and metabolites. The evolution of transport systems allowed overcoming this difficulty. This Special Issue of the International Journal of Molecular Sciences is dedicated to a special class of membrane transporters: the transporters for organic cations. Organic cations are endogenous and exogenous substances, which bear a positive charge at physiological pH. Important neurotransmitters, such as acetylcholine, dopamine, histamine, and serotonin, and metabolic products, such as creatinine, are substrates of these transporters. On the other hand, since many drugs and xenobiotics are of cationic nature, transporters for organic cations can have an important pharmacological and toxicological impact. Peculiar aspects of these transporters with important structure/function correlations are their polyspecificity, the presence of several polymorphisms, and a complex regulation. This Special Issue aims to collect the newest knowledge on physiological, biochemical, pharmacological, toxicological, and pharmacogenomic aspects of transporters for organic cations.

Prof. Dr. Giuliano Ciarimboli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

4 pages, 199 KiB  
Editorial
Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations 2.0
by Giuliano Ciarimboli
Int. J. Mol. Sci. 2022, 23(11), 6328; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23116328 - 06 Jun 2022
Cited by 2 | Viewed by 1168
Abstract
This editorial summarizes the 12 scientific papers published in the Special Issue “Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations 2 [...] Full article

Research

Jump to: Editorial, Review

21 pages, 4347 KiB  
Article
Cloning and Functional Characterization of Dog OCT1 and OCT2: Another Step in Exploring Species Differences in Organic Cation Transporters
by Marleen Julia Meyer, Simon Falk, Sarah Römer, Clarissa Prinzinger, Sabine Tacke, Joachim Geyer, Stefan Simm and Mladen Vassilev Tzvetkov
Int. J. Mol. Sci. 2022, 23(9), 5100; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23095100 - 04 May 2022
Cited by 1 | Viewed by 1729
Abstract
OCT1 and OCT2 are polyspecific membrane transporters that are involved in hepatic and renal drug clearance in humans and mice. In this study, we cloned dog OCT1 and OCT2 and compared their function to the human and mouse orthologs. We used liver and [...] Read more.
OCT1 and OCT2 are polyspecific membrane transporters that are involved in hepatic and renal drug clearance in humans and mice. In this study, we cloned dog OCT1 and OCT2 and compared their function to the human and mouse orthologs. We used liver and kidney RNA to clone dog OCT1 and OCT2. The cloned and the publicly available RNA-Seq sequences differed from the annotated exon-intron structure of OCT1 in the dog genome CanFam3.1. An additional exon between exons 2 and 3 was identified and confirmed by sequencing in six additional dog breeds. Next, dog OCT1 and OCT2 were stably overexpressed in HEK293 cells and the transport kinetics of five drugs were analyzed. We observed strong differences in the transport kinetics between dog and human orthologs. Dog OCT1 transported fenoterol with 12.9-fold higher capacity but 14.3-fold lower affinity (higher KM) than human OCT1. Human OCT1 transported ipratropium with 5.2-fold higher capacity but 8.4-fold lower affinity than dog OCT1. Compared to human OCT2, dog OCT2 showed 10-fold lower transport of fenoterol and butylscopolamine. In conclusion, the functional characterization of dog OCT1 and OCT2 reported here may have implications when using dogs as pre-clinical models as well as for drug therapy in dogs. Full article
Show Figures

