ijms-logo

Journal Browser

Journal Browser

Special Issue "Wound Repair and Regeneration"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (31 March 2017).

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Prof. Dr. Allison Cowin
E-Mail Website
Guest Editor
Regenerative Medicine, Future Industries Institute, Mawson Lakes, University of South Australia, Adelaide, SA 5095, Australia
Interests: wound healing; cytoskeleton; inflammation; stem cell therapy; immunotherapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Wounds are a largely unrecognized, spiraling epidemic that affect millions of people world-wide. They are complex and involve temporal and spatial involvement of many different cell types and tissue processes. Recent advances in our understanding of wound repair and regeneration, as well as the many novel and exciting approaches aimed at healing chronic/acute wounds and reducing scar formation, make this a pertinent time for a Special Issue aimed at overviewing this important field.

The goal of this Special Issue is to provide a summary of the field, describe its impact, as well as introduce the recent advances in understanding the mechanisms that underpin wound healing and scar formation. This Special Issue will highlight new developments in therapeutic approaches for wound repair including the use of nanomedicine and biomaterials to deliver cells and/or drugs to promote healing. Cellular responses that underpin angiogenesis, inflammation, proliferation and remodeling will be addressed, as will advances in cytoskeletal interactions in keratinocytes and fibroblast cell functions. Wound remodeling and scar formation including the roles of growth factors, cytokines and stem cells will be included.

Prof. Dr. Allison Cowin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Wound healing
  • Inflammation
  • Scarring
  • Extracellular matrix
  • Regeneration
  • Biomaterials
  • Chronic wounds
  • Remodeling
  • Stem cells
  • Growth factors

Related Special Issues

Published Papers (19 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Immune Modulating Topical S100A8/A9 Inhibits Growth of Pseudomonas aeruginosa and Mitigates Biofilm Infection in Chronic Wounds
Int. J. Mol. Sci. 2017, 18(7), 1359; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18071359 - 26 Jun 2017
Cited by 9 | Viewed by 2541
Abstract
Pseudomonas aeruginosa biofilm maintains and perturbs local host defense, hindering timely wound healing. Previously, we showed that P. aeruginosa suppressed S100A8/A9 of the murine innate host defense. We assessed the potential antimicrobial effect of S100A8/A9 on biofilm-infected wounds in a murine model and [...] Read more.
Pseudomonas aeruginosa biofilm maintains and perturbs local host defense, hindering timely wound healing. Previously, we showed that P. aeruginosa suppressed S100A8/A9 of the murine innate host defense. We assessed the potential antimicrobial effect of S100A8/A9 on biofilm-infected wounds in a murine model and P. aeruginosa growth in vitro. Seventy-six mice, inflicted with a full-thickness burn wound were challenged subcutaneously (s.c.) by 106 colony-forming units (CFUs) of P. aeruginosa biofilm. Mice were subsequently randomized into two treatment groups, one group receiving recombinant murine S100A8/A9 and a group of vehicle controls (phosphate-buffered saline, PBS) all treated with s.c. injections daily for up to five days. Wounds were analyzed for quantitative bacteriology and contents of key inflammatory markers. Count of blood polymorphonuclear leukocytes was included. S100A8/A9-treatment ameliorated wound infection, as evaluated by quantitative bacteriology (p ≤ 0.05). In vitro, growth of P. aeruginosa was inhibited dose-dependently by S100A8/A9 in concentrations from 5 to 40 μg/mL, as determined by optical density-measurement (OD-measurement) and quantitative bacteriology. Treatment slightly augmented key inflammatory cytokine Tumor Necrosis Factor-α (TNF-α), but dampened interferon-γ (IFN-γ) levels and blood polymorphonuclear count. In conclusion, topical S100A8/A9 displays remarkable novel immune stimulatory and anti-infective properties in vivo and in vitro. Importantly, treatment by S100A8/A9 provides local infection control. Implications for a role as adjunctive treatment in healing of chronic biofilm-infected wounds are discussed. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Communication
First Insights into Human Fingertip Regeneration by Echo-Doppler Imaging and Wound Microenvironment Assessment
Int. J. Mol. Sci. 2017, 18(5), 1054; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18051054 - 13 May 2017
Cited by 5 | Viewed by 3100
Abstract
Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss [...] Read more.
Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss from a wound repair process towards regeneration. When analyzing by Immunoassay the wound exudate from occlusive dressings, the concentrations of brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were higher in fingertip exudates than in burn wounds (used as controls for wound repair versus regeneration). Vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor (PDGF) were highly expressed in both samples in comparable levels. In our study, pro-inflammatory cytokines were relatively higher expressed in regenerative fingertips than in the burn wound exudates while chemokines were present in lower levels. Functional, vascular and mechanical properties of the regenerated fingertips were analyzed three months after trauma and the data were compared to the corresponding fingertip on the collateral uninjured side. While sensory recovery and morphology (pulp thickness and texture) were similar to uninjured sides, mechanical parameters (elasticity, vascularization) were increased in the regenerated fingertips. Further studies should be done to clarify the importance of inflammatory cells, immunity and growth factors in determining the outcome of the regenerative process and its influence on the clinical outcome. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Article
One Year Follow-Up Risk Assessment in SKH-1 Mice and Wounds Treated with an Argon Plasma Jet
Int. J. Mol. Sci. 2017, 18(4), 868; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18040868 - 19 Apr 2017
Cited by 55 | Viewed by 2985
Abstract
Multiple evidence in animal models and in humans suggest a beneficial role of cold physical plasma in wound treatment. Yet, risk assessment studies are important to further foster therapeutic advancement and acceptance of cold plasma in clinics. Accordingly, we investigated the longterm side [...] Read more.
Multiple evidence in animal models and in humans suggest a beneficial role of cold physical plasma in wound treatment. Yet, risk assessment studies are important to further foster therapeutic advancement and acceptance of cold plasma in clinics. Accordingly, we investigated the longterm side effects of repetitive plasma treatment over 14 consecutive days in a rodent full-thickness ear wound model. Subsequently, animals were housed for 350 days and sacrificed thereafter. In blood, systemic changes of the proinflammatory cytokines interleukin 1β and tumor necrosis factor α were absent. Similarly, tumor marker levels of α-fetoprotein and calcitonin remained unchanged. Using quantitative PCR, the expression levels of several cytokines and tumor markers in liver, lung, and skin were found to be similar in the control and treatment group as well. Likewise, histological and immunohistochemical analysis failed to detect abnormal morphological changes and the presence of tumor markers such as carcinoembryonic antigen, α-fetoprotein, or the neighbor of Punc 11. Absence of neoplastic lesions was confirmed by non-invasive imaging methods such as anatomical magnetic resonance imaging and positron emission tomography-computed tomography. Our results suggest that the beneficial effects of cold plasma in wound healing come without apparent side effects including tumor formation or chronic inflammation. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Article
Anti-Inflammatory Effect of Titrated Extract of Centella asiatica in Phthalic Anhydride-Induced Allergic Dermatitis Animal Model
Int. J. Mol. Sci. 2017, 18(4), 738; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18040738 - 30 Mar 2017
Cited by 36 | Viewed by 4203
Abstract
Centella asiatica has potent antioxidant and anti-inflammatory properties. However, its anti-dermatitic effect has not yet been reported. In this study, we investigated the anti-dermatitic effects of titrated extract of Centella asiatica (TECA) in a phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as [...] Read more.
Centella asiatica has potent antioxidant and anti-inflammatory properties. However, its anti-dermatitic effect has not yet been reported. In this study, we investigated the anti-dermatitic effects of titrated extract of Centella asiatica (TECA) in a phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. An AD-like lesion was induced by the topical application of five percent PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 0.2% and 0.4% of TECA (40 μg or 80 μg/cm2) was spread on the dorsum of the ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB activity, which were determined by electromobility shift assay (EMSA). We also measured TNF-α, IL-1β, IL-6, and IgE concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). TECA treatment attenuated the development of PA-induced atopic dermatitis. Histological analysis showed that TECA inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. TECA treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as the release of TNF-α, IL-1β, IL-6, and IgE. In addition, TECA (1, 2, 5 μg/mL) potently inhibited Lipopolysaccharide (LPS) (1 μg/mL)-induced NO production, expression of iNOS and COX-2, and NF-κB DNA binding activities in RAW264.7 macrophage cells. Our data demonstrated that TECA could be a promising agent for AD by inhibition of NF-κB signaling. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Article
Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn
Int. J. Mol. Sci. 2017, 18(3), 562; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030562 - 05 Mar 2017
Cited by 30 | Viewed by 3395
Abstract
Epithelial cells are involved in the regulation of innate and adaptive immunity in response to different stresses. The purpose of this study was to investigate if alkali-injured corneal epithelia activate innate immunity through the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor family pyrin domain [...] Read more.