Figure 1

17 pages, 2317 KiB  
Article
Transport Turnover Rates for Human OCT2 and MATE1 Expressed in Chinese Hamster Ovary Cells
by Xiaohong Zhang and Stephen H. Wright
Int. J. Mol. Sci. 2022, 23(3), 1472; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23031472 - 27 Jan 2022
Cited by 5 | Viewed by 1804
Abstract
MATE1 (multidrug and toxin extruder 1) and OCT2 (organic cation transporter 2) play critical roles in organic cation excretion by the human kidney. The transporter turnover rate (TOR) is relevant to understanding both their transport mechanisms and interpreting the in vitro–in vivo extrapolation [...] Read more.
MATE1 (multidrug and toxin extruder 1) and OCT2 (organic cation transporter 2) play critical roles in organic cation excretion by the human kidney. The transporter turnover rate (TOR) is relevant to understanding both their transport mechanisms and interpreting the in vitro–in vivo extrapolation (IVIVE) required for physiologically-based pharmacokinetic (PBPK) modeling. Here, we use a quantitative western blot method to determine TORs for MATE1 and OCT2 proteins expressed in CHO cells. MATE1 and OCT2, each with a C-terminal V-5 epitope tag, were cell surface biotinylated and the amount of cell surface MATE1 and OCT2 protein was quantified by western analysis, using standard curves for the V5 epitope. Cell surface MATE1 and OCT2 protein represented 25% and 24%, respectively, of the total expression of these proteins in CHO cells. The number of cell surface transporters was ~55 fmol cm−2 for MATE1 and ~510 fmol cm−2 for OCT2. Dividing these values into the different Jmax values for transport of MPP, metformin, and atenolol mediated by MATE1 and OCT2 resulted in calculated TOR values (±SE, n = 4) of 84.0 ± 22.0 s−1 and 2.9 ± 0.6 s−1; metformin, 461.0 ± 121.0 s−1 and 12.6 ± 2.4 s−1; atenolol, 118.0 ± 31.0 s−1, respectively. These values are consistent with the TOR values determined for a variety of exchangers (NHEs), cotransporters (SGLTs, Lac permease), and uniporters (GLUTs, ENTs). Full article
Show Figures

Figure 1

16 pages, 2393 KiB  
Article
MPP+-Induced Changes in Cellular Impedance as a Measure for Organic Cation Transporter (SLC22A1-3) Activity and Inhibition
by Tamara A. M. Mocking, Hubert J. Sijben, Yimé W. Vermeulen, Adriaan P. IJzerman and Laura H. Heitman
Int. J. Mol. Sci. 2022, 23(3), 1203; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23031203 - 21 Jan 2022
Cited by 2 | Viewed by 2671
Abstract
The organic cation transporters OCT1-3 (SLC22A1-3) facilitate the transport of cationic endo- and xenobiotics and are important mediators of drug distribution and elimination. Their polyspecific nature makes OCTs highly susceptible to drug–drug interactions (DDIs). Currently, screening of OCT inhibitors depends on [...] Read more.
The organic cation transporters OCT1-3 (SLC22A1-3) facilitate the transport of cationic endo- and xenobiotics and are important mediators of drug distribution and elimination. Their polyspecific nature makes OCTs highly susceptible to drug–drug interactions (DDIs). Currently, screening of OCT inhibitors depends on uptake assays that require labeled substrates to detect transport activity. However, these uptake assays have several limitations. Hence, there is a need to develop novel assays to study OCT activity in a physiological relevant environment without the need to label the substrate. Here, a label-free impedance-based transport assay is established that detects OCT-mediated transport activity and inhibition utilizing the neurotoxin MPP+. Uptake of MPP+ by OCTs induced concentration-dependent changes in cellular impedance that were inhibited by decynium-22, corticosterone, and Tyrosine Kinase inhibitors. OCT-mediated MPP+ transport activity and inhibition were quantified on both OCT1-3 overexpressing cells and HeLa cells endogenously expressing OCT3. Moreover, the method presented here is a valuable tool to identify novel inhibitors and potential DDI partners for MPP+ transporting solute carrier proteins (SLCs) in general. Full article
Show Figures