Epithelial cells are involved in the regulation of innate and adaptive immunity in response to different stresses. The purpose of this study was to investigate if alkali-injured corneal epithelia activate innate immunity through the nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway. A unilateral alkali burn (AB) was created in the central cornea of C57BL/6 mice. Mice received either no topical treatment or topical treatment with sodium butyrate (NaB), β-hydroxybutyric acid (HBA), dexamethasone (Dex), or vehicle (balanced salt solution, BSS) quater in die (QID) for two or five days (d). We evaluated the expression of inflammasome components including NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1, as well as the downstream cytokine interleukin (IL)-1β. We found elevation of NLRP3 and IL-1β messenger RNA (mRNA) transcripts, as well as levels of inflammasome component proteins in the alkali-injured corneas compared to naïve corneas. Treatment with NLRP3 inhibitors using NaB and HBA preserved corneal clarity and decreased NLRP3, caspase-1, and IL-1β mRNA transcripts, as well as NLRP3 protein expression on post-injury compared to BSS-treated corneas. These findings identified a novel innate immune signaling pathway activated by AB. Blocking the NLRP3 pathway in AB mouse model decreases inflammation, resulting in greater corneal clarity. These results provide a mechanistic basis for optimizing therapeutic intervention in alkali injured eyes. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Article
The Acute Inflammatory Response to Absorbed Collagen Sponge Is Not Enhanced by BMP-2
Int. J. Mol. Sci. 2017, 18(3), 498; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18030498 - 25 Feb 2017
Cited by 10 | Viewed by 2420
Abstract
Absorbed collagen sponge (ACS)/bone morphogenetic protein-2 (BMP-2) are widely used in clinical practise for bone regeneration. However, the application of this product was found to be associated with a significant pro-inflammatory response, particularly in the early phase after implantation. This study aimed to [...] Read more.
Absorbed collagen sponge (ACS)/bone morphogenetic protein-2 (BMP-2) are widely used in clinical practise for bone regeneration. However, the application of this product was found to be associated with a significant pro-inflammatory response, particularly in the early phase after implantation. This study aimed to clarify if the pro-inflammatory activities, associated with BMP-2 added to ACS, were related to the physical state of the carrier itself, i.e., a wet or a highly dehydrated state of the ACS, to the local degree of vascularisation and/or to local biomechanical factors. ACS (0.8 cm diameter)/BMP-2 were implanted subcutaneously in the back of 12 eight-week-old Sprague Dawley rats. Two days after surgery, the implanted materials were retrieved and analysed histologically and histomorphometrically. The acute inflammatory response following implantation of ACS was dependent of neither the presence or absence of BMP-2 nor the degree of vascularization in the surrounding tissue nor the hydration state (wet versus dry) of the ACS material at the time of implantation. Differential micro biomechanical factors operating at the implantation site appeared to have an influence on the thickness of inflammation. We conclude that the degree of the early inflammatory response of the ACS/BMP-2 may be associated with the physical and chemical properties of the carrier material itself. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Article
Effects of Remote Ischemic Preconditioning on Heme Oxygenase-1 Expression and Cutaneous Wound Repair
Int. J. Mol. Sci. 2017, 18(2), 438; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18020438 - 17 Feb 2017
Cited by 5 | Viewed by 2533
Abstract
Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC) can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1) and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was [...] Read more.
Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC) can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1) and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was applied to HO-1-luc transgenic mice and HO-1 promoter activity and mRNA expression in skin and several other organs were determined in real-time. In parallel, RIPC was applied directly or 24h prior to excisional wounding in mice to investigate the early and late protective effects of RIPC on cutaneous wound repair, respectively. HO-1 promoter activity was significantly induced on the dorsal side and locally in the kidneys following RIPC treatment. Next, we investigated the origin of this RIPC-induced HO-1 promoter activity and demonstrated increased mRNA in the ligated muscle, heart and kidneys, but not in the skin. RIPC did not change HO-1 mRNA and protein levels in the wound 7 days after cutaneous injury. Both early and late RIPC did not accelerate wound closure nor affect collagen deposition. RIPC induces HO-1 expression in several organs, but not the skin, and did not improve excisional wound repair, suggesting that the skin is insensitive to RIPC-mediated protection. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Article
Early Healing Events after Periodontal Surgery: Observations on Soft Tissue Healing, Microcirculation, and Wound Fluid Cytokine Levels
Int. J. Mol. Sci. 2017, 18(2), 283; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18020283 - 27 Jan 2017
Cited by 13 | Viewed by 3402
Abstract
Early wound healing after periodontal surgery with or without enamel matrix derivative/biphasic calcium phosphate (EMD/BCP) was characterized in terms of soft tissue closure, changes of microcirculation, and expression of pro- and anti-inflammatory cytokines in gingival crevicular fluid/wound fluid (GCF/WF). Periodontal surgery was carried [...] Read more.
Early wound healing after periodontal surgery with or without enamel matrix derivative/biphasic calcium phosphate (EMD/BCP) was characterized in terms of soft tissue closure, changes of microcirculation, and expression of pro- and anti-inflammatory cytokines in gingival crevicular fluid/wound fluid (GCF/WF). Periodontal surgery was carried out in 30 patients (18 patients: application of EMD/BCP for regeneration of bony defects; 12 patients: surgical crown lengthening (SCL)). Healthy sites were observed as untreated controls. GCF/WF samples were collected during two post-surgical weeks. Flap microcirculation was measured using laser Doppler flowmetry (LDF). Soft tissue healing was evaluated after two weeks. GCF/WF levels of interleukin 1β (IL-1β), tumour necrosis factor (TNF-α), IL-6, and IL-10 were determined using a multiplex immunoassay. Surgery caused similar reductions of flap microcirculation followed by recovery within two weeks in both EMD/BCP and SCL groups. GCF/WF and pro-inflammatory cytokine levels were immediately increased after surgery, and returned only partially to baseline levels within the two-week observation period. Levels of IL-10 were temporarily reduced in all surgical sites. Flap dehiscence caused prolonged elevated levels of GCF/WF, IL-1β, and TNF-α. These findings show that periodontal surgery triggers an immediate inflammatory reaction corresponding to the early inflammatory phase of wound healing, and these inflammation measures are temporary in case of maintained closure of the flap. However, flap dehiscence causes prolonged inflammatory exudation from the periodontal wound. If the biological pre-conditions for periodontal wound healing are considered important for the clinical outcome, care should be taken to maintain primary closure of the flap. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Article
Broad-Spectrum Inhibition of the CC-Chemokine Class Improves Wound Healing and Wound Angiogenesis
Int. J. Mol. Sci. 2017, 18(1), 155; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18010155 - 13 Jan 2017
Cited by 17 | Viewed by 2798
Abstract
Angiogenesis is involved in the inflammation and proliferation stages of wound healing, to bring inflammatory cells to the wound and provide a microvascular network to maintain new tissue formation. An excess of inflammation, however, leads to prolonged wound healing and scar formation, often [...] Read more.
Angiogenesis is involved in the inflammation and proliferation stages of wound healing, to bring inflammatory cells to the wound and provide a microvascular network to maintain new tissue formation. An excess of inflammation, however, leads to prolonged wound healing and scar formation, often resulting in unfavourable outcomes such as amputation. CC-chemokines play key roles in the promotion of inflammation and inflammatory-driven angiogenesis. Therefore, inhibition of the CC-chemokine class may improve wound healing. We aimed to determine if the broad-spectrum CC-chemokine inhibitor “35K” could accelerate wound healing in vivo in mice. In a murine wound healing model, 35K protein or phosphate buffered saline (PBS, control) were added topically daily to wounds. Cohorts of mice were assessed in the early stages (four days post-wounding) and in the later stages of wound repair (10 and 21 days post-wounding). Topical application of the 35K protein inhibited CC-chemokine expression (CCL5, CCL2) in wounds and caused enhanced blood flow recovery and wound closure in early-mid stage wounds. In addition, 35K promoted neovascularisation in the early stages of wound repair. Furthermore, 35K treated wounds had significantly lower expression of the p65 subunit of NF-κB, a key inflammatory transcription factor, and augmented wound expression of the pro-angiogenic and pro-repair cytokine TGF-β. These findings show that broad-spectrum CC-chemokine inhibition may be beneficial for the promotion of wound healing. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Article
DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization
Int. J. Mol. Sci. 2016, 17(12), 1984; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17121984 - 26 Nov 2016
Cited by 7 | Viewed by 3686
Abstract
Mice and human patients with impaired vitamin D receptor (VDR) signaling have normal developmental hair growth but display aberrant post-morphogenic hair cycle progression associated with alopecia. In addition, VDR–/– mice exhibit impaired cutaneous wound healing. We undertook experiments to determine whether the [...] Read more.