Figure 1

16 pages, 1852 KiB  
Article
Role of Organic Cation Transporter 2 in Autophagy Induced by Platinum Derivatives
by Sara Ahmed Eltayeb, Giuliano Ciarimboli, Katrin Beul, Giovana Seno Di Marco and Vivien Barz
Int. J. Mol. Sci. 2022, 23(3), 1090; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23031090 - 19 Jan 2022
Cited by 2 | Viewed by 1573
Abstract
The human organic cation transporter 2 (hOCT2) mediates renal and neuronal cellular cisplatin and oxaliplatin uptake, and therefore plays a significant role in the development of side effects associated with these chemotherapeutic drugs. Autophagy is induced by cisplatin and oxaliplatin treatment and is [...] Read more.
The human organic cation transporter 2 (hOCT2) mediates renal and neuronal cellular cisplatin and oxaliplatin uptake, and therefore plays a significant role in the development of side effects associated with these chemotherapeutic drugs. Autophagy is induced by cisplatin and oxaliplatin treatment and is believed to promote cell survival under stressful conditions. We examined in vitro the role of hOCT2 on autophagy induced by cisplatin and oxaliplatin. We also explored the effect of autophagy on toxicities of these platinum derivatives. Our results indicate that autophagy, measured as LC3 II accumulation and reduction in p62 expression level, is induced in response to cisplatin and oxaliplatin in HEK293-hOCT2 but not in wild-type HEK293 cells. Furthermore, inhibition of autophagy is associated with higher toxicity of platinum derivatives, and starvation was found to offer protection against cisplatin-associated toxicity. In conclusion, activation of autophagy could be a potential strategy to protect against unwanted toxicities induced by treatment with platinum derivatives. Full article
Show Figures

Figure 1

14 pages, 964 KiB  
Article
Expression and Functional Contribution of Different Organic Cation Transporters to the Cellular Uptake of Doxorubicin into Human Breast Cancer and Cardiac Tissue
by Marcus Otter, Susanne Csader, Markus Keiser and Stefan Oswald
Int. J. Mol. Sci. 2022, 23(1), 255; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23010255 - 27 Dec 2021
Cited by 12 | Viewed by 2893
Abstract
Doxorubicin is a frequently used anticancer drug to treat many types of tumors, such as breast cancer or bronchial carcinoma. The clinical use of doxorubicin is limited by its poorly predictable cardiotoxicity, the reasons of which are so far not fully understood. The [...] Read more.
Doxorubicin is a frequently used anticancer drug to treat many types of tumors, such as breast cancer or bronchial carcinoma. The clinical use of doxorubicin is limited by its poorly predictable cardiotoxicity, the reasons of which are so far not fully understood. The drug is a substrate of several efflux transporters such as P-gp or BCRP and was recently reported to be a substrate of cation uptake transporters. To evaluate the potential role of transporter proteins in the accumulation of doxorubicin at its site of action (e.g., mammary carcinoma cells) or adverse effects (e.g., heart muscle cells), we studied the expression of important uptake and efflux transporters in human breast cancer and cardiac tissue, and investigated the affinity of doxorubicin to the identified transporters. The cellular uptake studies on doxorubicin were performed with OATP1A2*1, OATP1A2*2, and OATP1A2*3-overexpressing HEK293 cells, as well as OCT1-, OCT2-, and OCT3- overexpressing MDCKII cells. To assess the contribution of transporters to the cytotoxic effect of doxorubicin, we determined the cell viability in the presence and absence of transporter inhibitors in different cell lines. Several transporters, including P-gp, BCRP, OCT1, OCT3, and OATP1A2 were expressed in human heart and/or breast cancer tissue. Doxorubicin could be identified as a substrate of OCT1, OCT2, OCT3, and OATP1A2. The cellular uptake into cells expressing genetic OATP1A2 variants was markedly reduced and correlated well with the increased cellular viability. Inhibition of OATP1A2 (naringin) and OCT transporters (1-methyl-4-phenylpyridinium) resulted in a significant decrease of doxorubicin-mediated cytotoxicity in cell lines expressing the respective transporters. Similarly, the excipient Cremophor EL significantly inhibited the OCT1-3- and OATP1A2-mediated cellular uptake and attenuated the cytotoxicity of doxorubicin. In conclusion, genetic and environmental-related variability in the expression and function of these transporters may contribute to the substantial variability seen in terms of doxorubicin efficacy and toxicity. Full article
Show Figures

Figure 1

16 pages, 11889 KiB  
Article
Role of Organic Cation Transporter 3 and Plasma Membrane Monoamine Transporter in the Rewarding Properties and Locomotor Sensitizing Effects of Amphetamine in Male andFemale Mice
by Nikki J. Clauss, Wouter Koek and Lynette C. Daws
Int. J. Mol. Sci. 2021, 22(24), 13420; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222413420 - 14 Dec 2021
Cited by 10 | Viewed by 2002
Abstract
A lack of effective treatment and sex-based disparities in psychostimulant addiction and overdose warrant further investigation into mechanisms underlying the abuse-related effects of amphetamine-like stimulants. Uptake-2 transporters such as organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT), lesser studied potential [...] Read more.
A lack of effective treatment and sex-based disparities in psychostimulant addiction and overdose warrant further investigation into mechanisms underlying the abuse-related effects of amphetamine-like stimulants. Uptake-2 transporters such as organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT), lesser studied potential targets for the actions of stimulant drugs, are known to play a role in monoaminergic neurotransmission. Our goal was to examine the roles of OCT3 and PMAT in mediating amphetamine (1 mg/kg)-induced conditioned place preference (CPP) and sensitization to its locomotor stimulant effects, in males and females, using pharmacological, decynium-22 (D22; 0.1 mg/kg, a blocker of OCT3 and PMAT) and genetic (constitutive OCT3 and PMAT knockout (−/−) mice) approaches. Our results show that OCT3 is necessary for the development of CPP to amphetamine in males, whereas in females, PMAT is necessary for the ability of D22 to prevent the development of CPP to amphetamine. Both OCT3 and PMAT appear to be important for development of sensitization to the locomotor stimulant effect of amphetamine in females, and PMAT in males. Taken together, these findings support an important, sex-dependent role of OCT3 and PMAT in the rewarding and locomotor stimulant effects of amphetamine. Full article
Show Figures

Graphical abstract

14 pages, 1603 KiB  
Article
SLC22 Transporters in the Fly Renal System Regulate Response to Oxidative Stress In Vivo
by Patrick Zhang, Priti Azad, Darcy C. Engelhart, Gabriel G. Haddad and Sanjay K. Nigam
Int. J. Mol. Sci. 2021, 22(24), 13407; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222413407 - 14 Dec 2021
Cited by 8 | Viewed by 2795
Abstract
Several SLC22 transporters in the human kidney and other tissues are thought to regulate endogenous small antioxidant molecules such as uric acid, ergothioneine, carnitine, and carnitine derivatives. These transporters include those from the organic anion transporter (OAT), OCTN/OCTN-related, and organic cation transporter (OCT) [...] Read more.
Several SLC22 transporters in the human kidney and other tissues are thought to regulate endogenous small antioxidant molecules such as uric acid, ergothioneine, carnitine, and carnitine derivatives. These transporters include those from the organic anion transporter (OAT), OCTN/OCTN-related, and organic cation transporter (OCT) subgroups. In mammals, it has been difficult to show a clear in vivo role for these transporters during oxidative stress. Ubiquitous knockdowns of related Drosophila SLC22s—including transporters homologous to those previously identified by us in mammals such as the “Fly-Like Putative Transporters” FLIPT1 (SLC22A15) and FLIPT2 (SLC22A16)—have shown modest protection against oxidative stress. However, these fly transporters tend to be broadly expressed, and it is unclear if there is an organ in which their expression is critical. Using two tissue-selective knockdown strategies, we were able to demonstrate much greater and longer protection from oxidative stress compared to previous whole fly knockdowns as well as both parent and WT strains (CG6126: p < 0.001, CG4630: p < 0.01, CG16727: p < 0.0001 and CG6006: p < 0.01). Expression in the Malpighian tubule and likely other tissues as well (e.g., gut, fat body, nervous system) appear critical for managing oxidative stress. These four Drosophila SLC22 genes are similar to human SLC22 transporters (CG6126: SLC22A16, CG16727: SLC22A7, CG4630: SLC22A3, and CG6006: SLC22A1, SLC22A2, SLC22A3, SLC22A6, SLC22A7, SLC22A8, SLC22A11, SLC22A12 (URAT1), SLC22A13, SLC22A14)—many of which are highly expressed in the kidney. Consistent with the Remote Sensing and Signaling Theory, this indicates an important in vivo role in the oxidative stress response for multiple SLC22 transporters within the fly renal system, perhaps through interaction with SLC22 counterparts in non-renal tissues. We also note that many of the human relatives are well-known drug transporters. Our work not only indicates the importance of SLC22 transporters in the fly renal system but also sets the stage for in vivo studies by examining their role in mammalian oxidative stress and organ crosstalk. Full article
Show Figures