Mice and human patients with impaired vitamin D receptor (VDR) signaling have normal developmental hair growth but display aberrant post-morphogenic hair cycle progression associated with alopecia. In addition, VDR–/– mice exhibit impaired cutaneous wound healing. We undertook experiments to determine whether the stress-inducible regulator of energy homeostasis, DNA damage-inducible transcript 4 (Ddit4), is involved in these processes. By analyzing hair cycle activation in vivo, we show that VDR−/− mice at day 14 exhibit increased Ddit4 expression within follicular stress compartments. At day 29, degenerating VDR−/− follicular keratinocytes, but not bulge stem cells, continue to exhibit an increase in Ddit4 expression. At day 47, when normal follicles and epidermis are quiescent and enriched for Ddit4, VDR−/− skin lacks Ddit4 expression. In a skin wound healing assay, the re-epithelialized epidermis in wildtype (WT) but not VDR−/− animals harbor a population of Ddit4- and Krt10-positive cells. Our study suggests that VDR regulates Ddit4 expression during epidermal homeostasis and the wound healing process, while elevated Ddit4 represents an early growth-arresting stress response within VDR−/− follicles. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Article
HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms
Int. J. Mol. Sci. 2016, 17(11), 1961; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17111961 - 23 Nov 2016
Cited by 12 | Viewed by 3080
Abstract
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 (Hmgb1 [...] Read more.
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 (Hmgb1+/−) mice and Wild-type (WT) mice were subjected to palatal injury. Maxillary tissues were stained with Mallory Azan or immunostained with anti-HMGB1, anti-proliferating cell nuclear antigen (PCNA), anti-nuclear factor-κB (NF-κB) p50 and anti-vascular endothelial growth factor (VEGF) antibodies. Palatal gingival explants were cultured with recombinant HMGB1 (rHMGB1) co-treated with siRNA targeting receptor for advanced glycation end products (RAGEs) for cell migration and PCNA expression analysis. Measurement of the wound area showed differences between Hmgb1+/− and WT mice on Day 3 after wounding. Mallory Azan staining showed densely packed of collagen fibers in WT mice, whereas in Hmgb1+/− mice weave-like pattern of low density collagen bundles were present. At three and seven days post-surgery, PCNA, NF-κB p50 and VEGF positive keratinocytes of WT mice were greater than that of Hmgb1+/− mice. Knockdown of RAGE prevents the effect of rHMGB1-induced cell migration and PCNA expression in gingival cell cultures. The data suggest that HMGB1/RAGE axis has crucial roles in palatal wound healing. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Article
Keratinocyte Growth Factor Combined with a Sodium Hyaluronate Gel Inhibits Postoperative Intra-Abdominal Adhesions
Int. J. Mol. Sci. 2016, 17(10), 1611; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17101611 - 22 Sep 2016
Cited by 15 | Viewed by 4404
Abstract
Postoperative intra-abdominal adhesion is a very common complication after abdominal surgery. One clinical problem that remains to be solved is to identify an ideal strategy to prevent abdominal adhesions. Keratinocyte growth factor (KGF) has been proven to improve the proliferation of mesothelial cells, [...] Read more.