Figure 1

16 pages, 3295 KiB  
Article
Interaction Profiles of Central Nervous System Active Drugs at Human Organic Cation Transporters 1–3 and Human Plasma Membrane Monoamine Transporter
by Thomas J. F. Angenoorth, Stevan Stankovic, Marco Niello, Marion Holy, Simon D. Brandt, Harald H. Sitte and Julian Maier
Int. J. Mol. Sci. 2021, 22(23), 12995; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222312995 - 30 Nov 2021
Cited by 9 | Viewed by 3353
Abstract
Many psychoactive compounds have been shown to primarily interact with high-affinity and low-capacity solute carrier 6 (SLC6) monoamine transporters for norepinephrine (NET; norepinephrine transporter), dopamine (DAT; dopamine transporter) and serotonin (SERT; serotonin transporter). Previous studies indicate an overlap between the inhibitory capacities of [...] Read more.
Many psychoactive compounds have been shown to primarily interact with high-affinity and low-capacity solute carrier 6 (SLC6) monoamine transporters for norepinephrine (NET; norepinephrine transporter), dopamine (DAT; dopamine transporter) and serotonin (SERT; serotonin transporter). Previous studies indicate an overlap between the inhibitory capacities of substances at SLC6 and SLC22 human organic cation transporters (SLC22A1–3; hOCT1–3) and the human plasma membrane monoamine transporter (SLC29A4; hPMAT), which can be classified as high-capacity, low-affinity monoamine transporters. However, interactions between central nervous system active substances, the OCTs, and the functionally-related PMAT have largely been understudied. Herein, we report data from 17 psychoactive substances interacting with the SLC6 monoamine transporters, concerning their potential to interact with the human OCT isoforms and hPMAT by utilizing radiotracer-based in vitro uptake inhibition assays at stably expressing human embryonic kidney 293 cells (HEK293) cells. Many compounds inhibit substrate uptake by hOCT1 and hOCT2 in the low micromolar range, whereas only a few substances interact with hOCT3 and hPMAT. Interestingly, methylphenidate and ketamine selectively interact with hOCT1 or hOCT2, respectively. Additionally, 3,4-methylenedioxymethamphetamine (MDMA) is a potent inhibitor of hOCT1 and 2 and hPMAT. Enantiospecific differences of R- and S-α-pyrrolidinovalerophenone (R- and S-α-PVP) and R- and S-citalopram and the effects of aromatic substituents are explored. Our results highlight the significance of investigating drug interactions with hOCTs and hPMAT, due to their role in regulating monoamine concentrations and xenobiotic clearance. Full article
Show Figures

Figure 1

18 pages, 1565 KiB  
Article
Substrate-Dependent Trans-Stimulation of Organic Cation Transporter 2 Activity
by Charles R. Lefèvre, Marc Le Vée, Sophie Gaubert, Elodie Jouan, Arnaud Bruyere, Caroline Moreau and Olivier Fardel
Int. J. Mol. Sci. 2021, 22(23), 12926; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222312926 - 29 Nov 2021
Cited by 2 | Viewed by 1828
Abstract
The search of substrates for solute carriers (SLCs) constitutes a major issue, owing notably to the role played by some SLCs, such as the renal electrogenic organic cation transporter (OCT) 2 (SLC22A2), in pharmacokinetics, drug–drug interactions and drug toxicity. For this [...] Read more.
The search of substrates for solute carriers (SLCs) constitutes a major issue, owing notably to the role played by some SLCs, such as the renal electrogenic organic cation transporter (OCT) 2 (SLC22A2), in pharmacokinetics, drug–drug interactions and drug toxicity. For this purpose, substrates have been proposed to be identified by their cis-inhibition and trans-stimulation properties towards transporter activity. To get insights on the sensitivity of this approach for identifying SLC substrates, 15 various exogenous and endogenous OCT2 substrates were analysed in the present study, using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DiASP) as a fluorescent OCT2 tracer substrate. All OCT2 substrates cis-inhibited DiASP uptake in OCT2-overexpressing HEK293 cells, with IC50 values ranging from 0.24 µM (for ipratropium) to 2.39 mM (for dopamine). By contrast, only 4/15 substrates, i.e., acetylcholine, agmatine, choline and metformin, trans-stimulated DiASP uptake, with a full suppression of the trans-stimulating effect of metformin by the reference OCT2 inhibitor amitriptyline. An analysis of molecular descriptors next indicated that trans-stimulating OCT2 substrates exhibit lower molecular weight, volume, polarizability and lipophilicity than non-trans-stimulating counterparts. Overall, these data indicated a rather low sensitivity (26.7%) of the trans-stimulation assay for identifying OCT2 substrates, and caution with respect to the use of such assay may therefore be considered. Full article
Show Figures