Postoperative intra-abdominal adhesion is a very common complication after abdominal surgery. One clinical problem that remains to be solved is to identify an ideal strategy to prevent abdominal adhesions. Keratinocyte growth factor (KGF) has been proven to improve the proliferation of mesothelial cells, which may enhance fibrinolytic activity to suppress postoperative adhesions. This study investigated whether the combined administration of KGF and a sodium hyaluronate (HA) gel can prevent intra-abdominal adhesions by improving the orderly repair of the peritoneal mesothelial cells. The possible prevention mechanism was also explored. The cecum wall and its opposite parietal peritoneum were abraded after laparotomy to induce intra-abdominal adhesion formation. Animals were randomly allocated to receive topical application of HA, KGF, KGF + HA, or normal saline (Control). On postoperative day 7, the adhesion score was assessed with a visual scoring system. Masson’s trichrome staining, picrosirius red staining and hydroxyproline assays were used to assess the magnitude of adhesion and tissue fibrosis. Cytokeratin, a marker of the mesothelial cells, was detected by immunohistochemistry. The levels of tissue plasminogen activator (tPA), interleukin-6 (IL-6), and transforming growth factor β1 (TGF-β1) in the abdominal fluid were determined using enzyme-linked immunosorbent assays (ELISAs). Western blotting was performed to examine the expression of the TGF-β1, fibrinogen and α-smooth muscle actin (α-SMA) proteins in the rat peritoneal adhesion tissue. The combined administration of KGF and HA significantly reduced intra-abdominal adhesion formation and fibrin deposition and improved the orderly repair of the peritoneal mesothelial cells in the rat model. Furthermore, the combined administration of KGF and HA significantly increased the tPA levels but reduced the levels of IL-6, tumor necrosis factor α (TNF-α) and TGF-β1 in the abdominal fluid. The expression levels of TGF-β1, fibrinogen and α-SMA protein and mRNA in the rat peritoneum or adhesion tissues were also down-regulated following the combined administration of KGF and HA. The combined administration of KGF and HA can significantly prevent postoperative intra-abdominal adhesion formation by maintaining the separation of the injured peritoneum and promoting mesothelial cell regeneration. The potential mechanism may be associated with rapid mesothelial cell repair in the injured peritoneum. This study suggests that combined administration of KGF and HA may be a promising pharmacotherapeutic strategy for preventing abdominal adhesions, which is worth further study, and has potential value in clinical applications. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing
Int. J. Mol. Sci. 2017, 18(7), 1545; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18071545 - 17 Jul 2017
Cited by 227 | Viewed by 10956
Abstract
Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these [...] Read more.
Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Review
Diabetes and Wound Angiogenesis
Int. J. Mol. Sci. 2017, 18(7), 1419; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18071419 - 03 Jul 2017
Cited by 230 | Viewed by 9323
Abstract
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which [...] Read more.
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Graphical abstract

Review
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities
Int. J. Mol. Sci. 2017, 18(6), 1257; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18061257 - 12 Jun 2017
Cited by 73 | Viewed by 4727
Abstract
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of [...] Read more.
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Review
Implications of Extracellular Matrix Production by Adipose Tissue-Derived Stem Cells for Development of Wound Healing Therapies
Int. J. Mol. Sci. 2017, 18(6), 1167; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18061167 - 31 May 2017
Cited by 34 | Viewed by 3999
Abstract
The synthesis and deposition of extracellular matrix (ECM) plays an important role in the healing of acute and chronic wounds. Consequently, the use of ECM as treatment for chronic wounds has been of special interest—both in terms of inducing ECM production by resident [...] Read more.
The synthesis and deposition of extracellular matrix (ECM) plays an important role in the healing of acute and chronic wounds. Consequently, the use of ECM as treatment for chronic wounds has been of special interest—both in terms of inducing ECM production by resident cells and applying ex vivo produced ECM. For these purposes, using adipose tissue-derived stem cells (ASCs) could be of use. ASCs are recognized to promote wound healing of otherwise chronic wounds, possibly through the reduction of inflammation, induction of angiogenesis, and promotion of fibroblast and keratinocyte growth. However, little is known regarding the importance of ASC-produced ECM for wound healing. In this review, we describe the importance of ECM for wound healing, and how ECM production by ASCs may be exploited in developing new therapies for the treatment of chronic wounds. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Review
The Importance of Pericytes in Healing: Wounds and other Pathologies
Int. J. Mol. Sci. 2017, 18(6), 1129; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18061129 - 24 May 2017
Cited by 29 | Viewed by 3316
Abstract
Much of current research investigates the beneficial properties of mesenchymal stem cells (MSCs) as a treatment for wounds and other forms of injury. In this review, we bring attention to and discuss the role of the pericyte, a cell type which shares much [...] Read more.
Much of current research investigates the beneficial properties of mesenchymal stem cells (MSCs) as a treatment for wounds and other forms of injury. In this review, we bring attention to and discuss the role of the pericyte, a cell type which shares much of the differentiation potential and regenerative properties of the MSC as well as specific roles in the regulation of angiogenesis, inflammation and fibrosis. Pericytes have been identified as dysfunctional or depleted in many disease states, and observing the outcomes of pericyte perturbation in models of disease and wound healing informs our understanding of overall pericyte function and identifies these cells as an important target in the development of therapies to encourage healing. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Review
Regulation of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis
Int. J. Mol. Sci. 2017, 18(5), 1033; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18051033 - 11 May 2017
Cited by 66 | Viewed by 3491
Abstract
Wound healing is a crucial process which protects our body against permanent damage and invasive infectious agents. Upon tissue damage, inflammation is an early event which is orchestrated by a multitude of innate and adaptive immune cell subsets including TH17 cells. [...] Read more.
Wound healing is a crucial process which protects our body against permanent damage and invasive infectious agents. Upon tissue damage, inflammation is an early event which is orchestrated by a multitude of innate and adaptive immune cell subsets including TH17 cells. TH17 cells and TH17 cell associated cytokines can impact wound healing positively by clearing pathogens and modulating mucosal surfaces and epithelial cells. Injury of the gut mucosa can cause fast expansion of TH17 cells and their induction from naïve T cells through Interleukin (IL)-6, TGF-β, and IL-1β signaling. TH17 cells produce various cytokines, such as tumor necrosis factor (TNF)-α, IL-17, and IL-22, which can promote cell survival and proliferation and thus tissue regeneration in several organs including the skin, the intestine, and the liver. However, TH17 cells are also potentially pathogenic if not tightly controlled. Failure of these control mechanisms can result in chronic inflammatory conditions, such as Inflammatory Bowel Disease (IBD), and can ultimately promote carcinogenesis. Therefore, there are several mechanisms which control TH17 cells. One control mechanism is the regulation of TH17 cells via regulatory T cells and IL-10. This mechanism is especially important in the intestine to terminate immune responses and maintain homeostasis. Furthermore, TH17 cells have the potential to convert from a pro-inflammatory phenotype to an anti-inflammatory phenotype by changing their cytokine profile and acquiring IL-10 production, thereby limiting their own pathological potential. Finally, IL-22, a signature cytokine of TH17 cells, can be controlled by an endogenous soluble inhibitory receptor, Interleukin 22 binding protein (IL-22BP). During tissue injury, the production of IL-22 by TH17 cells is upregulated in order to promote tissue regeneration. To limit the regenerative program, which could promote carcinogenesis, IL-22BP is upregulated during the later phase of regeneration in order to terminate the effects of IL-22. This delicate balance secures the beneficial effects of IL-22 and prevents its potential pathogenicity. An important future goal is to understand the precise mechanisms underlying the regulation of TH17 cells during inflammation, wound healing, and carcinogenesis in order to design targeted therapies for a variety of diseases including infections, cancer, and immune mediated inflammatory disease. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Review
Association of Extracellular Membrane Vesicles with Cutaneous Wound Healing
Int. J. Mol. Sci. 2017, 18(5), 956; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms18050956 - 01 May 2017
Cited by 41 | Viewed by 4164
Abstract
Extracellular vesicles (EVs) are membrane-enclosed vesicles that are released into the extracellular environment by various cell types, which can be classified as apoptotic bodies, microvesicles and exosomes. EVs have been shown to carry DNA, small RNAs, proteins and membrane lipids which are derived [...] Read more.
Extracellular vesicles (EVs) are membrane-enclosed vesicles that are released into the extracellular environment by various cell types, which can be classified as apoptotic bodies, microvesicles and exosomes. EVs have been shown to carry DNA, small RNAs, proteins and membrane lipids which are derived from the parental cells. Recently, several studies have demonstrated that EVs can regulate many biological processes, such as cancer progression, the immune response, cell proliferation, cell migration and blood vessel tube formation. This regulation is achieved through the release and transport of EVs and the transfer of their parental cell-derived molecular cargo to recipient cells. This thereby influences various physiological and sometimes pathological functions within the target cells. While intensive investigation of EVs has focused on pathological processes, the involvement of EVs in normal wound healing is less clear; however, recent preliminarily investigations have produced some initial insights. This review will provide an overview of EVs and discuss the current literature regarding the role of EVs in wound healing, especially, their influence on coagulation, cell proliferation, migration, angiogenesis, collagen production and extracellular matrix remodelling. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration)
Show Figures

Figure 1

Back to TopTop