Figure 1

17 pages, 714 KiB  
Article
Overlap and Specificity in the Substrate Spectra of Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3
by Lukas Gebauer, Ole Jensen, Maria Neif, Jürgen Brockmöller and Christof Dücker
Int. J. Mol. Sci. 2021, 22(23), 12816; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms222312816 - 26 Nov 2021
Cited by 9 | Viewed by 2399
Abstract
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal [...] Read more.
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs. Full article
Show Figures

Graphical abstract

15 pages, 5917 KiB  
Article
Properties of Transport Mediated by the Human Organic Cation Transporter 2 Studied in a Polarized Three-Dimensional Epithelial Cell Culture Model
by Tim N. Koepp, Alexander Tokaj, Pavel I. Nedvetsky, Ana Carolina Conchon Costa, Beatrice Snieder, Rita Schröter and Giuliano Ciarimboli
Int. J. Mol. Sci. 2021, 22(17), 9658; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22179658 - 06 Sep 2021
Cited by 7 | Viewed by 2280
Abstract
The renal secretory clearance for organic cations (neurotransmitters, metabolism products and drugs) is mediated by transporters specifically expressed in the basolateral and apical plasma membrane domains of proximal tubule cells. Here, human organic cation transporter 2 (hOCT2) is the main transporter for organic [...] Read more.
The renal secretory clearance for organic cations (neurotransmitters, metabolism products and drugs) is mediated by transporters specifically expressed in the basolateral and apical plasma membrane domains of proximal tubule cells. Here, human organic cation transporter 2 (hOCT2) is the main transporter for organic cations in the basolateral membrane domain. In this study, we stably expressed hOCT2 in Madin-Darby Canine Kidney (MDCK) cells and cultivated these cells in the presence of an extracellular matrix to obtain three-dimensional (3D) structures (cysts). The transport properties of hOCT2 expressed in MDCK cysts were compared with those measured using human embryonic kidney cells (HEK293) stably transfected with hOCT2 (hOCT2-HEK cells). In the MDCK cysts, hOCT2 was expressed in the basolateral membrane domain and showed a significant uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) with an affinity (Km) of 3.6 ± 1.2 µM, similar to what was measured in the hOCT2-HEK cells (Km = 3.1 ± 0.2 µM). ASP+ uptake was inhibited by tetraethylammonium (TEA+), tetrapentylammonium (TPA+), metformin and baricitinib both in the hOCT2-HEK cells and the hOCT2- MDCK cysts, even though the apparent affinities of TEA+ and baricitinib were dependent on the expression system. Then, hOCT2 was subjected to the same rapid regulation by inhibition of p56lck tyrosine kinase or calmodulin in the hOCT2-HEK cells and hOCT2- MDCK cysts. However, inhibition of casein kinase II regulated only activity of hOCT2 expressed in MDCK cysts and not in HEK cells. Taken together, these results suggest that the 3D cell culture model is a suitable tool for the functional analysis of hOCT2 transport properties, depending on cell polarization. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

25 pages, 2170 KiB  
Review
OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions
by Lorena Pochini, Michele Galluccio, Mariafrancesca Scalise, Lara Console, Gilda Pappacoda and Cesare Indiveri
Int. J. Mol. Sci. 2022, 23(2), 914; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms23020914 - 14 Jan 2022
Cited by 8 | Viewed by 3100
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation [...] Read more.
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology. Full article
Show Figures

Figure 1

Back to TopTop